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Abstract— Topology provides a foundation for the development Improved methods for defining transfer functions utilize ad
of mathematically sound tools for processing and exploratin of  ditional derived quantities such as gradient magnitudedéi
scalar fields. Existing topology-based methods can be used t they still apply the same transfer function uniformly thgbe

identify interesting features in volumetric data sets, to fnd seed ; . .
sets for accelerated isosurface extraction, or to treat indidual out the domain. As a result, these methods, while effective a

connected components as distinct entities for isosurfacin or ©nhancing the perception of distinct material/tissues tpper-
interval volume rendering. We describe a framework for direct faces, still do not allow a viewer to differentiate fully beten
volume rendering based on segmenting a volume into regions 0 separate features. Other methods use segmentation infonma
equivalent contour topology,. applying separate transferdinctions to apply different transfer functions to classified regigél
to each region. Each region corresponds to a branch of a 6 v diff t renderi dalities [71. [8has
hierarchical contour tree decomposition, and a separate @nsfer [6] or even apply different rendering modalities [7], [Bhdse
function can be defined for it. techniques require segmentation information for eachmaelu
The novel contributions of our work are (i) a volume rendering and rely either on manual segmentation or domain-specific
framework and interface where a unique transfer function can segmentation algorithms.
be assigned to each subvolume corresponding to a branch oféh g \ngerlying weakness of all of these methods is that the
contour tree; (i) a runtime method for adjusting data values d o f - - ither fail distifsh
to reflect contour tree simplifications; (iii) an efficient way of etermlnatl_on of opacity propert_les_, elt_er ails to |g_tlrs
mapping a spatial location into the contour tree to determire the between different features at similar isovalues, or is #ase
applicable transfer function; and (iv) an algorithm for har dware- on expensive and/or domain-specific segmentation methods.
accelerated direct volume rendering that visualizes the adour |t is therefore desirable to have a general model of spaytiall
tree-based segmentation at interactive frame rates using@phics |45c4) transfer function definition by exploiting topologic
processing units (GPUs) that support loops and conditional definiti f wh - f By i .
branches in fragment programs. efinitions of what constitutes a feature. By incorporating
topological information into direct volume rendering in a
systematic fashion, we generalize existing topologigalits to
transfer function design and provide methods that are ipedct
for direct user manipulation or, eventually, automaticigies
. INTRODUCTION of locally defined transfer functions.
OLUME rendering is a standard technique used in sci- Isosurface topology provides insight into the fundamental
entific visualization. It is based on defining “optical’structure of a data set, independently of the application do
properties for points in the three-dimensional (3D) domaimain. Topology considers connected components in a rela-
of a scalar field and computing resulting pixel intensitietively intuitive fashion that can be used for a wide variety
in an image plane [1]. Optical properties at a given poinif applications. Thecontour tree[9] provides expert users
are normally based wholly or partially on the function valueith additional information about their data and faciktst
(and sometimes gradient magnitude). This approach assumeg exploration in the absence of strong domain-specific
that scalar values, such as density values in a computesthniques. Topological analysis of scalar data sets casdumk
tomography (CT) scan, map directly to physical propertias identify interesting behavior of a scalar field and to aid i
such as tissue type. Even when volume rendering is appliedie data exploration process. Section Il provides an ogervi
non-medical data this model is often used [2], [3]. Whilesthiof related work.
approach provides a structural overview of an entire déta se While specialized segmentations are applicable to pdaticu
it is unable to distinguish between distinct features ti@ire problem domains, the power of our topology-based segmenta-
the same scalar value. If, for example, a region of interegbn lies in its generality. Our approach is related to thekwo
is enclosed by an “uninteresting” region and both regiong Takeshima et al. [10], who used a topological abstraction
overlap in value range, occlusion generally prevents &¥fec called volume skeleton tre¢o define topological attributes as
visualization of the interesting region. additional input for multi-dimensional transfer functsrOur
_ _ _ method extends their ideas and is more general. Instead of
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post-classification in volume rendering while Takeshima etitical points of the data set where the number of contours
al’s approach uses pre-classification. While the use of-poshanges. Nodes of degree one (leaves of the tree) are minima
classification for medical data is controversial, it sigrafitly and maxima where contours are created or destroyed. Interio
reduces artifacts in rendered images [11] and is partisulanodes of degree three or higher are saddles where two or more
suitable for simulated data. Furthermore, instead of ubimg contours merge or a single contour separates into multiple
ear interpolation applied to a tetrahedron we consideénédr disconnected contours. Arcs of the contour tree represent
interpolation for a hexaheadral cell, as hexahedral meafess contours between critical points, i.e., contours which @b n
most commonly used for direct volume rendering of data giveimange topology (with the exception of genus changes) as
as samples on a regular, rectilinear mesh. the isovalue varies between critical values. Algorithms fo
We have implemented topological data simplification fotomputing the contour tree [15]-[18] were first defined for
trivariate scalar data sets. Topological data simplifazatech- tetrahedral meshes using linear interpolation and later fo
niques simplify a data set by making its topology corresporigxahedral meshes using trilinear interpolation [19].
to hierarchical simplifications of the contour tree, thupree The contour tree may be augmented by additional nodes
senting various levels of detail and showing significantifezs  representing changes in topological genus of contours, [19]
at a glance while still allowing fine details to be revealed onodes representing non-critical vertices of the mesh, deso
demand. Existing simplification methods result in georcetriepresenting any arbitrary points in the volume. We use the
and visual artifacts such as fine thread-like structures atetm fully augmented contour treéo refer to the contour
flat regions showing up as large objects abruptly becominge augmented by all vertices of a mesh. Each grid vertex
visible. We demonstrate how to remove topological featuresrresponds to a node in the fully augmented contour tree and
in a way that reduces these problems (Section V). We algtaps to an arc (when a regular point) or a node (being a
describe data structures (Section Ill) and rendering élyos critical point) in the contour tree.
for topological volume rendering (Section V) that can be Since each contour in an isosurface corresponds one-to-one
implemented efficiently using current graphics hardwane: Owith a point on an arc in the contour tree, it is possible to use
framework supports interactive volumetric visualizatioh the contour tree as an index for a volume data set and identify
noisy or topologically complex data. all contours for a given isovalue. This relationship ha® als
been used to find seed cells [17], [20] for thentinuation

Il RELATED WORK method [21] of level set extraction.

A. Contour Trees

In addition to its importance for isosurface extraction][12
topology has become valuable for more general explorati
of scalar fields. Topology, up to now, has been used mainlyEven if the topology is known, a user interface for effective
in the context of isosurface extraction, where the topaalgi data exploration must still be developed. Bajaj et al. [22]
properties of interest are usually the number of connectiwdroduced an interface called thtentour spectrumwhere
components and the genus of an isosurface, i.e., the numpkaiperties such as isosurface area, enclosed volume, and th
of independent tunnels or “holes” in an isosurface. Morgg®ntour tree were plotted alongside isosurfaces to provide
theory [13] shows that topological changes in scalar fieldisers with additional cues to interesting isovalues. Wedter
defined on manifolds occur at distinct isolated points calleal. [23], [24] devised tools for exploring scalar fields bdhsm
critical points A Reeb graph [14] expresses the evolution dfetecting critical points and critical regions. Cox et &@5]
individual contours as a graph that is defined by these atitiglefined a digital Morse theory and also used critical points a
points and their relationships. For simply connected dasjai regions to explore medical data. Fujishiro et al. [26], [A%gd
the Reeb graph is always a tree structure, called a contda@ contour tree to detect significant isovalues autorrgtica
tree [9], which is more easily computed than the general Refgls transfer function design.
graph. Carr and Snoeyink [20] extended the idea of seeded isosur-

Before discussing the contour tree in detail, we start wiflace extraction based on the contour tree [17] by assogiatin
some basic definitions. The tensosurfacehas been used in seed cells with individual contours, using the contour tree
the literature to mean the inverse image of an isovalue, aa a visual index to the contours. This association undgrpin
individual connected component of such an inverse imagbe flexible isosurfaceénterface, in which individual contours
or a triangular approximation of either. In mathematics there treated as distinct entities. Since this concept stppor
term level setis usually used, instead of isosurface, but thimdependent manipulation of single contours, it imports a
term has other connotations in graphics and visualizafion. notion of spatial locality to the task of extracting surfadem
avoid confusion, we use the terms isosurface emtouras a scalar field. Individual contours can be deleted (allonang
follows: Given a fieldf : R? = R, theisosurfaceof f for an user to view otherwise obscured portions of an isosurface),
isovaluenh is the inverse imag¢ —!(h) of the isovalue. Since rendered in different colors, or evolved to new isovalues
this isosurface may consist of multiple connected comptserwithout affecting other contours. As a motivating example,
we usecontourto refer to an individual connected componerthe authors showed a CT data set of a head, and used the
of an isosurface. contour tree to display a contour representing the brainowit

The contour tree is a structure that captures the topolbgidisplaying the contour representing the skull at the same
evolution of an isosurface as the isovalue varies. Its nades isovalue.

gn Utilizing Topology in Scientific Visualization
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Takahashi et al. [28] extended this idea and used intenial Classification in Volume Rendering
volumes to display volumetric regions of uniform topology, - . .
pay d po‘ogy Original approaches for volume rendering consider only

“peeling” away layers of a volume to examine the internal .
structure. Recently, Takeshima et al. [10] used topoldgic%lCalar value to classify samples [1], [3]. Even though Lésoy

information such as isosurface inclusion level in muItidi[nethOd [1] also considers gradient magnitude it is only used

mensional transfer functions, to support operations succh t%f S|Tullate_f_ sutr_face; c_)f cotnstlanz th|cknessd "%”d ﬁggg not
“veeling” off layers in a volumetric data set. affect classification. Kniss et al. [4] improved visuali

by adding gradient magnitude and additional higher-order
derivatives as parameters for classification, while spiplging
the same transfer function uniformly throughout the domain
C. Topology Simplification If a segmentation of the data set is available, which is often
true for medical data sets, it is possible to improve volume-
Noise in a data set creates a large number of irrelevaehdered results by considering segmentation information
critical points that can distract from truly relevant topgl ing classification and rendering individual segmentedaegi
cal features. Topology simplification suppresses insicguifi differently. For example, it is possible to use differemtrisfer
features by removing, ocancelling pairs of critical points functions for different tissue types, or to emphasize paldir
that are viewed unimportant according to a specified measyparts of the anatomy while hiding others [5], [6]. By combin-
Besides the contour tree, two topological structures aesl usng multiple rendering modalities, such agaximum intensity
widely for scalar topology simplification: theolume skeleton projectionand direct volume renderingvith incorporation of
treethat corresponds to a contour tree augmented with nod#ferent transfer functions [7], [8], it is possible to hiight
corresponding to genus changes [29], [30] and Mierse- volume portions of interest while still providing a context
Smale complex31]—-[33]. to the user. However, these techniques require segmamtatio

Our work is based on topology simplification methods inhformation which must be obtained by manual segmentation
troduced by Takahashi et al. [29], Carr et al. [34], and Pesicu Or by domain-specific segmentation algorithms.
et al. [35]. Carr et al. [34] simplified the contour tree wittot More recently, Takeshima et at. [10] used information from
basic operations: leaf pruning and node collapses. Leaifipgu the contour tree to design multidimensional transfer fiomst
removes a leaf and the arc incident to the leaf from the cantouhich use derived topological quantities as input. In addit
tree. Since contours are extracted from seeds stored irfogenus, the authors designed transfer functions whicteegp
contour tree, deleting an arc from the contour tree has the sthe “inclusion level” of a contour, defined as the number
effect of discarding the corresponding contours from feirthof equal-valued contours which surround and occlude that
consideration. Carr et al. further show that when visuéibra contour. Lower inclusion levels, which represent the cutest
methods other than isosurface extraction are used, data teatures, are given lower opacities so that higher inctusio
be modified to match the topology of the simplified contouevels, which represent the innermost features can be seen
tree by “flattening” the corresponding region, i.e., all gdas clearly. Furthermore, Takahashi et al. [36] used the volume
corresponding to the pruned arc get assigned the valueskeleton tree to find optimal viewpoints that maximize the
the saddle. Node collapses remove degree-two vertices anber of visible features for volume rendering.
do not affect the contours that can be extracted or values inRecently, statistical learning-based methods have béen in
the data set. Pruning and collapsing are performed in arr ordeiced for interactive volume data segmentation [37]. Tlea id
that minimizes the error based on a local geometric measwiaderlying such methods is to have a user specify integtiv
such ashypervolume(an integral of the scalar field over thewhat regions in a data set constitute a “feature.” By pontin
enclosed volume)yolumeor persistencewith node collapses out such regions, it is then possible to characterize them by
having priority over leaf pruning. scalar field behavior in a local neighborhood, and to use the

Pascucci et al. [35] describebranch decompositignan resulting characterization for segmentation. Howeverrimg-
efficient way for storing a hierarchy of contour tree simplibased methods require manual training to define features.
fications. A branch decomposition of a tree is a hierarchical Kniss et al. [38] improved on the classical classification by
decomposition if (i) exactly one branch connects two leavedserving that a unique classification of samples is notydwa
(called the root branch), and (ii) every other branch cotmegossible. In particular, in the proximity of boundaries #&nc
one leaf to an interior node of another branch. Fig. 1(b) shownprove visualization results by considering an uncetyaih
a contour tree, and Fig. 1(d) shows its branch decompositi@tassification and use statistical methods to generatezyfuz
Since a branch (with the exception of the root branch) cotsneclassifications.
a leaf to an interior node of another branch, it is defined by
a pair of critical points: a saddle and an extremum that areln summary, a significant body of work exists concerned
connected by a monotone path. Each saddle-extremum paith the use of contour trees for interactive isosurface ex-
corresponds to a topological simplification,eancellation of ploration, on their use in automatic transfer function gasi
critical points. Discarding a branch from the branch decomand in designing globally uniform transfer functions based
position is equivalent to performing a cancellation, whish on parameters which may include some topological informa-
equivalent to a vertex prune operation in the framework ¢ibn. However, interactive exploration of scalar fieldsngsi
Carr et al. [34]. topologically-defined transfer functions in their most geai
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sense has not previously been considered, and our paper contour family with equivalent topology is useful, itedo
discusses a solution to this problem. not take into account that a segmentation is only necessary
if regions overlap in value range. Branch decomposition nat
urally concatenates a sequence of arcs into a single umit, se
Fig. 1(d), unifying their topological zones into a singleneo
Since individual contours map to points in the contour tregee Fig. 1(c). Furthermore, branch decomposition permits
each arc of the tree represents the union of all contourshwhigser interactions on a coarse, simplified tree and propagati
map to it. This union can be thought of as the volume beingansfer functions down to the full resolution tree.
swept out by the contour as its isovalue is varied, starting a \we construct the branch decomposition as follows: At each
the critical value which creates the contour, and endin@at tstep, a saddle-extremum pair is pruned from the contour tree
value which destroys it. This sweep defines a partition of thyd the remaining node is collapsed, leaving an arc. This arc
space into topologically distinct regions, which we refer tis the parent to which the saddle-extremum pair is linked as a
astopological zonesfollowing Cox et al. [25]. For example, child. The order in which the pairs are pruned is determined
in Fig. 1(a), the sample terrain has been divided along eagfi a priority measure. Pascucci et al. [35] upsdsistences
contour that passes through a critical point, and the t@pcdd priority measure, which is the absolute difference in fiorct
zones are shown in different colors. values between the saddle and extremum. Geometric measures
We follow Takeshima et al. [10] by also using topologicaduch as volume and hypervolume, are described by Carr et
zones for segmentation in volume rendering. However, theil. [34]. Pairs with lower priority are pruned first, and they
work has several limitations: their topological indicesatrall pecome the children of pairs with higher priority. The end
zones with the same nesting depth as equivalent, ruling @esult is a rooted tree of saddle-extremum pairs, or brache
differentiation between two topologically similar but tift The most important branches, as indicated by the priority
objects. Moreover, their methods are based on the topolagi¢asure, are at the top of this tree.
of tetrahedral meshes, which can introduce geometric andCurrentIy, we do not consider saddles corresponding to
topological artifacts in the output images [39]. Further&o genus changes. Our zones of “topologically equivalent™-con
they computed opacities for the volume rendering integyal Rours are only topologically equivalent up to the genus. How
interpolating over tetrahedra, instead of looking up ofie€i ever, the same argument for using a branch decomposition to
directly in the relevant transfer function, which can lead tayoid an over-segmentation also holds here. Saddles which
further artifacts in cells Spanning multlple tOpOlOgiCﬂhBS. Correspond to a genus Change of a contour do not affect
We extend this work by allowing assignment of independetie segmentation — contours of different genus can be dis-
transfer functions to individual topological zones; by BB  tinguished based solely on function value alone. This is a
the trilinear interpolant over hexahedral cells; by shamiow  design decision, however, and nodes for genus change could
to find the correct opacity in cells spanning multiple topte represented if the additional information were desiresi.
logical zones; and by improving the treatment of topolobicgenus changes do not contribute to the complexity of the

simplification in the data. contour tree-based segmentation, we do not consider them in
We compute the contour tree of the underlying trilineagur simplification scheme.

interpolant [12] with a variation of the method from Pasducc
and Cole-McLaughlin [19], which applied the underlying
graph-theoretic algorithm [18] to the union of cellwiseroi
and split trees instead of the edges of a tetrahedral mesh. IOne straightforward way to change isosurface topology is to
fact, any graph which accurately represents the topology ‘whop off” peaks, and correspondingly “fill in” valleys [34]
the trilinear interpolant may be substituted instead. opdify ~ (Figs. 2(a) and 2(b) show an example, where the peak on
processing, we construct a widget in each cube in which ttiee right hand side (marked') is chopped off.) This goal
mesh edges are augmented by edges between body saddls, be achieved by setting the transfer function for the
face saddles, and vertices [40]. Nothing, however, depereinceled branch to a solid color, the color of the parent
on this choice, and the method described in [19] can Imeanch’s transfer function at the value of the saddle which
substituted instead. connects the child to the parent. While this approach dyspla
Once we have computed the contour tree, we simplify it tin image with topology consistent with the pruned contour
remove symbolic perturbation [41], then assign each tapoldree, the topological changes in the function may not be
ical zone a transfer function. Consequently, every topobig ideal from a user’s perspective. Sweeping an isosurfacendow
detail, including noise, is assigned its own transfer fiomct the simplified contour tree will show the pruned components
For medium to large data sets, especially when physicafiyopping” abruptly into existence, as can be seen in the movi
sampled, the topological complexity makes it necessary ascompanying this paper. In volume-rendered images, amegi
represent the contour tree hierarchically. We store the hief uniform opacity properties can also become visible. For a
archy using théaranch decompositiodescribed by Pascuccismoother evolution of simplified isosurfaces, or for a close
et al. [35]. approximation of the underlying scalar field, other methods
In addition to providing a hierarchical representation ahust be used.
the contour tree, branch decomposition also avoids an “over We follow the strategy of Pascucci et al. [35], which proves
segmentation” of the volume. While having a topologicaleorthat one can always modify a scalar field to correspond to

IIl. CONTOUR-TREE-DEFINED SEGMENTATION

IV. IMPROVED TOPOLOGICAL SIMPLIFICATION
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(a) Terrain showing topological zones (b) Contour tree  (c) Terrain showing topological zones fofd) Branch decomposition of contour tree
branch decomposition

Fig. 1. Example of a segmentation defined by a contour tr§eTdaain data set showing topological zone segmentationContour tree of the terrain,
with edges color-coded based on the corresponding tomalbgones. (c) Terrain data set showing topological zonensatation for branch decomposition.
(d) Branch decomposition of contour tree of the terrainhveitiges color-coded based on the corresponding topolagicess.

tube extends from the saddle toward the extremum.

Consider a branch that ends at a maximum, such as the
branch SC in Fig. 2. The region of gradient reversal is a
tube, thechild tube that starts at the saddlg and extends
“upward” toward the maximunC. This child tube crosses
each contour ofSC’s topological zone once, and at each
crossing we define a new function value. The original values
of the contours ascend from the saddle to the maximum. To
reverse the gradient, we define new values that descend, as
illustrated in Fig. 2(c). Since the starting point of thi®éys,
is lower than all values in the topological zone®f the path
cannot descend without creating a new minimum. To avoid
creating this new minimum, we increase the valueSatby
way of aparent tubewhich extends from the saddle into its
parent’s topological zond? S in Fig. 2. The gradient along this
parent tube is not reversed. Instead, the values are irtteas
in order to elevate the saddle’s function value. If the vatie
P is greater than the value @t (which is usually true for the
hierarchical branch decomposition [35]) then it is possital
construct a monotonically decreasing path frénthroughs,
ending atC, thus effecting the simplification.

Fig. 2. (a) A function with two maxima; branch decompositiohcontour
tree shown on right side. (b) The right branch has been dadcky flattening
the right topological zone. (c) The right branch has beecelted by reversing
the gradient along the dotted line. The tubes are created by a “best effort” process, whichsstart

at the saddle and follows the steepest path in both dirextion

It stops if a maximum or minimum is reached, or if the path is

obstructed by another topological zone. If the end of themptar
a simplified contour tree. The proof relies on reversing th@ibe does not have a value greater than the value at the end of
gradient flow along a path from the saddle to the extremum @fe child tube, then a monotonically descending path cannot
the branch to be pruned. In fact, the authors proved a stronge constructed along the tube axis. In such a case, where the
result, which states that the region in which the gradieghjue at the highest point on the parent tube reaches a value
flow is reversed can be made arbitrarily small. This ConditioU, we uniform|y scale all values i8(C'’s t0p0|ogica| zone so
is achieved by subdividing the mesh, resulting in arbilyarithat they are less than
thin thread-like structures connecting the former extremia
the remainder of the function. This approach, too, gensrate If the child SC has children, then the child tube may also
undesirable visual artifacts, and we instead reverse tigmt become obstructed. It becomes necessary to flatten allspoint
flow in a tube — a region inflated from the thread to a sizen C’s topological zone with value greater than at the end of
defined by the following heuristic: sweep a sphere out frothe child tube. The tip of the child tube thus becomes the new
the saddle § in Fig. 2). The base radius of the tube is thenaximum. In extreme cases where no significant tubes can be
distance at which the sphere first intersects a topologma¢ z constructed, the method degenerates into the “choppifig-of
other than the parent’'s or child’s. This radius shrinks as tlmethod mentioned at the beginning of this section.
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Fig. 4. Finding the arc corresponding to a point within a &sllfollowing
Fig. 3. Portion of contour tree corresponding to a cell. ideg are labeled a monotone path. The cell contains a saddle (indicated byeaeng¥) and
with their function values. These values are also highéighin the contour thus a fork in the corresponding subgraph of the contour. Bgefinding a
tree to show the correspondence between vertices and nodesres in the monotone path in the cell, it is possible to find the arc in theteur tree that
contour tree. (a) Tetrahedral cell, linear interpolatidh) Hexahedral cell, corresponds to the region containing the sample.
trilinear interpolation.

erty, since saddles may occur inside or on faces of hexahedra
V. VOLUME RENDERING cells, causing monotone paths in the cell to map to more than
Volume rendering is based on integration of optical propne possible monotone path in the contour tree, as shown in
erties along a ray passing through the image plane. Samgtég. 3(b). We instead base our construction on the linearity
are taken at regular intervals along this ray, and color atite interpolant along lines parallel to the coordinate eayst
opacity are determined using a transfer function. Resu#ts @and construct a monotone path from axis-parallel segments.
then composited. Various methods have been developedFtg. 4 shows an example for the bilinear case.
accelerate this process, but all share the same conceptu#® monotone path through a trilinear cell is constructed
model. according to Algorithm 1. At any poinfX, we choose an
Instead of a global transfer function, we use a (possiblgxis-parallel line and follow it to the boundaries of thelcel
distinct transfer function for each topological zone. Fay a Since f is linear for every axis-parallel line, it must be either
given pointp in the domain, we must therefore determineonstant or monotone. If it is monotone, we repeat the psces
the topological zone to whiclp belongs, and then apply on the boundary of the cell until we reach a vertex, extending
the appropriate transfer function. This task is complidatanonotone path as we proceed. For constant lines, the ertdpoin
by the fact that the boundaries between topological zonefthe line belong to the same contour and the same topologica
are formed by isosurfaces at critical values, which rarelone asX, and we substitute either endpoint of the line for
coincide neatly with the mesh. Fig. 1(a) shows that the glen X and continue.
labeled A intersects three topological zones, the middle of Once the high and low vertices are determined, we look
which contains no vertex ofl. In general, cells can intersectup the high and low arcs. We then walk from the high arc
arbitrarily many topological zones. towards the low arc, stopping at the arc which contains the
Our solution to this problem is based on the fact thaampled value off. Contour trees are “free trees” without a
monotone paths in any scalar field always map to monotoreot. It is not immediately obvious which direction to walk
paths in the contour tree and vice versa. Given a monotafigve are trying to move from one arc to another. Instead of
path P in the scalar field that passes throyghnd terminates trying to navigate the contour tree directly, we walk in the
at vertices corresponding to nodes in the contour tree, aee tr branch decomposition, which is a rooted tree. Suppose we are
the corresponding monotone p&ghin the contour tree. Due to trying to find the path between branchiesnd c. Since the
monotonicity, there will only be one pointon this path with tree is rootedp andc must share a common ancestorThe
the same isovalue gs thus, we apply the transfer functionpath fromb to ¢ goes fromb to a and then back down te.
for the branch on whicly lies. This path is easily retrieved using the parent links of trenbh
To determine a suitable monotone path, we observe thdécomposition. Further, we do not need to walk the entirke pat
for any point p, there always exists a monotone path frombtoa to cin order to find the branch we are looking for,
throughp that starts at a local maximum and ends at a locdle one which contains the sample point. Instead, we follow
minimum. Moreover, linear interpolation on tetrahedra antthe paths fromb to ¢ and frome to a simultaneously. At each
trilinear interpolation on hexahedra both guarantee tbaall step, we walk up the parent link of the deeper of the two
extrema in the cell occur at cell vertices. branches$ andc. To avoid overshooting when walking in the
If linear interpolation is applied to a tetrahedral mestdirection of increasing function value, we stop when the ste
finding a monotone path is simple. In each tetrahedral celg are about to take goes past a critical point (a saddle)avith
all points including the vertices belong to a single monetorhigher value than the sampled point. Similarly, when wajkin
path in the contour tree, as shown in Fig. 3(a). This faot the direction of decreasing function value, if the nexpst
simplifies our task, as we do not need to find a monotone pabes past a saddle with a lower value than the sample, we
explicitly. Instead, we use the path from highest- to lowesstop. If neither of these conditions is ever met, the wall wil
valued vertices of the tetrahedron. terminate when both paths reach the common ancestor, i.e.,
Trilinear interpolation on hexahedra does not have thipprothe desired branch.
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Input : ¢:[0, 1] = R trilinear interpolant inside cell; representations. A TOPORRERY view in Fig. 11(c) shows
Sample positiorp € [0, 1]* inside trilinear cell the branch decomposition contour tree in a three-dimeasion

Output: pj, andppi positions of mesh vertices (end radial layout [35] where height corresponds to functiorueal
points of the monotone path througf) We also provide a more traditional two-dimensional view of

the contour tree as shown in Fig. 11(b). In this view, the
contour tree is drawn based on the convention thatithe
coordinate corresponds to function value. We have alsodoun
it useful to include a vertical transfer function editor (as
opposed to the more traditional horizontal layout) nexthi® t

Create original monotone path to boundary faces:
Plo = roundDowtiz, p)

phi = roundUdz, p)

if t(pio) > t(pni) then swappio,phi)

Complete descending path to mesh vertex: contour tree interface. By linking the-coordinates of the
temp = roundUgy, pio) contour tree interface and transfer function editor, cetoia
Pio = roundDown(ypio) topological information is availible to the user as theyt ¢ié
if t(p) > t(temp) then swapp,,temp) transfer function.

temp = roundUgz, pio)

Pio = roundDown(zpio) VII. | MPLEMENTATION

if ¢ t(t then swa .t .
it (pro) > t(temp) Pbio,temp) A. Hardware-accelerated Volume Rendering

Volume rendering based on topological zone look-up can
be implemented in graphics processing unit (GPU) fragment
programs that support “for-loops,” such as those of NV4issl
Nvidia graphics cards. The algorithms outlined in Sectign V
the monotone path search and branch look-up, are straightfo

pri = roundDowrz, pri) ward to implement in a high-level shader language like Cg.

if £(pni) < f(tem@ then swapbhi,temp) The image data is stored as a 3D texture to which trilinear
Algorithm 1 : Algorithm for finding vertices of a cell where interpolation is applied, and the vertex-to-branch majdees!
the monotone path through a sample starts and ends. The, 3p texture to which nearest-neighbor interpolation is
function roundDown(axisp) returns the position op moved  55jied. The output of this texture are references (texture
to the “lower” boundary along the specified axis, i.e., itgordinates) to an array of branches. These branch records
replaces the component corresponding to the axis with zefoe stored logically in a 1D array, but since the size of any
Analogously, roundUp(axis,p) returns the position ofp e texture dimension is limited, it becomes necessary apwr
moved to the “upper” boundary along the specified axis, i-§nis array as a 2D texture. The fields for each branch record
it replaces the component corresponding to the axis with 0ngq. 5 reference to its parent, the value at its saddle, jithde
in the rooted branch decomposition, and a reference to its
transfer function. The transfer functions are stored intlagio
VI. USERINTERFACE FORTRANSFERFUNCTION DESIGN  logically 1D, physically 2D, array. Transfer function redaces

To define transfer functions and apply them to topologicgfe texture coordlnates,. to which a function value is added t
zones, we have extended thexible isosurfacénterface [20], offset the texture coordinate and select the proper color.
which allows for direct user selection and manipulation of
individual contours using the standard metaphor of “seled®. Visualization of Simplified Topology
and-operate.” Conceptually, we would like the user to selec Visualization of simplified topology is also implemented
a topological zone directly in a rendered image by clickingn graphics hardware. We render tubes between saddles and
the mouse in a zone of interest. To achieve this, we projecegtrema dynamically, rather than modifying the scalar field
ray through the data originating from the correspondinghix beforehand. Each tube extends from a saddle to an extremum
and select the first “visible” topological zone. Visibilitts and is defined by a list of “tube points.” To achieve gradient
determined by evaluating the volume rendering integral fogversal, we define the new function values to be increasing
a single ray passing through the volume and finding the firslong the tube, where they were previously decreasing (see
sample with an opacity above a certain threshold. For volum®ection 1V). In addition to the new function value, we also
rendered data, this approach is not always straightforwadfine the radius for each tube point, which varies the théskn
especially when dealing with multiple layers of topologicaof the tube.
zones. Thus, we provide a slice view in which the user canThe path for a tube is defined in a preprocessing step. Since
select the topological zone’s intersection with that slibe the tubes are monotone paths, each tube point falls on aainiqu
either case, once we have determined a sample (along the Ntour and has a unique function value. Consequentlyngduri
or a pixel (in a slice), we use the fully augmented contowendering we can look up tube points from a table, indexed
tree to determine the topological zone to which the sampbg function value, similar to the way transfer functions are
(or pixel) belongs. used. For each function valug the associated positign(v),

We also provide the ability to directly select arcs in théube radius(v) and “replacement function valug;(v), i.e.,
contour tree, as in the flexible isosurface interface [2@}: Fthe value that replaces the original value at that locatioa,
this purpose, we display the contour tree in one of twstored, see Fig. 5.

Complete ascending path to mesh vertex:
temp = roundUgy, pni)

phi = roundDowtiy, phi)

if t(pni) < t(temp) then swappypi,temp)
temp = roundUg z, pni)
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S2

S1
P Cl &2

(a) Unsimplified (b) Simplified

Fig. 6. Topological zone P is the parent of C1, which is theepaof C2.

The contour tree branch of C2 is pruned, and the functionegabf C2 are
scaled about the saddle value S2. Later, when the branch &f @lined, the
function values of C2 are scaled again about a differentleaddue S1. There
could be arbitrarily many allowable scalings, so all saaliransformations
for a topological zone are composed into a scale-bias pair.

Fig. 5. Tubes are defined by a ball swept along the steepest(gatted
line) from a saddle to an extremum. At each isovalue alongotth, the ball

intersects the isocontour at valwe and this disk forms the cross-section of . .
the tube. Near the center of the digk,(v), fragments assume the modified@t the end of Section IV.) Recall that if the parent tube canno

function value which reverses the gradiefit(v). Outside the disk, fragments be extended to a point with greater (less) function value tha
are left unchanged. the child maximum (minimum), then the function values of
the child zone are scaled down (up) to permit a monotonic
path from the parent extremum to the child. This scaling is
We use a blending functioh around the axis of the tube, a uniform 1D scaling transformation about the saddle value.
o We store the parameters of this transformation as a scale-
- w(rt(v) = llp. _pt(v)”)’ and-bias pair, one for each branch, in the branch textures.

where p, is the location of the current sample (i.e., thé[he scaling is performed on the interpolated fragmentsnduri

fragment currently considered by the fragment program)zan&endering' .This is d_one before the fragment is modifie_d by the
is the function value at that point. The valygsandr; are read tUbe blending function, so the tube replacement functidneva
from the look-up table (texture) that defines the currenetupSould reflect the scale and bias transformation.

The blending function specifies to what degree the replanéme In more .complex.scenanos, wher(_e a simplified branch
function value is used instead of the original function ealycontains children of its own, these children may need to be

at the current location. If it is zero, the replacement vaiae Scaled again to effect their own simplifications. In Fig. e t
no effect on the current location. If it is one, the repIacametOpOloQ'Cal zone labeled C2 first is scaled about the saddle

value is used instead of the current function value. Betwe¥flU€ S2 when it is simplified. It is scaled again about saddle

a blending function value of zero and one, the final functio\‘\alue S_l when C1 (the parent of C2) is simplified. Since a
value fout (i.€., the result of the fragment program) is obtaine{ﬁ’pc’log'c"’II zone can have many parents, we compose all of the

by linear interpolation between the original function \mluSCaIIng transformations into a single scale-and-bias péien

v at the current location and the corresponding replaceménf!Ser prunes a branch, the reSL’JItmg_ scaling transformatio
function valuef,(vin), i.e. s Is applied to all of the branch’s children by multiplying

each childs scale-bias pair By Similarly, when the pruning
Vour = Clamp(1 — b) v, + clamp(b) f; (vin), Where operation is reversed, the inverse transformatiohis applied
to all of b's children.

0 if x<0,
clamp(x)={z if 0 <z <1, VIIl. RESULTS
1 if1<z.

Fig. 7 shows the “fuel” data set, a 64x64x64 voxel data set

We restrict the computed value bfo the interval0, 1]. The resulting from a simulation of fuel injected into a combaati
parameters defines the width of a tube by controlling howchamber, sedt t p: / / ww. vol vi s. or g/ . Using a con-
quickly b falls off as one moves away from the tube’s centrdbur tree-based segmentation, it is possible to reveatriate
axis. It is important thatr is larger than one; otherwisé, structures (shown in color) while rendering surroundinget
attains its maximum value only along the axis. A larger tures using a low opacity in gray scale to provide context.
value, such as two, ensures that the interior volume of tBefore interaction, the branch decomposition of the contou
tube with ab value of one is large enough to be visible duringree was simplified to 26 branches based on hypervolume. It
rendering. For each voxel, the closest tube in its topohligids shown next to the rendered image to clarify the assignment
zone is used to compute a modified function value. This ctosed transfer functions to branches. Oversampling was used to
tube is determined in a pre-processing step by checking thistain high-quality approximations of the gray-level isps
parent tube and all child tubes of that zone and identifyireg t faces that provide context.
tube which is closest according to the blending funcioi Fig. 8(a) shows the “nucleon” data set, a 41x41x41 voxel
reference to the appropriate tube is stored in a 3D textudle agata set resulting from a simulation of the probability dis-
accessed during rendering. tribution of a nucleon in a 160 nucleus, seet p: / / www.

In addition to these modifications, we may also need to scalel vi s. or g/ . In addition to simplifying the branch decom-
the function values of an entire topological zone (as meeiib position to five branches for interaction, an extraneousadira
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(a) (b)

Fig. 8. Rendering of nucleon data set consisting of 41x4aekels. This image was generated using a high sampling eatafture high-frequency details
in the transfer function. The tree was simplified by hypewmoé, and one extraneous branch was manually pruned.

Fig. 9. Isosurface-like volume rendering of the fuel dath skowing the
original data (top) and simplification with a single tubevietn the “crown”
and “shaft.” The change in appearance of the crown resulta fcaling down
the entire topological zone, which is equivalent to commtan isosurface
for a lower isovalue.

less saturated colors. Without the use of a global transfer
function, it would not be possible to highlight these intdrn
structures without having them occluded by external region
characterized by the same value range.

Figs. 9 and 10 show the results of applying our method
of topology simplification to the fuel data set. In Fig. 9,
we see an outside, isosurface-like view showing that the
two separate components, corresponding to the “crown” and
Fig. 7. Rendering of fuel data set consisting of 64x64x64el@xThis image “shaft,” have been merged. The appearance of the crown is
was generated using a high sampling rate to capture higldreey details changed somewhat — that topological zone has been scaled
in the transfer function. The tree was simplified by hypemaé.

down to allow for a monotone path to be created between the
two components.

In Fig. 10, the same data set is shown by means of a
was manually pruned. Here, we used the topologically basgidgle slice through the center of the data, illustrating th
segmentation to simulate one of the topological attribites evolution of the interior values of the data set. In this fegur
Takeshima et al.'s work. We modified the opacity manuallthe unsimplified data is shown at the top, followed by version
based on inclusion level to improve visibility of internalsimplified with flattening [20], gradient reversal [35], and
structures. Fig. 8(b) shows the same data set with a transfer new method. As we can see, the effect of flattening in
function that emphasizes isosurfaces less and shows mord-igf. 10(b) is to replace a region of varying isovalues with
the internal structure of the nucleon. We emphasize regioamssingle isovalue. In contrast, gradient reversal in Figc)lO
around two minima in the “interior” while deemphasizindridges the saddle, allowing some of the higher isovalues
the “exterior” by choosing a much higher transparency and remain. However, it is apparent both in the connection
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Fig. 10. Slice rendering of the fuel data set, showing unfieg (a) and
simplified versions obtained by flattening (b), gradientereal (c) and wide
tubes (d).

Note that the segmentation does not capture the entiretrib; i
shows only the regions of high density which are isolatechfro
the spine and sternum. In Fig. 11(d), the ribs have been made
transparent in order to emphasize the lungs. The low-densit
regions near the lung-air interface, shown in blue, areleasi
separated from those near the skin-air interface, showam. gr

Fig. 12 summarizes memory utilization and frame rates for
a hardware implementation of our method. The “aneurism”
data set, sebt t p: / / www. vol vi s. or g/, is included as a
medium-size example. For small data sets, such as the “fuel”
data set, interactive frame rates are possible. Howexanédr
rates for larger data sets are still sufficiently high foenaictive
transfer function specification. Rendering measuremerds a
based on a 1.8 gigahertz AMD Athlon 64 system with one
gigabyte RAM and an NVIDIA 7800 graphics board with
256 megabyte graphics RAM. Rendered images consist of
512 x 512 pixels. Due to memory requirments of slightly
more than one gigabyte RAM for the “chest CT” data set, pre-
processing measurements were performed on a three gigahert
Xeon system with four gigabytes of RAM.

IX. CONCLUSIONS ANDFUTURE WORK

We have shown how to extend topological segmentation
of the domain of trivariate scalar fields to direct volume
rendering; how to define and edit spatially local transfercfu
tions based on the topological structure encapsulatedan th
contour tree; and how to implement ray casting for topolalgic
zones. We believe that this method of topologically defining
a segmentation greatly increases the flexibility of transfe
function design and significantly extends the utility ofedit
volume rendering.

We plan to assess the impact of different contour tree sim-
plification measures on resulting visualizations. Futukw

of crown to shaft at the right hand end, and the interio¥ill also be directed at interface design. We plan to conside
development at the left hand end, that this narrow connectigifferent visual representations of the contour tree, sash
does a poor job of approximating the overall field. Finallyepresentations that show nesting properties of conteiz [
Fig. 10(d) shows the effect of the swept tubes, which broadB#3] and also to incorporate genus changes [19] in the user
the connections to produce a smoother connection betwéeigrface. While adding these saddles to the augmentedaont

components.

tree does not change the segmentation as no branching pccurs

The value of this simplification method can also be observ&8Y can still provide additional valuable information.
in the movie accompanying this paper, which shows the In addition to assigning independent transfer functions to
evolution of the fuel data set using volume renderings fépPological zones, we would use different material prapert
which a thin ramp function is varied over the isovalue rarige. ©F €ven entirely different rendering modalities as disedss
this movie, the data is shown in three forms: unsimplifiec-si I [7] [8]. It would be interesting to combine our method wit

plified by gradient reversal, and simplified with tube sweegpi

some of the user interface elements described by Takahashi

As we see, the tube sweeping is a better approximation of ffle@l- [28] and Kniss et al. [4]. In particular, the ability to
scalar field than the gradient reversal, exactly as pretiictélr@d topological zones to different positions and geneaate
Furthermore, simplified components gradually grow instefad exposed view would be a powerful user interface component.
popping up immediately, leading to smoother transitiond an

giving a user a better understanding of connectivity betwee ACKNOWLEDGMENTS

components.
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http://radiol ogy. ui owa. edu/ downl oads. It con-
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Fig. 11. Normal chest CT data set consisting of 384x384x2M&ls. In (a), two ribs are highligted in green; the lung iswh in violet. The tree has been
simplified to 28 branches based on hypervolume. (b) showsldahéree layout, and (c) shows the orrery layout. In (d), tins have been removed and the
lung is emphasized.

Data set | Voxels | Pre-processing| Branches| Transfer function texturé  Branch texture | Framerate
Fuel 64 x 64 x 64 2 sec. 86 256 x 8 x 32 bits 256 x 1 x 80 bits 21 fps
Aneurism| 256 x 256 x 256 | 2 min., 6 sec. | 31,850 1024 x 1024 x 32 bits | 256 x 128 x 80 bits | 2.5 fps
Chest CT| 384 x 384 x 240 | 42 min., 45 sec| 99,406 1024 x 512 x 32 bits | 512 x 256 x 80 bits | 1.3 fps

Fig. 12. Frame rates and texture usage for Fuel, AneurismNamchal Chest CT data sets. Measurements were taken with dBINV7800 GPU. Frame

rates are fob12 x 512 images, using approximately one sample per voxel per ragtufiee usage reflects the transfer function and branch extiie used
32 bits per voxel for the voxel-to-branch map, and eight pés voxel for the data itself.
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