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Abstract This paper introduces an improved approach for the volume data registration of
human retina. Volume data registration refers to calculating out a near-optimal transformation
between two volumes with overlapping region and stitching them together. Iterative closest
point (ICP) algorithm is a registration method that deals with registration between points.
Classical ICP is time consuming and often traps in local minimum when the overlapping
region is not big enough. Optical Coherence Tomography (OCT) volume data are several
separate, partially overlapping tiles. To stitch them together is a technology in computer aided
diagnosis. In this paper, a new 3D registration algorithm based on improved ICP is presented.
First, the Canny edge detector is applied to generate the point cloud set of OCT images. After
the detection step, an initial registration method based on the feature points of the point cloud
is proposed to determine an initial transformation matrix by using singular value decomposi-
tion (SVD) method. Then, an improved ICP method is presented to accomplish fine registra-
tion. Corresponding point in the point cloud is weighted to reduce the iteration times of ICP
algorithm. Finally, M-estimation is used as the objective function to decrease the impact of
outliers. This registration algorithm is used to process human retinal OCT volume pairs that
contain an overlapping region of 75 x 500 x 375 voxels approximately. Then a comparative
experiment is conducted on some public-available datasets. The experimental results show that
the proposed method outperforms the classical method.
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1 Introduction

Optical coherence tomography fundus images, which can provide high-resolution cross-
sectional information of the human retina, are indispensable for clinical diagnosis, treatment
and surgical evaluation of diseases such as macular degeneration and glaucoma. OCT pro-
cesses high resolution in vivo volumetric imaging while the acquisition time is relatively short
for avoiding motion artifacts caused by involuntary eye movement. Hence, the scan range of
OCT is limited and only small volumetric data is acquired during one scan [23]. Therefore, it
would be reasonable to focus on creating an OCT volume data covering a large field of view
(FOV) [1].

Literatures on two-dimensional medical image registration are extensive [2, 16, 20]. Kratika
Sharma and Ajay Goyal [21] made a survey of image registration techniques and provided
overall source of recent as well as classic research. They divided image registration steps into
four categories as spatial relations method, relaxation methods, pyramids and wavelets as well
as methods using invariant descriptors. Mei-sen Pan et al. [18] proposed an image registration
method based on edges that detected by the B-spline gradient operator. This method has a
fairly simple implementation and it can be adapted to both mono-modality and multi-modality
image registrations. Moreover, invariant descriptors can also serve in two-dimensional regis-
tration. Lucian Ciobanu and Luis Corte-Real [7] provided a solution to register two complete-
overlapped views problem based on iterative filtering of SIFT-generated key point matches,
using the Hough transform and blocking matching. An iteration based approach was used to
eliminate the most probable outlier and rebuilding the relations. It makes an overall significant
reduction of the outliers while maintaining a high rate of correct matches. To achieve accurate
and robust registration, another novel idea is modeling the entire image distribution. Shihui
Ying et al. [24] first introduced this concept. Thus the procedure of groupwise registration is
formulated as the dynamic shrinkage of graph on the manifold which brings the advantage of
preserving the topology of the image distribution during the groupwise registration. Besides,
some other feature based registration approaches can obtain satisfactory results [4, 15].

However, OCT volume data are composed of two dimensional B-scan images. Above
registration methods may encounter difficulties in calculating memory and time limitation
during process these volume. To register 3D OCT volume data, a novel idea to obtain a large
FOV of OCT images is to create a montage [14]. In this method, blood vessel ridges are used
as the feature of interest and a procedure based on resampling, interpolation, and cross-
correlation is proposed to piece together the full OCT data. The montage method can integrate
the dispersed, partially overlapping OCT images into a large 3D OCT image. However, this
method would fail to register when blood vessel ridges are fuzzy. Other strategies generate a
wide-field volume by using existing tools and platforms. Meng Lu [17] proposed an acceler-
ation method based on Compute Unified Device Architecture (CUDA) which created by
NVIDIA. This algorithm can improve the performance of 3D medical image registration and
accelerate the calculation speed as well, which is suitable for large-scale data processing.
Stephan Preibisch et al. [19] implement a stitching plugin in ImageJ that reconstructs several
types of tiled microscopy acquisitions ranging from mosaics of histological 2D images to sets
of gray-scale and RGB 3D confocal stacks. No prior knowledge is required and brightness
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differences between tiles are compensated by a smooth intensity transition. In addition to
above these, some studies focus on stitching software and related stitching tools are developed
successively [5, 10, 25]. However, some subtle non-rigid transformation appears during scan
procedure due to the instability of ophthalmic instruments and involuntary eye movement. In
hence these methods, which mainly deal with rigid transformation, have limitations in
processing clinical ophthalmology OCT images.

In this paper, we focus on proposing a registration platform that can process non-rigid
transformation and generate a large FOV of OCT volumetric data quickly and accurately. We
use a coarse-to-fine strategy to calculate the transformation matrix which could integrate
volumetric data together. First, edge points of each retinal image are selected by Canny edge
detector and these edge points are collected together as point cloud. The purpose of Canny
edge detector is to reduce the amount of points in point cloud and exclude the impact of noise.
Then a method based on the feature points of point cloud is proposed to calculate the initial
rough rigid registration matrix. Finally, the fine registration matrix is calculated by an
improved ICP method. This method for global optimization could handle non-rigid transfor-
mation in its iterating step. Weighting method is taken into account when calculating the
distance of each corresponding points. M-estimation object function is introduced to eliminate
the abnormal points.

Our improved method accomplished 3D retinal OCT volume data registration and success-
fully broke through the efficiency bottleneck of volume registration. By comparison, time
consumption and registration accuracy of our method are satisfactory.

The remainder of this paper is structured as follows. In the section 2, we give a details
description of the proposed registration approach with the sub-sections 2.1, 2.2 and 2.3. The
section 3 highlights the experiment implementation details and presents the results of the
proposed approach on retinal OCT sub-volumes and some public-available datasets.
Comparison with other registration method is made in the section 4 on a wide range of
OCT datasets. Finally, a review of this paper and future work are presented in the section 5.

2 Materials and method

For the purpose of this paper, we use two 3D image sets as Reference Set and Target Set.
Figure 1 shows these two sets. They are adjacent sub-volumes of human retina acquired by
OCT instrument. We use a fundus image to show the actual position of the two sub-volumes.

The aim is to find out proper transformation matrixes to integrate all these sets into a full
OCT volume data covering a large FOV. To begin with, the schematic of our algorithm is
summarized as Fig. 2.

Canny method in first phase solved the problem of the large amount of data. In the
initial registration phase, SVD method is used to decompose the feature points and
eliminate the translation and rotation misalignment. Two constraints are added to im-
prove the time consumption and registration accuracy of classical ICP method in Fine
registration phase.

2.1 Generate point clouds of volumetric images

3D point clouds refer to a set of spatial data points and usually are used to represent the
external surface of an object. Current commercial OCT instrument can obtain tiny volumetric

@ Springer



Multimed Tools Appl

Fig. 1 The actual position of
Reference Set (leff) and Target Set
(right). Fundus image is used for
reference. Note that the two sets
are adjacent human retina and
composed by the superposition of
single B-scan obtained by OCT
instrument

images with high resolution. Generating point clouds by original OCT images will produce a
huge amount of point clouds, which beyond the processing ability of current hardware and
algorithms. Besides, during data acquisition procedure, there will generate approximately
0.1 %~5 % noise points. These noise points will affect registration process and result in
accuracy decline. Thus, Canny method is used to detect the edge of retinal images, which helps
to accelerate registration speed and reduce calculation amount. Canny method uses dual
threshold to gather new edges in an 8-adjacement area, by which single noise point will not
be treated as a part of edge. Besides, the edge detected by Canny method is the feature
extraction of B-scans, which does not actually change the position information of the over-
lapping region of OCT volume, so using Canny method will lead to a good registration
compared to original datasets. Figure 3 shows the result of a B-scan retinal image processed by
Canny method.

Each pixel of the edge is regarded as a spatial point and all the edges of Reference Set and
Target Set are adopted as the reference point cloud Sk and target point cloud St, respectively.
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Fig. 2 Schematic diagram of the proposed algorithm. A coarse-to-fine transformation strategy is utilized to
obtain OCT volume with large FOV

Canny edge detection eliminates the impact of noise and decreases the size of point cloud,
thereby reducing the calculation burden of the numerous OCT fundus images.

Fig. 3 Edge refine and extraction by Canny method (threshold A; =300, A, =900). The left image is a single B-

scan retinal image acquired by OCT instrument, while the right shows the Canny edge of retinal image
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2.2 Initial registration

We use a coarse-to-fine strategy to work out the transformation matrix, considering both
registration results and efficiency. The purpose of initial registration is to eliminate the
translation and rotation misalignment and provide a favorable initial state for fine registration.
To this end, feature points are extracted from the two point cloud datasets and SVD method is
utilized to work out the rotation matrix R and translation vector 7.

2.2.1 Extraction of feature points

To extract feature points, we first divide the point cloud sets into several spatial grids. Then we
delineate all the boundary grids based on a novel selection algorithm. Finally, we split the
boundary grids of point cloud and extract the feature points from these grids.

Oriented boundary box is used to find the minimum bounding box of point cloud datasets.
Oriented boundary box is an oriented algorithm that makes the bounding box smallest.
Different from axis-aligned bounding boxes, oriented boundary box is defined as a cuboid
whose direction is arbitrary. After calculating the minimum bounding boxes of the two point
cloud sets Sg and St, scaling transformation is used to ensure the two minimum bounding
boxes a roughly equal size. Then, the size of spatial grids can be obtained from the minimum
bounding box, which is defined as:

V
Sort = K 5 (1)

where Q indicates the quantity of point cloud, V represents the volume of minimum bounding
box. K is a variable parameter. For dense point cloud, experiments show that when K is
assigned to be 8 ~24, the size of spatial grid contains adequate points while will not be too
large to affect registration accuracy. Let the size of spatial grid S,,;; be K times of the reciprocal
of the point cloud density and then divide the minimum bounding box equally spaced along
the three axes according to this size. So far, all points in point cloud belong to certain grids
according to their space coordinate. We define these spatial grids as occupied grid and empty
grid according to whether contains points. Next, we extract the boundary grids using the
following equation:

U(x,y,z) :f(x—l,y,z)°f(x+ 1,y,Z)+
Sey=1,2)f (x,y+1,2)+ (2)
f<X,y’Z_1)'f(xayaZ+ 1)

where (x,),z) is the spatial coordinate of a grid and f{(x,y,z) represents the type of a grid. If a grid
is a occupied grid, f(x,y,z)=1, otherwise f{x,),z)=0. A spatial grid (x,),z) is classified as
boundary grid or not by calculating its six adjacent neighbors. U(x,y,z) is the sum of three
products and each product value is 0 or 1. For example, if fx + 1,1,2) - fix-1,y,z) = 1, means that
the left gird (x+ 1,5,2) and the right grid (x-1,y,z) of the current grid are both occupied grids.
From the following figure (Fig. 4), we can conclude that a spatial grid (x,),z) is a boundary grid
when U(x,y,z) < 1,which represents there are no more than four adjacent neighbor grids are
occupied grids. All boundary grids are selected by this method and each point in these grids is
extracted as feature points.
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Fig. 4 Three cases of a boundary grid: a Boundary grid in a plane. b Boundary grid at the edge. ¢ Boundary grid
of vertex
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2.2.2 Registration based on feature points

Once we have obtained the feature points, we gather them to participate in the initial

registration. In our method, singular value decomposition is used to work out the rotation

matrix R and translation vector T between corresponding pairs. A target matrix is defined by
1 M

E= MZ(R,-—CR) x (Ti—=Cr)" (3)

i=1

where Cr and Cris the centroid of Sk and St respectively, M refers to the minimum number of
points between S and St while R; and 7; represents ith point in Sg and St. Decompose E by
SVD, Eq. (3) reduces to E = UDV”, the columns of U are the eigenvectors of the EE” matrix
and the columns of Vare the eigenvectors of the E'E matrix. ¥ is the transpose of ¥ while D
represents a diagonal matrix, by definition the non-diagonal elements are zero. D = diag(d;)
with d;>d;, ;. Let

— i det(U)det(V)=0
- {diag(lfl,—l) det(U)det(V) < 0 (4)

If rank(P) >2, then rotation matrix R can be calculated as R = UPV" and translation vector
T can be calculated as T= C~RCy. Apply R and T to Sg, we have finished the initial
registration step.

2.3 Fine registration

Assume Sg and St contains Ny and Nt points respectively. Time complexity of classical ICP
algorithm is O(Ng - Nt) (O(Ng - logNT) at best). When processing large volume data, massive
time is spent on calculating the Euclidean distance between corresponding pairs. Another
reason that makes classical [CP method unsuitable for our experiment is that it assumes the
nearest point as corresponding point, which may trap the algorithm in local minimum. In this
paper, an improved ICP method is proposed. First, all the corresponding points are weighted
and those whose weight is smaller than a given threshold are eliminated. Second, M-estimation
is introduced into the objective function to decrease the impact of abnormal points. In classical
ICP algorithm, all the points are given an equal weight. In hence, each point in the point cloud
will participate in the calculation of distance, which is the bottleneck of efficiency. In our
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method, a linked list is maintained which stores the effective points in distance calculation.
Points are classified as effective points when their weight is larger than the threshold. We
assume Pris one point in S, the weight of P has the form:
: Dispax

weight = Dis(Pr.Pr) 1 (5)
where Pp is the current calculating point in Sg, Dis(Pg,Pr) represents the Euclidean distance
between Pr and Py after initial registration step while Dis;,y refers to the maximum distance
between corresponding pairs. Effective points are stored in a linked list which will update after
iterating a point. Points are excluded if their weights are smaller than a fixed threshold € which
is a variable argument that trades off time consumption and registration accuracy. If the
threshold ¢ is decreased, the registration procedure would be more accurate but time consum-
ing, which means there are more points should be processed as effective ones. And only
effective points which are treated as corresponding points would participate in the calculation
of Euclidean distance.

After excluding the points that have little effect on distance calculating, we introduce M-
estimation to improve the objective function. M-estimation was proposed by Huber [12],
which mainly deals with abnormal points. This method has overcome the shortcomings of
traditional methods that may have no solution. M-estimation is the process of finding an
estimate value X which makes the residual error smallest. Experiments show that it is likely to
make registration trap into local minima when the number of abnormal points increases. In
order to improve the robustness of registration algorithm, in this paper, a selecting weight
iteration method proposed by Huber is used to reduce the sensitivity of the abnormal points.
Huber defined the weighting factor of a point as:

1 |ul<c
wo=9 & [v] > ¢ (6)
v

where v means the residue of a point, ¢ is a constant. In general, ¢= 20(o is the standard
deviation of a point in our algorithm). Huber M-estimation is a classical least squares
estimation when v range from —c to c. Nevertheless, if residue v is greater than ¢, the weighting
factor decreases while residue increasing. Equation (7) shows the equation to calculate the
Euclidean square distance of a corresponding pair 4 and B.

Dy = \/WX'(XA—XB)2 + wY'(YA—YB)2 + WZ'(ZA_ZB)z (7)

We assume A, B are a corresponding pair of point cloud sets. wy, w,, w. represents the
weighting factor of Huber M-estimation respectively while X, Y, Z4, X5, Y5, Zp refers to the
spatial coordinates of A and B, respectively.

The process of our improved ICP algorithm is summarized as follow:

Given two point cloud sets Sg and Sy, an accuracy threshold 7, iterating the following steps:

—  Exclude the points that have low weight according to a linked list (Initialized as empty).

— Calculate all Euclidean distance between the two sets from Eq. (7).

—  For each point in Sg, find the nearest point in St as corresponding pairs and group them
together as the nearest point set S}.
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—  Calculate the translation vector T and rotation matrix R between Sy and SlT using least
mean square algorithm.

—  Apply registration matrix R and T to Sk and get a new point cloud set Sk. Update the
linked list and the root-mean-square error according to the new sets Sk and S}

Until the root-mean-square error converges to the given threshold 7.

3 Experiments and results

In order to evaluate the registration performance of our proposed method, we conduct several
experiments on both clinical datasets of human retinal OCT sub-volumes and public-available
datasets. For the sake of comparison, we test our algorithm on different size of point cloud and
discuss the experimental results.

Our proposed algorithm has been applied to process two retinal OCT sub-volumes, which
are adjacent parts of the human retina structure. There are approximately 75 x 500 x 375 pixels
overlapping region between the two sets. Figure 5 shows the iterating process from four
different angles, the left visible area shows the initial position of the two point cloud (red points
represent reference point cloud Sk and green points represent target point cloud St) while the
right area indicates the real-time registration results of certain iteration step.

In our experiment, only the overlapping region of Reference Set and Target Set was
selected to participate in the generation of point cloud considering the calculation time
(177,489 cloud points after Canny method). The experimental result demonstrates a relatively
accurate registration of OCT fundus volume data. Figure 6 shows the result of our method
about the point cloud sets in detail, the left image demonstrates the relative position of the two
OCT image sets. An obvious misalignment and some subtle deformation can be observed at
zoom-in part. The proposed improved ICP method successfully registers the improper spatial
cloud points which are illustrated by the right image in Fig. 6.

Fig. 5 Iterating process from different angles. The two point cloud sets are sampled as the left and the rights are
real-time registration results. The cube profile on the right is the oriented boundary box of point cloud
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Fig. 6 Partially results of overlapping point cloud. The first image shows a zoom part of the overlapping region
before registration, while the second shows the result of this part after using our method

The visualized experimental results are finally rendered by ImageJ. Figure 7 visualizes the
initial experimental data sets as well as the experimental result. There are four rendered OCT
volumes, the first two are experimental data that represent the Reference Set and Target Set
mentioned above while the last two volumes on behalf of experimental result. Traditional
registration of OCT volumes like that used in this paper may cause layer abruption especially
in inner nuclear layer, photoreceptor cell layer and retinal pigment epithelium. However, the
result images in Fig. 7 demonstrate a relative satisfactory retinal OCT volume. No obvious
mosaic trace is found in our experimental result even at the overlapping region, thus the
obtained volume with large FOV may better help clinicians in the prevention and diagnosis of
ophthalmology disease.

As for the performance of registration method, there are no quantified standard with
absolute certainty yet [8]. Researchers have proposed identification approaches from old and
classical [11] to novel [9, 22]. In this paper, we utilize registration error to evaluate the
performance, which is defined as:

N

Z Success(Pg, Pr)
£ =1-! I *100% (8)

Success(Pg,P7) has the form:

1 DiS(PR,PT)S(S

Success(Pg, Pr) = {0 Dis(Pg,Pr) > 7

where N indicates the total number of corresponding pairs, (Pg,P7) is a corresponding pair.
Success(Pg,Pr) indicates the registration result of corresponding pair (Pg,P7).
Success(Pg,Pr)=1 when the Euclidean distance of the corresponding pair is smaller than
the threshold 9. In the proposed performance evaluation formula (8), assuming that 4 is 0.15
times of the original Euclidean distance of (Pg,P7) before registration, which means all
corresponding pairs whose Euclidean distance is less than 15 % of the original distance are
successfully registered. Table 1 shows the time consumption and registration error of our
algorithm and classical ICP algorithm proposed by Besl [3].
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(©) (d)

Fig. 7 Experimental data and results rendered in ImageJ. After iterating the points of overlapping region, we got
the transformation matrixes and applied them to Reference Set and Target Set. a The Reference Set of
experimental data. b The Target Set of experimental data. ¢ The side view of the result. This image shows the
retinal layers situation after registration. d The top view of the result. This image shows the situation of fovea
central is after registration

4 Discussion

With the development of OCT technique, 3D OCT volume data occupies an important place in
computer-aided diagnose. Therefore, a satisfactory high-resolution OCT volume data with
large FOV would be clinical desired. In this area, our team reached some results. Dae Yu Kim
et al. [13] reported high-speed acquisition at 125 kHz A-scans with phase-variance OCT that
could reduce motion artifacts and increase the scanning area. Arlie G. Capps et al. [6]
described a method for combining and visualizing a set of overlapping volume images with
high resolution but limited spatial extent. Robert J. Zawadzki et al. [26] presented a short
review of adaptive optics OCT instruments and proposed a method for correcting motion
artifacts in adaptive optics OCT volume data.

In this paper, we propose an algorithm to integrate 3D OCT datasets. There are some new
features in our algorithm. Canny edge detector is applied to each OCT fundus image, which
can remove the noise impact and reduce the calculation burden effectively (14,062,500 points
of original overlapping region, 75 images, 375 x 500 pixels. 177,489 points after Canny edge
detection method). In the initial registration step, spatial grid partition and singular value
decomposition method is used to find out the matrix of rigid transformation which may cause
by involuntary eye movement during data acquisition. The core of our method is the improved
ICP algorithm. Points are weighted by their distance to the current corresponding point. Thus,
the points that have low weight will not participate in the iteration step. Besides, M-estimation

Table 1 Comparison of experimental result

Registration method Time consumption/s Registration error
Classical ICP 308.881 0.00096834
Initial registration 8.623 -

Improved ICP 82.517 0.00020539

Tllustration of stitching performance on tiled volumetric images computed on a Windows machine with Intel® 2-
Core CPU (2.93 GHz). Single tile dimension is 75 x 500 x 375
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Table 2 Different size of point cloud registration

Point cloud size

Time consumption

Time consumption

Classical ICP /s Improved ICP /s
9731 11.023 3.994
28107 42.928 19.562
69670 150.447 41.090
177489 308.881 82.517
385316 512.848 123.962

is added to the equation that calculates the Euclidean square distance of corresponding pairs.
There are three control parameters on x-axis, y-axis and z-axis respectively, which eliminate
the impact of outliers and make the algorithm robust. Comparing with classical ICP algorithm,
these new constraints made our method a less time consumption and better accuracy (Table 1).
Our approach consumed 91.140 s totally in the experiment, which shortened a lot than
classical ICP; the registration accuracy has considerable improvement as well. In the initial
registration step, we eliminate the translation and rotation misalignment, which resulted in a
larger overlapping region and fewer registration mistakes of corresponding points in the
iterative process of ICP. Besides, the use of M-estimation also makes our approach more
accurate. Weighting method is the core that makes our approach less time-consuming, which
reduces the amount of points in the calculation of distance.

We also test our algorithm on different sets of point cloud including some public-available
datasets. For example, the first point cloud in Table 2 is the “Stanford Bunny” after being
processed by our method while the second one is the “Dragon” from The Stanford 3D
Scanning Repository (http://graphics.stanford.edu/data/3Dscanrep/). Table 2 and Fig. 8
shows the performance of our improved ICP algorithm and classical ICP algorithm.

As is shown in Table 2 and Fig. 8, our method has obvious advantages when dealing
with large volume data. In most cases, our algorithm increases the efficiency of classical

600 ‘

==l Classical ICP

5001 === |mproved ICP N

400

300

200

Time consumption

100

Point cloud size x 10

Fig. 8 Comparison of improved ICP with Besl’s method in time consumption with different point cloud size.
With data size growing, our improved method stands out
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ICP algorithm by 70 %. Above analysis demonstrates the effectiveness of our method
and the possibility to apply it to process other OCT datasets that can be transformed into
point clouds.

5 Conclusion

We present a non-rigid registration method of OCT retinal images, which can generate a 3D
ocular fundus volume covering a large FOV. Canny edge detection method has been applied in
the first stage of the proposed method to generate the point cloud. Oriented boundary box is
used to process the point cloud set and obtain the feature points. The initial registration matrix
is calculated based on these feature points and SVD method. At last, an improved ICP
algorithm is proposed to work out the fine registration matrix between the point cloud sets.
Several human retinal OCT image sets and some public-available datasets are used to test the
performance of the proposed method. The experimental results show the performance of our
algorithm has an obvious improvement compared with classical ICP algorithm in terms of time
consumption and registration accuracy. In clinical practice, there are several partially overlap-
ping OCT volumes of human retina. Under the same coordinate system, each volume has a
fixed coordinate. So after registering of two volumes, we regard them as a new volume and
integrate it with other volumes. The proposed method could provide strong support for clinical
treatment and diagnosis. Our future work will focus on a self-adapted strategy to register OCT
sub-volumes automatically.
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