
TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Topology-controlled Volume Rendering
Gunther H. Weber,Associate Member, IEEE,Scott E. Dillard, Hamish Carr,Member, IEEE,

Valerio Pascucci,Member, IEEE,and Bernd Hamann,Member, IEEE

Abstract— Topology provides a foundation for the development
of mathematically sound tools for processing and exploration of
scalar fields. Existing topology-based methods can be used to
identify interesting features in volumetric data sets, to find seed
sets for accelerated isosurface extraction, or to treat individual
connected components as distinct entities for isosurfacing or
interval volume rendering. We describe a framework for direct
volume rendering based on segmenting a volume into regions of
equivalent contour topology, applying separate transfer functions
to each region. Each region corresponds to a branch of a
hierarchical contour tree decomposition, and a separate transfer
function can be defined for it.

The novel contributions of our work are (i) a volume rendering
framework and interface where a unique transfer function can
be assigned to each subvolume corresponding to a branch of the
contour tree; (ii) a runtime method for adjusting data values
to reflect contour tree simplifications; (iii) an efficient way of
mapping a spatial location into the contour tree to determine the
applicable transfer function; and (iv) an algorithm for har dware-
accelerated direct volume rendering that visualizes the contour
tree-based segmentation at interactive frame rates using graphics
processing units (GPUs) that support loops and conditional
branches in fragment programs.

Index Terms— Direct volume rendering, transfer function de-
sign, topology, contour tree, simplification

I. I NTRODUCTION

V OLUME rendering is a standard technique used in sci-
entific visualization. It is based on defining “optical”

properties for points in the three-dimensional (3D) domain
of a scalar field and computing resulting pixel intensities
in an image plane [1]. Optical properties at a given point
are normally based wholly or partially on the function value
(and sometimes gradient magnitude). This approach assumes
that scalar values, such as density values in a computed-
tomography (CT) scan, map directly to physical properties
such as tissue type. Even when volume rendering is applied to
non-medical data this model is often used [2], [3]. While this
approach provides a structural overview of an entire data set,
it is unable to distinguish between distinct features that share
the same scalar value. If, for example, a region of interest
is enclosed by an “uninteresting” region and both regions
overlap in value range, occlusion generally prevents effective
visualization of the interesting region.

Manuscript received January 20, 2006; revised May 27, 2006;accepted
July 7, 2006.

G.H. Weber, S.E. Dillard and B. Hamann are with the Institutefor Data
Analysis and Visualization (IDAV) and the Department of Computer Science,
University of California, Davis, One Shields Avenue, Davis, CA, 95616. E-
mail: {ghweber, sedillard}@ucdavis.edu, hamann@cs.ucdavis.edu. H. Carr is
with the School of Computer Science and Informatics, University College
Dublin, Belfield, Dublin 4, Ireland. E-mail: hamish.carr@ucd.ie. V. Pascucci
is with the Center for Applied Scientific Computing (CASC), Lawrence
Livermore National Laboratory, Box 808, L-560, Livermore,CA, 94551. E-
mail: pascucci@acm.org.

Improved methods for defining transfer functions utilize ad-
ditional derived quantities such as gradient magnitude [4], but
they still apply the same transfer function uniformly through-
out the domain. As a result, these methods, while effective at
enhancing the perception of distinct material/tissues type inter-
faces, still do not allow a viewer to differentiate fully between
separate features. Other methods use segmentation information
to apply different transfer functions to classified regions[5],
[6] or even apply different rendering modalities [7], [8]. These
techniques require segmentation information for each volume
and rely either on manual segmentation or domain-specific
segmentation algorithms.

The underlying weakness of all of these methods is that the
determination of opacity properties either fails to distinguish
between different features at similar isovalues, or is based
on expensive and/or domain-specific segmentation methods.
It is therefore desirable to have a general model of spatially
local transfer function definition by exploiting topological
definitions of what constitutes a feature. By incorporating
topological information into direct volume rendering in a
systematic fashion, we generalize existing topological inputs to
transfer function design and provide methods that are practical
for direct user manipulation or, eventually, automatic design
of locally defined transfer functions.

Isosurface topology provides insight into the fundamental
structure of a data set, independently of the application do-
main. Topology considers connected components in a rela-
tively intuitive fashion that can be used for a wide variety
of applications. Thecontour tree[9] provides expert users
with additional information about their data and facilitates
data exploration in the absence of strong domain-specific
techniques. Topological analysis of scalar data sets can beused
to identify interesting behavior of a scalar field and to aid in
the data exploration process. Section II provides an overview
of related work.

While specialized segmentations are applicable to particular
problem domains, the power of our topology-based segmenta-
tion lies in its generality. Our approach is related to the work
of Takeshima et al. [10], who used a topological abstraction
calledvolume skeleton treeto define topological attributes as
additional input for multi-dimensional transfer functions. Our
method extends their ideas and is more general. Instead of
setting transfer functions according to fixed topological in-
dices, such as depth of topological nesting, we allow a user to
assign independent transfer functions to topologically distinct
features which may or may not share the same indices. In
contrast to the work of Takeshima et al., we define the opacity
at a sample point based on its topological characterization
rather than interpolating between the opacities at cornersof
the associated grid cell. In essence, our approach performs



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

post-classification in volume rendering while Takeshima et
al.’s approach uses pre-classification. While the use of post-
classification for medical data is controversial, it significantly
reduces artifacts in rendered images [11] and is particularly
suitable for simulated data. Furthermore, instead of usinglin-
ear interpolation applied to a tetrahedron we consider trilinear
interpolation for a hexaheadral cell, as hexahedral meshesare
most commonly used for direct volume rendering of data given
as samples on a regular, rectilinear mesh.

We have implemented topological data simplification for
trivariate scalar data sets. Topological data simplification tech-
niques simplify a data set by making its topology correspond
to hierarchical simplifications of the contour tree, thus repre-
senting various levels of detail and showing significant features
at a glance while still allowing fine details to be revealed on
demand. Existing simplification methods result in geometric
and visual artifacts such as fine thread-like structures and
flat regions showing up as large objects abruptly becoming
visible. We demonstrate how to remove topological features
in a way that reduces these problems (Section IV). We also
describe data structures (Section III) and rendering algorithms
for topological volume rendering (Section V) that can be
implemented efficiently using current graphics hardware. Our
framework supports interactive volumetric visualizationof
noisy or topologically complex data.

II. RELATED WORK

A. Contour Trees

In addition to its importance for isosurface extraction [12],
topology has become valuable for more general exploration
of scalar fields. Topology, up to now, has been used mainly
in the context of isosurface extraction, where the topological
properties of interest are usually the number of connected
components and the genus of an isosurface, i.e., the number
of independent tunnels or “holes” in an isosurface. Morse
theory [13] shows that topological changes in scalar fields
defined on manifolds occur at distinct isolated points called
critical points. A Reeb graph [14] expresses the evolution of
individual contours as a graph that is defined by these critical
points and their relationships. For simply connected domains,
the Reeb graph is always a tree structure, called a contour
tree [9], which is more easily computed than the general Reeb
graph.

Before discussing the contour tree in detail, we start with
some basic definitions. The termisosurfacehas been used in
the literature to mean the inverse image of an isovalue, an
individual connected component of such an inverse image,
or a triangular approximation of either. In mathematics the
term level set is usually used, instead of isosurface, but this
term has other connotations in graphics and visualization.To
avoid confusion, we use the terms isosurface andcontour as
follows: Given a fieldf : R

3 ⇒ R, the isosurfaceof f for an
isovalueh is the inverse imagef−1(h) of the isovalue. Since
this isosurface may consist of multiple connected components,
we usecontourto refer to an individual connected component
of an isosurface.

The contour tree is a structure that captures the topological
evolution of an isosurface as the isovalue varies. Its nodesare

critical points of the data set where the number of contours
changes. Nodes of degree one (leaves of the tree) are minima
and maxima where contours are created or destroyed. Interior
nodes of degree three or higher are saddles where two or more
contours merge or a single contour separates into multiple
disconnected contours. Arcs of the contour tree represent
contours between critical points, i.e., contours which do not
change topology (with the exception of genus changes) as
the isovalue varies between critical values. Algorithms for
computing the contour tree [15]–[18] were first defined for
tetrahedral meshes using linear interpolation and later for
hexahedral meshes using trilinear interpolation [19].

The contour tree may be augmented by additional nodes
representing changes in topological genus of contours [19],
nodes representing non-critical vertices of the mesh, or nodes
representing any arbitrary points in the volume. We use the
term fully augmented contour treeto refer to the contour
tree augmented by all vertices of a mesh. Each grid vertex
corresponds to a node in the fully augmented contour tree and
maps to an arc (when a regular point) or a node (being a
critical point) in the contour tree.

Since each contour in an isosurface corresponds one-to-one
with a point on an arc in the contour tree, it is possible to use
the contour tree as an index for a volume data set and identify
all contours for a given isovalue. This relationship has also
been used to find seed cells [17], [20] for thecontinuation
method [21] of level set extraction.

B. Utilizing Topology in Scientific Visualization

Even if the topology is known, a user interface for effective
data exploration must still be developed. Bajaj et al. [22]
introduced an interface called thecontour spectrum, where
properties such as isosurface area, enclosed volume, and the
contour tree were plotted alongside isosurfaces to provide
users with additional cues to interesting isovalues. Weberet
al. [23], [24] devised tools for exploring scalar fields based on
detecting critical points and critical regions. Cox et al. [25]
defined a digital Morse theory and also used critical points and
regions to explore medical data. Fujishiro et al. [26], [27]used
the contour tree to detect significant isovalues automatically
for transfer function design.

Carr and Snoeyink [20] extended the idea of seeded isosur-
face extraction based on the contour tree [17] by associating
seed cells with individual contours, using the contour tree
as a visual index to the contours. This association underpins
the flexible isosurfaceinterface, in which individual contours
are treated as distinct entities. Since this concept supports
independent manipulation of single contours, it imports a
notion of spatial locality to the task of extracting surfaces from
a scalar field. Individual contours can be deleted (allowinga
user to view otherwise obscured portions of an isosurface),
rendered in different colors, or evolved to new isovalues
without affecting other contours. As a motivating example,
the authors showed a CT data set of a head, and used the
contour tree to display a contour representing the brain without
displaying the contour representing the skull at the same
isovalue.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Takahashi et al. [28] extended this idea and used interval
volumes to display volumetric regions of uniform topology,
“peeling” away layers of a volume to examine the internal
structure. Recently, Takeshima et al. [10] used topological
information such as isosurface inclusion level in multidi-
mensional transfer functions, to support operations such as
“peeling” off layers in a volumetric data set.

C. Topology Simplification

Noise in a data set creates a large number of irrelevant
critical points that can distract from truly relevant topologi-
cal features. Topology simplification suppresses insignificant
features by removing, orcancelling, pairs of critical points
that are viewed unimportant according to a specified measure.
Besides the contour tree, two topological structures are used
widely for scalar topology simplification: thevolume skeleton
tree that corresponds to a contour tree augmented with nodes
corresponding to genus changes [29], [30] and theMorse-
Smale complex[31]–[33].

Our work is based on topology simplification methods in-
troduced by Takahashi et al. [29], Carr et al. [34], and Pascucci
et al. [35]. Carr et al. [34] simplified the contour tree with two
basic operations: leaf pruning and node collapses. Leaf pruning
removes a leaf and the arc incident to the leaf from the contour
tree. Since contours are extracted from seeds stored in a
contour tree, deleting an arc from the contour tree has the side
effect of discarding the corresponding contours from further
consideration. Carr et al. further show that when visualization
methods other than isosurface extraction are used, data can
be modified to match the topology of the simplified contour
tree by “flattening” the corresponding region, i.e., all samples
corresponding to the pruned arc get assigned the value of
the saddle. Node collapses remove degree-two vertices and
do not affect the contours that can be extracted or values in
the data set. Pruning and collapsing are performed in an order
that minimizes the error based on a local geometric measure,
such ashypervolume(an integral of the scalar field over the
enclosed volume),volume or persistence, with node collapses
having priority over leaf pruning.

Pascucci et al. [35] describedbranch decomposition, an
efficient way for storing a hierarchy of contour tree simpli-
fications. A branch decomposition of a tree is a hierarchical
decomposition if (i) exactly one branch connects two leaves
(called the root branch), and (ii) every other branch connects
one leaf to an interior node of another branch. Fig. 1(b) shows
a contour tree, and Fig. 1(d) shows its branch decomposition.
Since a branch (with the exception of the root branch) connects
a leaf to an interior node of another branch, it is defined by
a pair of critical points: a saddle and an extremum that are
connected by a monotone path. Each saddle-extremum pair
corresponds to a topological simplification, orcancellation, of
critical points. Discarding a branch from the branch decom-
position is equivalent to performing a cancellation, whichis
equivalent to a vertex prune operation in the framework of
Carr et al. [34].

D. Classification in Volume Rendering

Original approaches for volume rendering consider only
scalar value to classify samples [1], [3]. Even though Levoy’s
method [1] also considers gradient magnitude it is only used
to simulate “surfaces of constant thickness” and does not
affect classification. Kniss et al. [4] improved visualizations
by adding gradient magnitude and additional higher-order
derivatives as parameters for classification, while still applying
the same transfer function uniformly throughout the domain.

If a segmentation of the data set is available, which is often
true for medical data sets, it is possible to improve volume-
rendered results by considering segmentation informationdur-
ing classification and rendering individual segmented regions
differently. For example, it is possible to use different transfer
functions for different tissue types, or to emphasize particular
parts of the anatomy while hiding others [5], [6]. By combin-
ing multiple rendering modalities, such asmaximum intensity
projection and direct volume renderingwith incorporation of
different transfer functions [7], [8], it is possible to highlight
volume portions of interest while still providing a context
to the user. However, these techniques require segmentation
information which must be obtained by manual segmentation
or by domain-specific segmentation algorithms.

More recently, Takeshima et at. [10] used information from
the contour tree to design multidimensional transfer functions
which use derived topological quantities as input. In addition
to genus, the authors designed transfer functions which express
the “inclusion level” of a contour, defined as the number
of equal-valued contours which surround and occlude that
contour. Lower inclusion levels, which represent the outermost
features, are given lower opacities so that higher inclusion
levels, which represent the innermost features can be seen
clearly. Furthermore, Takahashi et al. [36] used the volume
skeleton tree to find optimal viewpoints that maximize the
number of visible features for volume rendering.

Recently, statistical learning-based methods have been intro-
duced for interactive volume data segmentation [37]. The idea
underlying such methods is to have a user specify interactively
what regions in a data set constitute a “feature.” By pointing
out such regions, it is then possible to characterize them by
scalar field behavior in a local neighborhood, and to use the
resulting characterization for segmentation. However, learning-
based methods require manual training to define features.

Kniss et al. [38] improved on the classical classification by
observing that a unique classification of samples is not always
possible. In particular, in the proximity of boundaries it can
improve visualization results by considering an uncertainty if
classification and use statistical methods to generate “fuzzy”
classifications.

In summary, a significant body of work exists concerned
with the use of contour trees for interactive isosurface ex-
ploration, on their use in automatic transfer function design,
and in designing globally uniform transfer functions based
on parameters which may include some topological informa-
tion. However, interactive exploration of scalar fields using
topologically-defined transfer functions in their most general



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

sense has not previously been considered, and our paper
discusses a solution to this problem.

III. C ONTOUR-TREE-DEFINED SEGMENTATION

Since individual contours map to points in the contour tree,
each arc of the tree represents the union of all contours which
map to it. This union can be thought of as the volume being
swept out by the contour as its isovalue is varied, starting at
the critical value which creates the contour, and ending at the
value which destroys it. This sweep defines a partition of the
space into topologically distinct regions, which we refer to
as topological zones, following Cox et al. [25]. For example,
in Fig. 1(a), the sample terrain has been divided along each
contour that passes through a critical point, and the topological
zones are shown in different colors.

We follow Takeshima et al. [10] by also using topological
zones for segmentation in volume rendering. However, their
work has several limitations: their topological indices treat all
zones with the same nesting depth as equivalent, ruling out
differentiation between two topologically similar but distinct
objects. Moreover, their methods are based on the topology
of tetrahedral meshes, which can introduce geometric and
topological artifacts in the output images [39]. Furthermore,
they computed opacities for the volume rendering integral by
interpolating over tetrahedra, instead of looking up opacities
directly in the relevant transfer function, which can lead to
further artifacts in cells spanning multiple topological zones.

We extend this work by allowing assignment of independent
transfer functions to individual topological zones; by applying
the trilinear interpolant over hexahedral cells; by showing how
to find the correct opacity in cells spanning multiple topo-
logical zones; and by improving the treatment of topological
simplification in the data.

We compute the contour tree of the underlying trilinear
interpolant [12] with a variation of the method from Pascucci
and Cole-McLaughlin [19], which applied the underlying
graph-theoretic algorithm [18] to the union of cellwise join
and split trees instead of the edges of a tetrahedral mesh. In
fact, any graph which accurately represents the topology of
the trilinear interpolant may be substituted instead. To simplify
processing, we construct a widget in each cube in which the
mesh edges are augmented by edges between body saddles,
face saddles, and vertices [40]. Nothing, however, depends
on this choice, and the method described in [19] can be
substituted instead.

Once we have computed the contour tree, we simplify it to
remove symbolic perturbation [41], then assign each topolog-
ical zone a transfer function. Consequently, every topological
detail, including noise, is assigned its own transfer function.
For medium to large data sets, especially when physically
sampled, the topological complexity makes it necessary to
represent the contour tree hierarchically. We store the hier-
archy using thebranch decompositiondescribed by Pascucci
et al. [35].

In addition to providing a hierarchical representation of
the contour tree, branch decomposition also avoids an “over-
segmentation” of the volume. While having a topological zone

per contour family with equivalent topology is useful, it does
not take into account that a segmentation is only necessary
if regions overlap in value range. Branch decomposition nat-
urally concatenates a sequence of arcs into a single unit, see
Fig. 1(d), unifying their topological zones into a single zone,
see Fig. 1(c). Furthermore, branch decomposition permits
user interactions on a coarse, simplified tree and propagating
transfer functions down to the full resolution tree.

We construct the branch decomposition as follows: At each
step, a saddle-extremum pair is pruned from the contour tree,
and the remaining node is collapsed, leaving an arc. This arc
is the parent to which the saddle-extremum pair is linked as a
child. The order in which the pairs are pruned is determined
by a priority measure. Pascucci et al. [35] usedpersistenceas
priority measure, which is the absolute difference in function
values between the saddle and extremum. Geometric measures,
such as volume and hypervolume, are described by Carr et
al. [34]. Pairs with lower priority are pruned first, and they
become the children of pairs with higher priority. The end
result is a rooted tree of saddle-extremum pairs, or branches.
The most important branches, as indicated by the priority
measure, are at the top of this tree.

Currently, we do not consider saddles corresponding to
genus changes. Our zones of “topologically equivalent” con-
tours are only topologically equivalent up to the genus. How-
ever, the same argument for using a branch decomposition to
avoid an over-segmentation also holds here. Saddles which
correspond to a genus change of a contour do not affect
the segmentation — contours of different genus can be dis-
tinguished based solely on function value alone. This is a
design decision, however, and nodes for genus change could
be represented if the additional information were desired.As
genus changes do not contribute to the complexity of the
contour tree-based segmentation, we do not consider them in
our simplification scheme.

IV. I MPROVED TOPOLOGICAL SIMPLIFICATION

One straightforward way to change isosurface topology is to
“chop off” peaks, and correspondingly “fill in” valleys [34].
(Figs. 2(a) and 2(b) show an example, where the peak on
the right hand side (markedC) is chopped off.) This goal
can be achieved by setting the transfer function for the
canceled branch to a solid color, the color of the parent
branch’s transfer function at the value of the saddle which
connects the child to the parent. While this approach displays
an image with topology consistent with the pruned contour
tree, the topological changes in the function may not be
ideal from a user’s perspective. Sweeping an isosurface down
the simplified contour tree will show the pruned components
“popping” abruptly into existence, as can be seen in the movie
accompanying this paper. In volume-rendered images, a region
of uniform opacity properties can also become visible. For a
smoother evolution of simplified isosurfaces, or for a closer
approximation of the underlying scalar field, other methods
must be used.

We follow the strategy of Pascucci et al. [35], which proves
that one can always modify a scalar field to correspond to



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a) Terrain showing topological zones

1 0 0 9 08 1 7 15 08 0 3 0 2 00
(b) Contour tree

A
(c) Terrain showing topological zones for
branch decomposition

1 0 0
03 0 2 05 0 3 08 0 5 0 5 0 9 08 1 8 1 7 1

(d) Branch decomposition of contour tree

Fig. 1. Example of a segmentation defined by a contour tree. (a) Terrain data set showing topological zone segmentation. (b) Contour tree of the terrain,
with edges color-coded based on the corresponding topological zones. (c) Terrain data set showing topological zone segmentation for branch decomposition.
(d) Branch decomposition of contour tree of the terrain, with edges color-coded based on the corresponding topologicalzones.

Fig. 2. (a) A function with two maxima; branch decompositionof contour
tree shown on right side. (b) The right branch has been cancelled by flattening
the right topological zone. (c) The right branch has been cancelled by reversing
the gradient along the dotted line.

a simplified contour tree. The proof relies on reversing the
gradient flow along a path from the saddle to the extremum of
the branch to be pruned. In fact, the authors proved a stronger
result, which states that the region in which the gradient
flow is reversed can be made arbitrarily small. This condition
is achieved by subdividing the mesh, resulting in arbitrarily
thin thread-like structures connecting the former extremum to
the remainder of the function. This approach, too, generates
undesirable visual artifacts, and we instead reverse the gradient
flow in a tube — a region inflated from the thread to a size
defined by the following heuristic: sweep a sphere out from
the saddle (S in Fig. 2). The base radius of the tube is the
distance at which the sphere first intersects a topological zone
other than the parent’s or child’s. This radius shrinks as the

tube extends from the saddle toward the extremum.

Consider a branch that ends at a maximum, such as the
branchSC in Fig. 2. The region of gradient reversal is a
tube, thechild tube, that starts at the saddleS and extends
“upward” toward the maximumC. This child tube crosses
each contour ofSC ’s topological zone once, and at each
crossing we define a new function value. The original values
of the contours ascend from the saddle to the maximum. To
reverse the gradient, we define new values that descend, as
illustrated in Fig. 2(c). Since the starting point of this tube,S,
is lower than all values in the topological zone ofC, the path
cannot descend without creating a new minimum. To avoid
creating this new minimum, we increase the value atS, by
way of a parent tubewhich extends from the saddle into its
parent’s topological zone,PS in Fig. 2. The gradient along this
parent tube is not reversed. Instead, the values are increased
in order to elevate the saddle’s function value. If the valueat
P is greater than the value atC (which is usually true for the
hierarchical branch decomposition [35]) then it is possible to
construct a monotonically decreasing path fromP , throughS,
ending atC, thus effecting the simplification.

The tubes are created by a “best effort” process, which starts
at the saddle and follows the steepest path in both directions.
It stops if a maximum or minimum is reached, or if the path is
obstructed by another topological zone. If the end of the parent
tube does not have a value greater than the value at the end of
the child tube, then a monotonically descending path cannot
be constructed along the tube axis. In such a case, where the
value at the highest point on the parent tube reaches a value
v, we uniformly scale all values inSC ’s topological zone so
that they are less thanv.

If the child SC has children, then the child tube may also
become obstructed. It becomes necessary to flatten all points
in C ’s topological zone with value greater than at the end of
the child tube. The tip of the child tube thus becomes the new
maximum. In extreme cases where no significant tubes can be
constructed, the method degenerates into the “chopping-off”
method mentioned at the beginning of this section.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

5 51 0 1 53 0 3 01 51 0
(a)

4 26 91 48 7 12 6 76 8 9
(b)

Fig. 3. Portion of contour tree corresponding to a cell. Vertices are labeled
with their function values. These values are also highlighted in the contour
tree to show the correspondence between vertices and nodes and arcs in the
contour tree. (a) Tetrahedral cell, linear interpolation.(b) Hexahedral cell,
trilinear interpolation.

V. VOLUME RENDERING

Volume rendering is based on integration of optical prop-
erties along a ray passing through the image plane. Samples
are taken at regular intervals along this ray, and color and
opacity are determined using a transfer function. Results are
then composited. Various methods have been developed to
accelerate this process, but all share the same conceptual
model.

Instead of a global transfer function, we use a (possibly)
distinct transfer function for each topological zone. For any
given point p in the domain, we must therefore determine
the topological zone to whichp belongs, and then apply
the appropriate transfer function. This task is complicated
by the fact that the boundaries between topological zones
are formed by isosurfaces at critical values, which rarely
coincide neatly with the mesh. Fig. 1(a) shows that the triangle
labeledA intersects three topological zones, the middle of
which contains no vertex ofA. In general, cells can intersect
arbitrarily many topological zones.

Our solution to this problem is based on the fact that
monotone paths in any scalar field always map to monotone
paths in the contour tree and vice versa. Given a monotone
pathP in the scalar field that passes throughp and terminates
at vertices corresponding to nodes in the contour tree, we trace
the corresponding monotone pathQ in the contour tree. Due to
monotonicity, there will only be one pointq on this path with
the same isovalue asp; thus, we apply the transfer function
for the branch on whichq lies.

To determine a suitable monotone path, we observe that,
for any point p, there always exists a monotone pathP

throughp that starts at a local maximum and ends at a local
minimum. Moreover, linear interpolation on tetrahedra and
trilinear interpolation on hexahedra both guarantee that local
extrema in the cell occur at cell vertices.

If linear interpolation is applied to a tetrahedral mesh,
finding a monotone path is simple. In each tetrahedral cell,
all points including the vertices belong to a single monotone
path in the contour tree, as shown in Fig. 3(a). This fact
simplifies our task, as we do not need to find a monotone path
explicitly. Instead, we use the path from highest- to lowest-
valued vertices of the tetrahedron.

Trilinear interpolation on hexahedra does not have this prop-

5
4 12 S2 45 1S X X

Fig. 4. Finding the arc corresponding to a point within a cellby following
a monotone path. The cell contains a saddle (indicated by a green S) and
thus a fork in the corresponding subgraph of the contour tree. By finding a
monotone path in the cell, it is possible to find the arc in the contour tree that
corresponds to the region containing the sample.

erty, since saddles may occur inside or on faces of hexahedral
cells, causing monotone paths in the cell to map to more than
one possible monotone path in the contour tree, as shown in
Fig. 3(b). We instead base our construction on the linearityof
the interpolant along lines parallel to the coordinate system,
and construct a monotone path from axis-parallel segments.
Fig. 4 shows an example for the bilinear case.

A monotone path through a trilinear cell is constructed
according to Algorithm 1. At any pointX , we choose an
axis-parallel line and follow it to the boundaries of the cell.
Sincef is linear for every axis-parallel line, it must be either
constant or monotone. If it is monotone, we repeat the process
on the boundary of the cell until we reach a vertex, extendinga
monotone path as we proceed. For constant lines, the endpoints
of the line belong to the same contour and the same topological
zone asX , and we substitute either endpoint of the line for
X and continue.

Once the high and low vertices are determined, we look
up the high and low arcs. We then walk from the high arc
towards the low arc, stopping at the arc which contains the
sampled value off . Contour trees are “free trees” without a
root. It is not immediately obvious which direction to walk
if we are trying to move from one arc to another. Instead of
trying to navigate the contour tree directly, we walk in the
branch decomposition, which is a rooted tree. Suppose we are
trying to find the path between branchesb and c. Since the
tree is rooted,b andc must share a common ancestora. The
path fromb to c goes fromb to a and then back down toc.
This path is easily retrieved using the parent links of the branch
decomposition. Further, we do not need to walk the entire path
from b to a to c in order to find the branch we are looking for,
the one which contains the sample point. Instead, we follow
the paths fromb to a and fromc to a simultaneously. At each
step, we walk up the parent link of the deeper of the two
branchesb andc. To avoid overshooting when walking in the
direction of increasing function value, we stop when the step
we are about to take goes past a critical point (a saddle) witha
higher value than the sampled point. Similarly, when walking
in the direction of decreasing function value, if the next step
goes past a saddle with a lower value than the sample, we
stop. If neither of these conditions is ever met, the walk will
terminate when both paths reach the common ancestor, i.e.,
the desired branch.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Input : t : [0, 1]3 ⇒ R trilinear interpolant inside cell;
Sample positionp ∈ [0, 1]3 inside trilinear cell

Output : plo andphi positions of mesh vertices (end
points of the monotone path throughp)

Create original monotone path to boundary faces:
plo = roundDown(x,p)
phi = roundUp(x,p)
if t(plo) > t(phi) then swap(plo,phi)

Complete descending path to mesh vertex:
temp = roundUp(y,plo)
plo = roundDown(y,plo)
if t(plo) > t(temp) then swap(plo,temp)
temp = roundUp(z,plo)
plo = roundDown(z,plo)
if t(plo) > t(temp) then swap(plo,temp)

Complete ascending path to mesh vertex:
temp = roundUp(y,phi)
phi = roundDown(y,phi)
if t(phi) < t(temp) then swap(phi,temp)
temp = roundUp(z,phi)
phi = roundDown(z,phi)
if t(phi) < f(temp) then swap(phi, temp)

Algorithm 1 : Algorithm for finding vertices of a cell where
the monotone path through a sample starts and ends. The
functionroundDown(axis,p) returns the position ofp moved
to the “lower” boundary along the specified axis, i.e., it
replaces the component corresponding to the axis with zero.
Analogously, roundUp(axis,p) returns the position ofp
moved to the “upper” boundary along the specified axis, i.e.,
it replaces the component corresponding to the axis with one.

VI. U SER INTERFACE FORTRANSFERFUNCTION DESIGN

To define transfer functions and apply them to topological
zones, we have extended theflexible isosurfaceinterface [20],
which allows for direct user selection and manipulation of
individual contours using the standard metaphor of “select-
and-operate.” Conceptually, we would like the user to select
a topological zone directly in a rendered image by clicking
the mouse in a zone of interest. To achieve this, we project a
ray through the data originating from the corresponding pixel,
and select the first “visible” topological zone. Visibilityis
determined by evaluating the volume rendering integral for
a single ray passing through the volume and finding the first
sample with an opacity above a certain threshold. For volume-
rendered data, this approach is not always straightforward,
especially when dealing with multiple layers of topological
zones. Thus, we provide a slice view in which the user can
select the topological zone’s intersection with that slice. In
either case, once we have determined a sample (along the ray)
or a pixel (in a slice), we use the fully augmented contour
tree to determine the topological zone to which the sample
(or pixel) belongs.

We also provide the ability to directly select arcs in the
contour tree, as in the flexible isosurface interface [20]. For
this purpose, we display the contour tree in one of two

representations. A TOPORRERY view in Fig. 11(c) shows
the branch decomposition contour tree in a three-dimensional
radial layout [35] where height corresponds to function value.
We also provide a more traditional two-dimensional view of
the contour tree as shown in Fig. 11(b). In this view, the
contour tree is drawn based on the convention that they-
coordinate corresponds to function value. We have also found
it useful to include a vertical transfer function editor (as
opposed to the more traditional horizontal layout) next to the
contour tree interface. By linking they-coordinates of the
contour tree interface and transfer function editor, contextual
topological information is availible to the user as they edit the
transfer function.

VII. I MPLEMENTATION

A. Hardware-accelerated Volume Rendering

Volume rendering based on topological zone look-up can
be implemented in graphics processing unit (GPU) fragment
programs that support “for-loops,” such as those of NV40-class
Nvidia graphics cards. The algorithms outlined in Section V,
the monotone path search and branch look-up, are straightfor-
ward to implement in a high-level shader language like Cg.
The image data is stored as a 3D texture to which trilinear
interpolation is applied, and the vertex-to-branch map is stored
as a 3D texture to which nearest-neighbor interpolation is
applied. The output of this texture are references (texture
coordinates) to an array of branches. These branch records
are stored logically in a 1D array, but since the size of any
one texture dimension is limited, it becomes necessary to wrap
this array as a 2D texture. The fields for each branch record
are: a reference to its parent, the value at its saddle, its depth
in the rooted branch decomposition, and a reference to its
transfer function. The transfer functions are stored in another
logically 1D, physically 2D, array. Transfer function references
are texture coordinates, to which a function value is added to
offset the texture coordinate and select the proper color.

B. Visualization of Simplified Topology

Visualization of simplified topology is also implemented
in graphics hardware. We render tubes between saddles and
extrema dynamically, rather than modifying the scalar field
beforehand. Each tube extends from a saddle to an extremum
and is defined by a list of “tube points.” To achieve gradient
reversal, we define the new function values to be increasing
along the tube, where they were previously decreasing (see
Section IV). In addition to the new function value, we also
define the radius for each tube point, which varies the thickness
of the tube.

The path for a tube is defined in a preprocessing step. Since
the tubes are monotone paths, each tube point falls on a unique
contour and has a unique function value. Consequently, during
rendering we can look up tube points from a table, indexed
by function value, similar to the way transfer functions are
used. For each function valuev, the associated positionpt(v),
tube radiusrt(v) and “replacement function value”ft(v), i.e.,
the value that replaces the original value at that location,are
stored, see Fig. 5.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 5. Tubes are defined by a ball swept along the steepest path (dotted
line) from a saddle to an extremum. At each isovalue along thepath, the ball
intersects the isocontour at valuev, and this disk forms the cross-section of
the tube. Near the center of the disk,pt(v), fragments assume the modified
function value which reverses the gradient,ft(v). Outside the disk, fragments
are left unchanged.

We use a blending functionb around the axis of the tube,

b =
σ

rt(v)

(

rt(v) − ‖ps − pt(v)‖
)

,

where ps is the location of the current sample (i.e., the
fragment currently considered by the fragment program) andv

is the function value at that point. The valuespt andrt are read
from the look-up table (texture) that defines the current tube.
The blending function specifies to what degree the replacement
function value is used instead of the original function value
at the current location. If it is zero, the replacement valuehas
no effect on the current location. If it is one, the replacement
value is used instead of the current function value. Between
a blending function value of zero and one, the final function
valuefout (i.e., the result of the fragment program) is obtained
by linear interpolation between the original function value
vin at the current location and the corresponding replacement
function valueft(vin), i.e.,

vout = clamp(1 − b) vin + clamp(b) ft (vin) , where

clamp(x)=











0 if x ≤ 0,

x if 0 < x < 1,

1 if 1 ≤ x.

We restrict the computed value ofb to the interval[0, 1]. The
parameterσ defines the width of a tube by controlling how
quickly b falls off as one moves away from the tube’s central
axis. It is important thatσ is larger than one; otherwise,b
attains its maximum value only along the axis. A largerσ

value, such as two, ensures that the interior volume of the
tube with ab value of one is large enough to be visible during
rendering. For each voxel, the closest tube in its topological
zone is used to compute a modified function value. This closest
tube is determined in a pre-processing step by checking the
parent tube and all child tubes of that zone and identifying the
tube which is closest according to the blending functionb. A
reference to the appropriate tube is stored in a 3D texture and
accessed during rendering.

In addition to these modifications, we may also need to scale
the function values of an entire topological zone (as mentioned

S2
S1

P C1 C2

(a) Unsimplified (b) Simplified

Fig. 6. Topological zone P is the parent of C1, which is the parent of C2.
The contour tree branch of C2 is pruned, and the function values of C2 are
scaled about the saddle value S2. Later, when the branch of C1is pruned, the
function values of C2 are scaled again about a different saddle value S1. There
could be arbitrarily many allowable scalings, so all scaling transformations
for a topological zone are composed into a scale-bias pair.

at the end of Section IV.) Recall that if the parent tube cannot
be extended to a point with greater (less) function value than
the child maximum (minimum), then the function values of
the child zone are scaled down (up) to permit a monotonic
path from the parent extremum to the child. This scaling is
a uniform 1D scaling transformation about the saddle value.
We store the parameters of this transformation as a scale-
and-bias pair, one for each branch, in the branch textures.
The scaling is performed on the interpolated fragments during
rendering. This is done before the fragment is modified by the
tube blending function, so the tube replacement function value
should reflect the scale and bias transformation.

In more complex scenarios, where a simplified branch
contains children of its own, these children may need to be
scaled again to effect their own simplifications. In Fig. 6, the
topological zone labeled C2 first is scaled about the saddle
value S2 when it is simplified. It is scaled again about saddle
value S1 when C1 (the parent of C2) is simplified. Since a
topological zone can have many parents, we compose all of the
scaling transformations into a single scale-and-bias pair. When
a user prunes a branch, the resulting scaling transformation
s is applied to all of the branch’s children by multiplying
each childs scale-bias pair bys. Similarly, when the pruning
operation is reversed, the inverse transformations−1 is applied
to all of b’s children.

VIII. R ESULTS

Fig. 7 shows the “fuel” data set, a 64x64x64 voxel data set
resulting from a simulation of fuel injected into a combustion
chamber, seehttp://www.volvis.org/. Using a con-
tour tree-based segmentation, it is possible to reveal internal
structures (shown in color) while rendering surrounding struc-
tures using a low opacity in gray scale to provide context.
Before interaction, the branch decomposition of the contour
tree was simplified to 26 branches based on hypervolume. It
is shown next to the rendered image to clarify the assignment
of transfer functions to branches. Oversampling was used to
obtain high-quality approximations of the gray-level isosur-
faces that provide context.

Fig. 8(a) shows the “nucleon” data set, a 41x41x41 voxel
data set resulting from a simulation of the probability dis-
tribution of a nucleon in a 16O nucleus, seehttp://www.
volvis.org/. In addition to simplifying the branch decom-
position to five branches for interaction, an extraneous branch



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

(a) (b)

Fig. 8. Rendering of nucleon data set consisting of 41x41x41voxels. This image was generated using a high sampling rate to capture high-frequency details
in the transfer function. The tree was simplified by hypervolume, and one extraneous branch was manually pruned.

Fig. 7. Rendering of fuel data set consisting of 64x64x64 voxels. This image
was generated using a high sampling rate to capture high-frequency details
in the transfer function. The tree was simplified by hypervolume.

was manually pruned. Here, we used the topologically based
segmentation to simulate one of the topological attributesin
Takeshima et al.’s work. We modified the opacity manually
based on inclusion level to improve visibility of internal
structures. Fig. 8(b) shows the same data set with a transfer
function that emphasizes isosurfaces less and shows more of
the internal structure of the nucleon. We emphasize regions
around two minima in the “interior” while deemphasizing
the “exterior” by choosing a much higher transparency and

Fig. 9. Isosurface-like volume rendering of the fuel data set, showing the
original data (top) and simplification with a single tube between the “crown”
and “shaft.” The change in appearance of the crown results from scaling down
the entire topological zone, which is equivalent to computing an isosurface
for a lower isovalue.

less saturated colors. Without the use of a global transfer
function, it would not be possible to highlight these internal
structures without having them occluded by external regions
characterized by the same value range.

Figs. 9 and 10 show the results of applying our method
of topology simplification to the fuel data set. In Fig. 9,
we see an outside, isosurface-like view showing that the
two separate components, corresponding to the “crown” and
“shaft,” have been merged. The appearance of the crown is
changed somewhat — that topological zone has been scaled
down to allow for a monotone path to be created between the
two components.

In Fig. 10, the same data set is shown by means of a
single slice through the center of the data, illustrating the
evolution of the interior values of the data set. In this figure,
the unsimplified data is shown at the top, followed by versions
simplified with flattening [20], gradient reversal [35], and
our new method. As we can see, the effect of flattening in
Fig. 10(b) is to replace a region of varying isovalues with
a single isovalue. In contrast, gradient reversal in Fig. 10(c)
bridges the saddle, allowing some of the higher isovalues
to remain. However, it is apparent both in the connection



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

(a)

(b)

(c)

(d)

Fig. 10. Slice rendering of the fuel data set, showing unsimplified (a) and
simplified versions obtained by flattening (b), gradient reversal (c) and wide
tubes (d).

of crown to shaft at the right hand end, and the interior
development at the left hand end, that this narrow connection
does a poor job of approximating the overall field. Finally,
Fig. 10(d) shows the effect of the swept tubes, which broaden
the connections to produce a smoother connection between
components.

The value of this simplification method can also be observed
in the movie accompanying this paper, which shows the
evolution of the fuel data set using volume renderings for
which a thin ramp function is varied over the isovalue range.In
this movie, the data is shown in three forms: unsimplified, sim-
plified by gradient reversal, and simplified with tube sweeping.
As we see, the tube sweeping is a better approximation of the
scalar field than the gradient reversal, exactly as predicted.
Furthermore, simplified components gradually grow insteadof
popping up immediately, leading to smoother transitions and
giving a user a better understanding of connectivity between
components.

Fig. 11(a) shows a normal chest CT scan, available at
http://radiology.uiowa.edu/downloads. It con-
sists of 384x384x240 voxels and shows how our segmentation
performs on a moderately sized real-world data set. The tree,
shown in Fig. 11(b), has been simplified using hypervolume as
underlying priority measure. Two ribs are highlighted in green.

Note that the segmentation does not capture the entire rib; it
shows only the regions of high density which are isolated from
the spine and sternum. In Fig. 11(d), the ribs have been made
transparent in order to emphasize the lungs. The low-density
regions near the lung-air interface, shown in blue, are easily
separated from those near the skin-air interface, show in gray.

Fig. 12 summarizes memory utilization and frame rates for
a hardware implementation of our method. The “aneurism”
data set, seehttp://www.volvis.org/, is included as a
medium-size example. For small data sets, such as the “fuel”
data set, interactive frame rates are possible. However, frame
rates for larger data sets are still sufficiently high for interactive
transfer function specification. Rendering measurements are
based on a 1.8 gigahertz AMD Athlon 64 system with one
gigabyte RAM and an NVIDIA 7800 graphics board with
256 megabyte graphics RAM. Rendered images consist of
512 × 512 pixels. Due to memory requirments of slightly
more than one gigabyte RAM for the “chest CT” data set, pre-
processing measurements were performed on a three gigahertz
Xeon system with four gigabytes of RAM.

IX. CONCLUSIONS ANDFUTURE WORK

We have shown how to extend topological segmentation
of the domain of trivariate scalar fields to direct volume
rendering; how to define and edit spatially local transfer func-
tions based on the topological structure encapsulated in the
contour tree; and how to implement ray casting for topological
zones. We believe that this method of topologically defining
a segmentation greatly increases the flexibility of transfer
function design and significantly extends the utility of direct
volume rendering.

We plan to assess the impact of different contour tree sim-
plification measures on resulting visualizations. Future work
will also be directed at interface design. We plan to consider
different visual representations of the contour tree, suchas
representations that show nesting properties of contours [42],
[43] and also to incorporate genus changes [19] in the user
interface. While adding these saddles to the augmented contour
tree does not change the segmentation as no branching occurs,
they can still provide additional valuable information.

In addition to assigning independent transfer functions to
topological zones, we would use different material properties,
or even entirely different rendering modalities as discussed
in [7], [8]. It would be interesting to combine our method with
some of the user interface elements described by Takahashi
et al. [28] and Kniss et al. [4]. In particular, the ability to
drag topological zones to different positions and generatean
exposed view would be a powerful user interface component.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion under contracts ACI 9624034 (CAREER Award), through
the Large Scientific and Software Data Set Visualization
(LSSDSV) program under contract ACI 9982251, through the
National Partnership for Advanced Computational Infrastruc-
ture (NPACI) and a large Information Technology Research
(ITR) grant; the National Institutes of Health under contract



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) (b)

(c) (d)

Fig. 11. Normal chest CT data set consisting of 384x384x240 voxels. In (a), two ribs are highligted in green; the lung is shown in violet. The tree has been
simplified to 28 branches based on hypervolume. (b) shows theflat tree layout, and (c) shows the orrery layout. In (d), the ribs have been removed and the
lung is emphasized.

Data set Voxels Pre-processing Branches Transfer function texture Branch texture Framerate
Fuel 64 × 64 × 64 2 sec. 86 256 × 8 × 32 bits 256 × 1 × 80 bits 21 fps

Aneurism 256 × 256 × 256 2 min., 6 sec. 31,850 1024× 1024 × 32 bits 256 × 128 × 80 bits 2.5 fps
Chest CT 384 × 384 × 240 42 min., 45 sec. 99,406 1024 × 512 × 32 bits 512 × 256 × 80 bits 1.3 fps

Fig. 12. Frame rates and texture usage for Fuel, Aneurism andNormal Chest CT data sets. Measurements were taken with an NVIDIA 7800 GPU. Frame
rates are for512 × 512 images, using approximately one sample per voxel per ray. Texture usage reflects the transfer function and branch textures. We used
32 bits per voxel for the voxel-to-branch map, and eight bitsper voxel for the data itself.

P20 MH60975-06A2, funded by the National Institute of
Mental Health and the National Science Foundation; the
National Institutes of Health under contract 1R01 GM70444-
01A1, funded by the National Institute of General Medical
Science; by the Director, Office of Science, U.S. Depart-
ment of Energy under contract DE-AC03-76SF00098; and the
Lawrence Berkeley National Laboratory (LBNL). We thank
Oliver Kreylos for his slice generation code used in the volume
renderer, and the members of the Visualization and Computer
Graphics Research Group at the Institute for Data Analysis and
Visualization (IDAV) at the University of California, Davis, for

their support.

REFERENCES

[1] M. Levoy, “Display of surfaces from volume data,”IEEE Computer
Graphics and Applications, vol. 8, no. 3, pp. 29–37, May 1988.

[2] N. L. Max, “Optical models for volume rendering,”IEEE Transactions
on Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.

[3] P. Sabella, “A rendering algorithm for visualizing3D scalar fields,”
Computer Graphics (Proceedings of ACM SIGGRAPH 88), vol. 22,
no. 4, pp. 51–58, 1988.

[4] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional transfer
functions for interactive volume rendering,”IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 3, pp. 270–285, 2002.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

[5] U. Tiede, T. Schiemann, and K. H. Höhne, “High quality rendering
of attributed volume data,” inProc. IEEE Visualization 1998. Los
Alamitos, California: IEEE Computer Society Press, 1998, pp. 255–262.

[6] B. Preim, D. Selle, W. Spindler, K. J. Oldhafer, and H.-O.Peitgen,
“Interaction techniques and vessel analysis for preoperative planning in
liver surgery,” inProceedings of the Third International Conference on
Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI). London, United Kingdom: Springer-Verlag, 2000, pp. 608–617.

[7] H. Hauser, L. Mroz, G.-I. Bischi, and M. E. Gröller, “Two-level volume
rendering - fusing mip and dvr,” inProc. IEEE Visualization 2000. Los
Alamitos, California: IEEE Computer Society Press, 2000, pp. 211–218.

[8] M. Hadwiger, C. Berger, and H. Hauser, “High-quality two-level volume
rendering of segmented data sets on consumer graphics hardware,” in
Proc. IEEE Visualization 2003, G. Turk, J. J. van Wijk, and R. Moor-
head, Eds., 2003, pp. 301–308.

[9] R. L. Boyell and H. Ruston, “Hybrid techniques for real-time radar
simulation,” inProceedings of the 1963 Fall Joint Computer Conference.
IEEE, 1963, pp. 445–458.

[10] Y. Takeshima, S. Takahashi, I. Fujishiro, and G. M. Nielson, “Introduc-
ing topological attributes for objective-based visualization of simulated
datasets.” inVolume Graphics, A. E. Kaufman, K. Mueller, E. Gröller,
D. W. Fellner, T. Möller, and S. N. Spencer, Eds. Eurographics
Association, 2005, pp. 137–145.

[11] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. Rezk-Salama,
and D. Weiskopf, “Course notes for SIGGRAPH 2004 course #28:Real-
time volume graphics,” available at http://www.vrvis.at/via/resources/
course-volgraphics-2004/course28.pdf or on the SIGGRAPH2004 con-
ference DVD.

[12] G. M. Nielson, “On marching cubes,”IEEE Transactions on Visual-
ization and Computer Graphics, vol. 9, no. 3, pp. 341–351, July–Sept.
2003.

[13] J. W. Milnor, Morse Theory. Princeton, New Jersey: Princeton
University Press, May 1963.

[14] G. Reeb, “Sur les points singuliers d’une forme de pfaffcomplètement
intégrable ou d’une fonction numérique,”Comptes Rendus de
l’Acadèmie des Sciences de Paris, vol. 222, pp. 847–849, 1946.

[15] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M.Ueda, “Algo-
rithms for extracting correct critical points and constructing topological
graphs from discrete geographical elevation data,”Computer Graphics
Forum, vol. 14, no. 3, pp. 181–192, 1995.

[16] T. Itoh and K. Koyamada, “Automatic isosurface propagation using an
extrema graph and sorted boundary cell lists,”IEEE Transactions on
Visualization and Computer Graphics, vol. 1, no. 4, pp. 319–327, 1995.

[17] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. R.
Schikore, “Contour trees and small seed sets for isosurfacetraversal,”
in Proceedings of the 13th ACM Annual Symposium on Computational
Geometry (SoCG). ACM Press, 1997, pp. 212–220.

[18] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in
all dimensions,”Computational Geometry – Theory and Applications,
vol. 24, no. 2, pp. 75–94, Feb. 2003.

[19] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the
topology of level sets,”Algorithmica, vol. 38, no. 2, pp. 249–268, Oct.
2003.

[20] H. Carr and J. Snoeyink, “Path seeds and flexible isosurfaces using
topology for exploratory visualization,” inData Visualization 2003
(Proceedings VisSym 2003). New York, NY: ACM Press, 2003, pp.
49–58.

[21] G. Wyvill, C. McPheeters, and B. Wyvill, “Data structure for soft
objects,”The Visual Computer, vol. 2, pp. 227–234, 1986.

[22] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The contour spectrum,”
in Proc. IEEE Visualization ’97, R. Yagel and H. Hagen, Eds. New
York, New York: ACM Press, Oct. 19–24 1997, pp. 167–173.

[23] G. H. Weber, G. Scheuermann, H. Hagen, and B. Hamann, “Exploring
scalar fields using critical isovalues,” inProc. IEEE Visualization 2002,
R. J. Moorhead, M. Gross, and K. I. Joy, Eds. Los Alamitos, California:
IEEE Computer Society Press, 2002, pp. 171–178.

[24] G. H. Weber, G. Scheuermann, and B. Hamann, “Detecting critical
regions in scalar fields,” inData Visualization 2003 (Proceedings of
VisSym 2003), G.-P. Bonneau, S. Hahmann, and C. D. Hansen, Eds.
New York, NY: ACM Press, 2003, pp. 85–94.

[25] J. Cox, D. B. Karron, and N. Ferdous, “Topological zone segmentation
of scalar volume data,”Journal of Mathematical Imaging and Vision,
vol. 18, pp. 95–117, 2003.

[26] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi,“Volume data
mining using3D field topology analysis,”IEEE Computer Graphics and
Applications, vol. 20, no. 5, pp. 46–51, Sept./Oct. 2000.

[27] I. Fujishiro, T. Azuma, and Y. Takeshima, “Automating transfer function
design for comprehensible volume rendering based on 3D fieldtopology
analysis,” inProc. IEEE Visualization ’99, D. S. Ebert, M. Gross, and
B. Hamann, Eds. Los Alamitos, California: IEEE Computer Society
Press, Oct. 25–29, 1999, pp. 467–470.

[28] S. Takahashi, I. Fujishiro, and Y. Takeshima, “Interval volume decom-
poser: A topological approach to volume traversal,” inVisualization
and Data Analysis 2005 (Proceedings of the SPIE), R. F. Erbacher,
K. Börner, M. Gröhn, and J. C. Roberts, Eds., 2005.

[29] S. Takahashi, Y. Takeshima, and I. Fujishiro, “Topological volume skele-
tonization and its application to transfer function design,” Graphical
Models, vol. 66, no. 1, pp. 24 – 49, Jan. 2004.

[30] S. Takahashi, G. M. Nielson, Y. Takeshima, and I. Fujishiro, “Topologi-
cal volume skeletonization using adaptive tetrahedrization,” in Proceed-
ings of Geometric Modeling and Processing 2004. IEEE Computer
Society Press, 2004, pp. 227–236.

[31] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-smale
complexes for piecewise linear 3-manifolds,” inProceedings of the 19th
ACM Symposium on Computational Geometry, 2003, pp. 361–370.

[32] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A topolog-
ical hierarchy for functions on triangulated surfaces,”IEEE Transactions
Visualization and Computer Graphics, vol. 10, no. 4, pp. 385–396, 2004.

[33] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann,
“Topology-based simplification for feature extraction from 3D scalar
fields,” in IEEE Visualization 2005, C. T. Silva, E. Gröller, and H. Rush-
meier, Eds. Los Alamitos, California: IEEE Computer Society Press,
Oct. 2005, pp. 535–542.

[34] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying flexible
isosurfaces using local geometric measures,” inProc. IEEE Visualization
2004. Los Alamitos, California: IEEE Computer Society Press, Oct.
2004, pp. 497–504.

[35] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, “Multi-resolution
computation and presentation of contour trees,” Lawrence Livermore
National Laboratory, Tech. Rep. UCRL-PROC-208680, 2005, prelimi-
nary version appeared in the proceedings of the IASTED conference
on Visualization, Imaging, and Image Processing (VIIP 2004), 2004,
pp.452-290.

[36] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita, “A feature-
driven approach to locationg optimal viewpoints for volumevisual-
ization,” in IEEE Visualization 2005, C. T. Silva, E. Gröller, and
H. Rushmeier, Eds. Los Alamitos, California: IEEE ComputerSociety
Press, Oct. 2005, pp. 495–502.

[37] F.-Y. Tzeng, E. Lum, and K.-L. Ma, “An intelligent system approach
to higher-dimensional classification of volume data,”IEEE Transactions
on Visualization and Computer Graphics, vol. 11, no. 3, pp. 273–284,
May/June 2005.

[38] J. Kniss, R. V. Uitert, A. Stephens, G.-S. Li, T. Tasdizen, , and
C. Hansen, “Statictically quantitative volume rendering,” in Proc. IEEE
Visualization 2005, C. T. Silva, E. Gröller, and H. Rushmeier, Eds. Los
Alamitos, California: IEEE Computer Society Press, Oct. 2005, pp. 287–
294.

[39] H. Carr, T. Möller, and J. Snoeyink, “Simplicial subdivisions and
sampling artifacts,”IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 2, pp. 231–242, 2006.

[40] H. Carr, “Topological manipulation of isosurfaces,” Ph.D. dissertation,
University of British Columbia, Apr. 2004.

[41] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: A tech-
nique to cope with degenerate cases in geometric algorithms,” ACM
Transacations on Graphics, vol. 9, pp. 66–104, 1990.

[42] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surfacecoding based
on morse theory,”IEEE Computer Graphics and Applications, vol. 11,
no. 5, pp. 66–78, 1991.

[43] S. Takahashi, Y. Shinagawa, and T. L. Kunii, “A feature-based approach
for smooth surfaces,” inProceedings of the Fourth ACM Symposium on
Solid Modeling and Applications (SMA ’97). New York, NY, USA:
ACM Press, 1997, pp. 97–110.



TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Gunther H. Weber received his Ph.D. in Computer
Science from the University of Kaiserslautern in
2003. His research on visualization of adaptive mesh
refinement data and topology-based methods for the
exploration of volume data was performed in close
collaboration with the Institute for Data Analysis and
Visualization (IDAV) at the University of California,
Davis and the Lawrence Berkeley National Labora-
tory (LBNL). Currently, Gunther is a postdoctoral
researcher at IDAV and the Berkeley Drosophila
Transcription Network Project at LBNL.

Scott Dillard received a B.S. in computer science
from the University of California, Davis (UC Davis)
in 2004. He is currently a Ph.D. student at UC Davis,
working with the Institute for Data Analysis and
Visualization (IDAV). His research interests include
graphics, visualization, image processing and com-
putational geometry.

Hamish Carr completed his Ph.D. at the Univer-
sity of British Columbia in May, 2004 and was
appointed as a Lecturer at University College Dublin
effective September, 2004. His research interests
centre around the application of topological analysis
to computer graphics and to scientific and medical
visualization, but more broadly include computer
graphics, computational geometry and geometric ap-
plications.

Valerio Pascuccireceived the Ph.D. degree in com-
puter science from Purdue University in May 2000
and the EE Laurea (Master’s), from the University
“La Sapienza” in Rome in December 1993, as a
member of the Geometric Computing Group. He has
been a computer scientist and project leader at the
Lawrence Livermore National Laboratory, Center for
Applied Scientific Computing (CASC) since May
2000. Prior to his CASC tenure, he was a senior
research associate at the University of Texas at
Austin, Center for Computational Visualization, CS

and TICAM Departments. He is a member of the IEEE.

Bernd Hamann serves as an Associate Vice Chan-
cellor for Research and is a professor of computer
science at the University of California, Davis. His
main interests are visualization, geometric modeling,
and computer graphics. Bernd Hamann received a
Ph.D. degree in computer science from Arizona State
University in 1991. He was awarded a 1992 National
Science Foundation Research Initiation Award, a
1996 National Science Foundation CAREER Award,
and a 2006 University of California Presidential
Chair in Undergraduate Eduction.


