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ABSTRACT

The complexity of physical phenomena often varies substantially over space and time. There can be regions where
a physical phenomenon/quantity varies very little over a large extent. At the same time, there can be small regions
where the same quantity exhibits highly complex variations. Adaptive mesh refinement (AMR) is a technique
used in computational fluid dynamics (CFD) to simulate phenomena with drastically varying scales concerning
the complexity of the simulated variables. Using multiple nested grids of different resolutions, AMR combines the
topological simplicity of structured-rectilinear grids, permitting efficient computation and storage, with the possibility
to adapt grid resolutions in regions of complex behavior. We present methods for direct volume rendering of AMR
data. Our methods utilize AMR grids directly for efficiency of the visualization process. We apply a hardware-
accelerated rendering method to AMR data supporting interactive manipulation of color-transfer functions and
viewing parameters. We also present a cell-projection-based rendering technique for AMR data.

Keywords: volume visualization, direct volume rendering, adaptive mesh refinement, computational fluid dynamics,
multiresolution method, multigrid technique, hardware-accelerated rendering

1. INTRODUCTION

AMR is a method in computational physics introduced by Berger and Oliger.3 A modified version of their algorithm
was published by Berger and Colella.2 AMR has become increasingly popular in the field of computational physics
and is used in a variety of applications in CFD. For example, Bryan4 simulates astrophysical phenomena using a
hybrid approach combining AMR and particle simulation.

An AMR simulation starts by subdividing physical space using one or multiple coarse grids. The governing equa-
tions are discretized on this grid and solved using a finite-difference method. Subsequently, simulation is performed,
and errors for all cells are estimated. Higher-resolution grids are generated that contain all grid cells whose associated
error values exceed a given threshold. There is no general rule governing the placement, orientation, or size of the
refining grids, besides the requirement that a refining grid must be completely contained in one or more grids of
the subsequent coarser level. New grids are initialized with interpolated values from the parent level. Simulation is
performed on each grid separately, and values are propagated back to the parent level to ensure consistency between
levels. Simulation and refinement are performed recursively until all regions are captured with the desired accuracy.

In this paper, we visualize astrophysical data sets generated by the Berger–Colella AMR method.4 These data
sets comprise axis-aligned structured-rectilinear grids consisting of hexahedral cells with a volume defined by an
“edge-length vector” δg = (δg,0, δg,1, δg,2). Each grid can be positioned by specifying its local origin. Due to the
finite-difference method used by the simulation, a cell-centered data format is used. Dependent function values are
associated with the centers of the cells. We denote the region covered by the grid by Γg.

An AMR hierarchy consists of several levels Λl consisting of one or multiple grids. All grids in a level have the
same resolution, i.e., they share the same cell size δΓl . The region covered by a level ΓΛl is the union of regions
covered by the grids of that level.

The root level Λ0 is the level initially used for the simulation and thus the coarsest level. Each level Λl may be
refined by a higher resolution level Λl+1. A grid of the refined level is commonly referred to as a coarse grid and a



Figure 1. AMR hierarchy consisting of four grids in three levels. Grid boundaries are drawn as bold lines. Locations
at which dependent data values are given are indicated by solid circles.

grid of the refining level as a fine grid. The refinement ratio r specifies how many fine-grid cells fit into a coarse-grid
cell, considering all axial directions. (The value of r is always an integer.)

A refining grid refines a whole level Λl, i.e., it is completely contained in ΓΛl but not necessarily in the region
covered by a single grid of that level. Each refining grid can only refine complete grid cells of the parent level, i.e., it
must start and end at the boundaries of grid cells of the parent level. Furthermore, there is always a layer of width
of at least one grid cell between a refining grid and the boundary of the refined level.

Figure 1 shows a simple two-dimensional (2D) AMR grid hierarchy produced by the Berger–Colella method. It
consists of four grids in three levels. The root level consists of one grid. This grid is refined by a second level
consisting of two grids. A fourth grid refines the second level; it overlaps both grids of the second level.

The visualization community has just begun to explore the potential benefits of using the hierarchical structure
of AMR data directly for improving the efficiency of the visualization process. With the increasing use of AMR in
large-scale numerical simulations, and its advantage of concentrating computations where they are really necessary,
appropriate visualization techniques become indispensable. In this paper, we describe visualization strategies for
volume rendering of 3D AMR data operating directly on the AMR representation. We use a direct volume rendering
approach for the visualization of AMR data and present a hardware-accelerated preview rendering scheme as well as
a high-quality cell-projection-based approach.

2. RELATED WORK

Little research has been done to date regarding the visualization of AMR data. Published work has mainly focused
on converting AMR data into suitable conventional representations and visualizing these, see Norman et al.,14 while
trying to preserve the original hierarchical nature. Ma9 describes a parallel rendering approach for AMR data.
Even though he re-samples the data to vertex-centered data, he still uses the hierarchical nature of AMR grids and
contrasts that approach to re-sampling the data to the finest available resolution. Max11 describes a sorting scheme
for cells for volume rendering and uses AMR data as one application of his method.

Direct volume rendering is, besides the extraction of isosurfaces and slice-plane-based methods, the most common
visualization method for scalar volume data. Using so-called transfer functions, scalar values are “mapped” to
illumination properties. Regions in the volume are associated with the illumination properties that a transfer function
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Figure 2. The cell-projection process.

assigns to the scalar values in that region. Direct volume rendering methods can be differentiated by their underlying
illumination models (i.e., by the optical “properties” of transfer functions) and whether they operate in image
space or object space. Image-space-based algorithms, e.g., ray casting,16,7 operate on pixels in screen space as
“computational units,” i.e., they perform computations on a per-pixel basis. Object-space-based methods, like cell-
projection,10 splatting,20 or shear-warp factorization5 operate on cells/voxels as computational units, i.e., they
perform computations on a per-cell basis. Sabella uses a light model based on “varying density emitters,” resulting
in images “perceived as a varying density “cloud” where color highlights the computed attributes”.16 Each scalar
value is associated with an emission and a translucency. Light is emitted from each position in the volume and
partially absorbed along the path to the image plane. Sabella uses an image-space-based ray casting approach. Rays
are cast through each pixel and traced through a volume. Light contributions are integrated along the rays, while
considering absorption on the way to the viewer. Levoy7 uses a light model that simulates reflections of “surfaces”
in volume data. Levoy also maps scalar values to colors and opacities. In addition to scalar values, Levoy considers
gradients and uses a generalized Phong model to create the impression of shaded surfaces within a volume. Max12

surveys optical models used for volume rendering.

Direct volume rendering is a computationally expensive method. Numerous attempts have been made to im-
plement systems enabling interactive rendering of volumetric data. Meyer13 provides an overview and introduces a
system that adapts display quality of a rendered data set to maintain interactive rendering rates. Advances in hard-
ware technology, aimed at increasing the performance for surface-based rendering, have also been used to increase the
interactivity of volume rendering techniques. Van Gelder and Kim17 use 3D textures and alpha blending to display
volume-rendered images. Today, 3D graphics acceleration is widely available. Through the increasing proliferation of
3D computer games, 3D graphics acceleration hardware is now available on standard PCs at low cost. For example,
Rezk-Salama et al.15 present hardware acceleration schemes for volume rendering specifically tailored to the widely
available NVIDIA GeForce graphics chip.

Multiresolution volume visualization methods use hierarchical representations of scalar volume data sets to render
them at different resolutions, depending on time and/or quality constraints. LaMar et al.6 use an octree-based
representation of volume data. Each portion of a volume can be rendered at different resolutions. During rendering,
priorities based on an error metric are used to decide which resolution to use for rendering a given region. For actual
rendering, a hardware-accelerated slicing process is used, allowing interactive visualization of large-scale volume data.

3. PROGRESSIVE HIGH-QUALITY RENDERING USING CELL PROJECTION

3.1. General Cell-Projection Approach

Cell-projection10 is an object-space-based volume rendering method. It is similar to ray casting, a widely used image-
space-based approach. In both methods, rays are traced through the volume accumulating light along each ray. Ray
casting does this on a per-pixel basis, constructing rays for each pixel. Cell-projection-based methods construct all
ray segments for the current cell and merge them with existing ray segments.

Usually, a priority queue is maintained for each pixel that collects all ray segments contributing to that pixel.
Figure 2 shows the fundamental idea of the cell-projection approach. The boundary faces of all cells are divided
into two groups, front-facing faces (with normals directed toward the viewer) and back-facing faces (with normals



directed away from the viewer). First, the front-facing faces are scan-converted into a buffer. For each pixel influenced
by the cell, this buffer holds a depth corresponding to an entry parameter value, called tin, along the ray and an
interpolated scalar value at that position. Subsequently, the back-facing faces are scan-converted. For each generated
pixel, the depth corresponding to the exit parameter value, called tout, along the ray and an interpolated scalar value
are computed. Entry parameter value tin and corresponding scalar value are read from the buffer, and the ray
segment reaching from tin to tout is constructed. This ray segment is then inserted into the ray-segment queue of the
corresponding pixel. If the ray segment is adjacent to existing ray segments in the ray-segment queue, it is merged
with them. Two ray segments are adjacent when the union of their parameter intervals along the ray ([t0,in, t0,out]
and [t1,in, t1,out]) is continuous, i.e., when either t0,in = t1,out or t0,out = t1,in holds. When all cells are processed,
each ray segment buffer contains only one ray segment corresponding to the ray originating from the pixel.

If the cells are sorted, e.g., using the scheme of Max,11 and rendered in either back-to-front or front-to-back
order, the queue for collecting the ray segments is not necessary. Instead, newly generated ray segments are always
adjacent to already computed ray segments and can be composited directly in the frame buffer. However, in our
implementation, we use the queue-based approach and extend it as described in the following section.

3.2. Progressive Refinement Cell Projection for AMR Data

We render an AMR hierarchy by subsequently cell-projecting its constituent grids. Two schemes are possible:
Bottom-up rendering starts with rendering the finer grids and proceeds with filling gaps by rendering the corre-
sponding portions of the coarser grids. In a top-down approach, a coarse grid is rendered first. The result can
be displayed and used as an intermediate visualization. The rendered image is refined by proceeding to the finer
grids and replacing portions of the already rendered image with a version at higher resolution. A simple bottom-up
rendering scheme starts by cell-projecting the grids of the finest level. Grids of the coarser levels are subsequently
cell-projected. While rendering these coarser grids, special care must be taken of those cells overlapped by a finer
grid. Ray segments for the regions covered by these cells are already computed. Thus, these cells must be skipped
during the rendering process to obtain a correct result. This is done by using an intersection map. The intersection
map contains an entry for each cell in the grid that specifies the index of the grid that overlaps this cell, should such
a grid exist. During the rendering process, the intersection map entry for the current cell is read. If it specifies an
overlapping grid, the cell is skipped. A straightforward extension is to render only a subset of refining grids. In this
case, a cell is skipped only when the grid overlapping that cell is already rendered.

By adding supplemental information to each ray segment that is inserted into the ray-segment queues, it is
possible to use a top-down rendering approach for AMR hierarchies. For each ray segment, indices of two grids are
stored: One index specifies the grid in which the segment was created, i.e., the grid to which the cell belongs. The
other index specifies by which grid in the child level the segment is affected, i.e., it specifies rendering which grid
would define a more accurate representation of that ray segment. This is the index of the grid refining the cell in
which the ray segment was created, and it can be obtained by reading the corresponding entry in the intersection
map. Ray segments are only merged when they are adjacent (see previous section) were created in the same and are
affected by the same grid. Figure 3 shows three rays traced from a specific viewpoint. When the coarsest grid G0 is
rendered, all ray segments are tagged as being created in grid G0. Ray A is not affected by any grid, since it does
not intersect any refined grid cells. Ray B is divided into three segments; the first is not affected by another grid,
the second is affected by grid G1, and the third is not affected by any grid. After rendering grid G0 completely, the
ray-segment queue for ray A contains exactly one ray segment. The queues for rays B and C contain three and four
segments, respectively. Ray B is comprised of a segment from the viewpoint to grid G1 (solid line segment), a segment
that is contained in grid G1 (dashed line segment), and the segment after leaving grid G1 (solid line segment). Ray
C consists of a segment from the viewpoint to grid G1 (solid line segment), one segment that is contained in grid
G1 (dashed line segment), a segment that is contained in grid G2 (solid line segment), and a segment after leaving
grid G2 (dashed line segment). Since ray segments can only be merged when they are affected by the same grid,
these segments cannot be merged. We note that, even though ray C intersects also grid G3, this intersection is not
considered until grids G1 and G2 are rendered. Only grids of the next-finer level are considered as affecting a given
ray segment.

Using this approach of partitioning rays into segments that are affected by finer grids and those that are not, it
is straightforward to refine an already rendered image by rendering a finer grid. Before the finer grid is rendered, all
ray segments affected by that finer grid are erased from the ray-segment queues. When the finer grid is rendered, the
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Figure 3. Progressive rendering of AMR hierarchy.

gaps in the ray segments resulting from this step are filled with more accurate ray segments, resulting in an improved
image.

3.3. Interpolation Issues
One way to render grids of an AMR data set is to use no interpolation at all and use only original data values. This
approach assigns the value at a cell’s center to the whole extent of the cell. Scientists who perform simulations favor
this approach, as it might make it easier to identify problems in a simulation.

If an interpolation scheme is used, it should be compatible with the interpolation scheme applied during the
simulation. Unfortunately, this is complicated by the fact that the underlying finite-difference method has no
“inherent” interpolation scheme. Differentiation is approximated by differencing function values of neighboring grid
points. The simulation does not use any values besides those at cell centers. AMR, however, uses an interpolation
scheme to initialize values of newly created grids. We have implemented an interpolation scheme based on the
piecewise linear method (PLM), commonly used in AMR simulations. PLM can be used with simulations of arbitrary
dimension. We outline the basic method for the 2D case. PLM estimates the partial derivatives at the center of a
grid cell k = (k0, k1) using the difference between grid-cell values, i.e.,

∂

∂x0
f

∣∣∣∣∣
x=pk

=
vk0+1,k1 − vk0−1,k1

2δ0
and

∂

∂x1
f

∣∣∣∣∣
x=pk

=
vk0,k1+1 − vk0,k1−1

2δ1
, (1)

where δ0 and δ1 denote the cell size in the corresponding directions. Figure 4(a) illustrates this approximation for
the 1D case (considering one component). The scalar value associated with the cell center is denoted by vk and its
position, i.e., the center of cell k, denoted by pk. Scalar values in a cell are approximated linearly by adding the
first derivative multiplied by the distance from the cell center to the scalar value at the cell’s center:

PLM(x) = vk + (x− p)∇f
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Figure 4. Computing interpolated values using PLM. (a) The first derivative is approximated as the difference
between the values at the centers of the two adjacent cells divided by their distance. Values within the cell are
interpolated linearly by adding the approximated derivative multiplied by the distance from the cell center to the
value at the cell center. (b) If the cell value is a local extremum, the first derivative is set to zero (heavy solid
line) instead of using the difference between adjacent cell values (solid line). (c) If necessary, the absolute value of
the approximated derivative (solid line) is reduced (heavy solid line) to restrict the values in a grid cell between the
average levels (dashed lines) of its neighbors.

Using the first derivative according to Equation 1 can result in the introduction of new extrema. PLM prevents this
from happening by imposing a limit on the absolute value of the first derivative (“van Leer Limiting18”). This is done
by extending Equation 1 in the following way: First, a decision is made whether a local extremum is present at the
cell center of the current cell. (A local extremum in direction 0 is present when the two differences v(k0,k1)−v(k0−1,k1)

and v(k0+1,k1) − v(k0,k1) have different signs, i.e., when

v(k0,k1) − v(k0−1,k1)v(k0+1,k1) − v(k0,k1) ≥ 0 .) (3)

In this case, the corresponding partial derivative is set to zero (Figure 4(b)). Otherwise, the absolute value of the
slope is set to∣∣∣∣∣∣ ∂∂x0

f
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∣∣∣∣∣∣ = min
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δ0

∣∣∣∣ , ∣∣∣∣2v(k0,k1) − v(k0−1,k1)

δ0

∣∣∣∣}) . (4)

The last two terms ensure that interpolated values in a cell lie between the average values (i.e., the values at the cell
centers) of adjacent cells (Figure 4(c)). When the condition stated in Equation 3 holds, all three terms in the min-
expression have the same sign. The sign of the approximated derivative is set to this sign. The other direction, x1,
is handled analogously. This approach generalizes to higher dimensions. (If the values in the 2D case are interpreted
as height values over the grid, the interpolant defines a plane with slopes ∂

∂x0
f |x=pk

and ∂
∂x1

f |x=pk
in x0– and

x1–direction, respectively, passing through the scalar value at the cell center.)

PLM is well suited for interpolation of border values for a new grid. When used for visualization purposes, PLM
can cause problems, since it is not continuous at cell boundaries. Even though for most viewing angles integration
smoothes out artifacts in volume renderings, distracting artifacts can still result when the view direction is along one
of the three major axes and two neighboring rays pass through two different “stacks” of cells. Each cell intersected
by the ray has a significantly different color value compared to the color value of the neighboring cells. This effect is
accumulated by the integration along the ray.

4. HARDWARE-ACCELERATED VOLUME RENDERING OF AMR DATA

4.1. Interactive Rendering of AMR Data
Visualizations based on direct volume rendering require the specification of meaningful viewpoints as well as transfer
functions emphasizing features in a data set. Even though approaches for the automatic creation of transfer functions
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Figure 5. Different lengths of ray traversing cell. (a) Rays axis-aligned. (b) Rays not axis-aligned.

are known, there is still a need for generating customized transfer functions. This is often done on a trial-and-error
basis. Thus, it is desirable to have a means for visualizing a volumetric data set at interactive speed. In general,
this greatly enhances our understanding of data. This is especially the case for immersive environments. Immersive
environments pose demanding requirements for high frame rates. At least 30 frames per second (for stereo-viewing
mode) are necessary to achieve the impression of 3D immersion. Therefore, we have adopted hardware-accelerated
volume rendering schemes for AMR data.

4.2. Rendering a Single Grid

It is possible to simulate cell projection in hardware. We project the boundary faces of all cells that are directed
toward the viewer. By restricting our approach to orthographic projections, we ensure that for all cells the same faces
are front-facing and back-facing. Thus, it is sufficient to determine the front-facing faces by considering only one
cell and use the determined faces to define the “footprint” of cells. This is similar to splatting using the outline of a
single cell as convolution kernel. All front-facing faces are rendered with constant color and opacity. This approach
does not take varying cell length into account and produces artifacts in addition to the “blockieness” of the constant
interpolation. This is illustrated in Figure 5. When a cell is viewed in axis direction, all rays traverse the same
distance in the cell (equal to the length of the cell in that direction), shown in Figure 5(a). When the cell is not
viewed in an axis direction, the length of the segment of the ray within this cell depends on the position of the ray.
The quick-preview method ignores this fact. We note that the resulting artifacts are similar to the artifacts produced
by a slicing approach that uses axis-perpendicular planes to composite volume images. If an image rendered by
this method is viewed in the direction of an axis, the results are “correct.” The more a viewing direction deviates
from an axis direction, the more the individual planes are visible. The resulting renderings are similar to those one
would obtain when rendering all three sets of planes at the same time rather than choosing the set that is most
perpendicular to the viewing direction. This results in slightly different artifacts. Our cell based-approach allows us
to render only cells whose opacity is above a given threshold and thus generate less geometry.

4.3. AMR Partition Tree

Structured-rectilinear grids allow the use of hardware-based schemes to accelerate rendering. AMR data consists of
structured-rectilinear grids. However, when viewed over the whole domain there are changes in resolution. In order
to apply hardware-accelerated schemes to AMR data, we partition a given data set into blocks of constant resolution
using a generalized k-D tree.1 Each grid is partitioned into two types of blocks of adjacent cells: A block consists
completely of cells for which no refined representation is available or all cells of the given block are available in a
higher resolution. In the latter case, the block contains a pointer to the finer representation. The resulting blocks are
rendered from back to front. During rendering it is determined, for each block, whether it is rendered at low or high
resolution to achieve interactive frame rates. It is possible to render only parts of a data set for improved efficiency.
In this case, the positions of the higher-level grids indicate where interesting features in a data set exist. (This is
possible since these grids are present in regions characterized by high variation, which are exactly the regions that
are likely to be of greater interest.)
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Figure 6. Partition tree for hierarchy shown in Figure 1. Completely refined grid-part nodes are denoted by “CP,”
unrefined grid-part nodes are denoted by “CU,” and partition nodes are denoted by “PN.”
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The partition tree consists of nodes of different types. All nodes share certain common information, regardless of
type. Each node specifies a region of an AMR grid. Thus, each node contains at least a reference to this AMR grid
and information regarding which cells of the grid are used by this node. These regions are always rectilinear and axis-
aligned, allowing their specification by the minimum and maximum cell indices. All cells with indices between these
indices belong to the region described by this node. This information alone is sufficient for the “unrefined-grid-part”
node. Nodes of this type describe regions in an AMR grid for which no further refinement information is available,
regions that can always be rendered at the fixed resolution of the current level. The “completely-refined-grid-part”
node describes a region that is completely available at a higher resolution and thus indicates a transition between
two hierarchy levels. The corresponding region of the AMR grid is completely available at a higher resolution. Thus,
it is possible to render the resolution of the current level or alternatively render it at a higher resolution. This
higher-resolution representation is a pointer to a sub-tree describing that region. A “partition” node splits a given
region into “stripes” along an axis. Each stripe is an unrefined-grid-part node, a completely-refined-grid-part node,
or a partition node (with a different partition direction).

Figure 6 shows the partition tree for the AMR hierarchy from Figure 1. To render the complete hierarchy this
partition tree is traversed. Partition nodes are handled by rendering their children in correct order, i.e., by traversing
their children lists back-to-front. (We use orthographic projection.) Thus, back-to-front traversal can be achieved by
checking the component of the view-direction vector corresponding to the partition direction and rendering the child
nodes in a direction according to the sign of the component. Unrefined-grid-part nodes are handled by rendering the
corresponding region of the AMR grid using a hardware-accelerated approach. Completely-refined grid-part nodes
are rendered by traversing their sub-trees.

4.4. Adaptive Tree Traversal

By using heuristics it is possible to adaptively traverse the partition tree and render images that take certain criteria
into account. We differentiate two types of criteria governing the traversal of the partition tree: Viewpoint-dependent
criteria aim at minimizing rendering time while retaining quality of generated images. We employ two criteria to
modify tree traversal. During the traversal of a partition node, a check is performed for each child whether the
region corresponding to that node is visible, i.e., whether it intersects the viewing frustum. If the answer is negative,



the corresponding child is skipped, thus culling the corresponding part of the volume. Since an intersection test for
bounding box and viewing frustum is too expensive to be performed in real time, we use a heuristic: We project
an arbitrary diagonal of the region (the line segment spanning from one vertex of a 3D cell to the opposite-corner
vertex) to view coordinates and check whether the bounding box of that diagonal intersects the view region. (In
normalized view coordinates this region is given as [−1, 1]× [−1, 1]× [−1, 1].) When a completely refined-grid-part
node is traversed, a choice must be made: Should the corresponding region be rendered at the resolution of the
current level or should it be rendered at a higher resolution? The decision is based on an estimated footprint of the
voxel. If each cell of a refining grid covers only sub-pixels, i.e., only fractions of pixels, it is sufficient to render the
data with the resolution of the parent level. Again, to perform this decision efficiently enough for real-time rendering
we estimate this region by the bounding box of the projected diagonal of a cell.

Considering viewpoint-dependent criteria alone only avoids unnecessary rendering time but does not neccesarily
ensure interactive rendering speed. When it is not possible to use the full resolution of an AMR data set and
achieve interactive frame rates, greater speed can be obtained by sacrificing rendering quality. Currently, we specify
a traversal depth of the partition tree for interactive rendering. For each frame, the time necessary to render it
is measured, and an achieved frame rate estimated. If the estimated frame rate is too low, the traversal depth is
decreased; if it is higher than the desired frame rate, the traversal depth, and thus the quality of the rendered image,
is increased.

5. RESULTS

Figure 7 shows images used for interactive preview purposes for AMR data. On an SGI Onyx with InfiniteReality2
graphics, a frame rate of five frames per second can be achieved while using almost the entire AMR hierarchy (five
to six of eight levels). Even on an Indigo2 with SolidImpact graphics four to five of eight levels can be rendered with
five frames per second, since our method requires no hardware acceleration of textures. Using an NVIDIA GeForce
board, only two to three levels can be rendered at five frames per second. The result is shown in Figure 7(a).
For merely choosing a viewpoint this quality is sufficient. The best possible quality using the hardware-accelerated
approach is shown in Figure 7(b). This image utilizes all levels in the AMR hierarchy and uses the view-dependent
criteria merely to avoid unnecessary computation time. This image requires about two seconds on an SGI Onyx with
InfinityReality2 graphics and about ten seconds on a PC with NVIDIA GeForce board.

6. CONCLUSIONS AND FUTURE WORK

By utilizing the inherent hierarchical structure of AMR data, we can improve efficiency of AMR data visualization
substantially. We have presented a hardware-accelerated approach for volume rendering of AMR data at interactive
frame rates and a high-quality cell projection method. The high-quality rendering method allows us to progressively
render the refining grids, producing images of increasing quality. We pay special attention to the interpolation scheme
to make it compatible with the interpolation scheme used in the simulation itself to generate “accurate” images. Our
methods thus facilitate the evaluation of simulation results as they enable scientists to identify numerical problems
more easily.

The hardware-accelerated and the cell-projection-based approaches offer numerous possibilities for further im-
provement. The quality of images produced by the cell-projection-based approach can be improved by considering,
for example, other illumination models. Furthermore, higher-order interpolation schemes might improve results, even
though the integration along rays already tends to “smooth out” discontinuities. Our recent work on the extraction
of isosurfaces19 could be combined with volume rendering to yield higher-quality images, without discontinuities
at boundaries between different hierarchy levels. (The current scheme can produce discontinuities at boundaries
between individual cells.)

Concerning the hardware-accelerated approach, it would be interesting to compare it to existing approaches,
most notably the slice-plane approach mentioned in this paper. The relatively poor performance of the used NVIDIA
GeForce board (compared to the rendering speeds on SGIs) gives rise for additional research. Furthermore, the AMR
hierarchy can be used to guide a viewer for navigation through a data set and/or render only regions of interest. Our
approach of adapting the traversal depth tends to oscillate. More work is necessary to reduce this effect. Combining
viewpoint-dependent and framerate-dependent criteria could assign priorities to different nodes and determine regions
where quality is to be sacrificed for rendering speed, yielding a more flexible, adaptive traversal strategy for AMR
partition trees.
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Figure 7. Images generated by hardware-accelerated volume renderer (data set courtesy of Greg Bryan, Mas-
sachusetts Institute of Technology, Theoretical Cosmology Group, Cambridge, Massachusetts). (a) Data set rendered
during user interaction based on two coarsest-level grids in AMR hierarchy. (b) Data set rendered at full resolution.



Figure 8. Final high-quality rendering using viewpoint and transfer function used for Figure 7.
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