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Abstract. Adaptive mesh refinement (AMR) is a numerical simulation technique used in
computational fluid dynamics (CFD). This technique permits efficient simulation of phenom-
ena characterized by substantially varying scales in complexity. By using a set of nested grids
of different resolutions, AMR combines the simplicity of structured rectilinear grids with the
possibility to adapt to local changes in complexity within the domain of a numerical simu-
lation that otherwise requires the use of unstructured grids. Without proper interpolation at
the boundaries of the nested grids of different levels of a hierarchy, discontinuities can arise.
These discontinuities can lead, for example, to cracks in an extracted isosurface. Treating lo-
cations of data values given at the cell centers of AMR grids as vertices of a dual grid allows
us to use the original data values of the cell-centered AMR data in a marching-cubes (MC)
isosurface extraction scheme that expects vertex-centered data. The use of dual grids also
induces gaps between grids of different hierarchy levels. We use an index-based tessellation
approach to fill these gaps with “stitch cells.” By extending the standard MC approach to a
finite set of stitch cells, we can define an isosurface extraction scheme that avoids cracks at
level boundaries.

1 Introduction

AMR was introduced to computational physics by Berger and Oliger [3] in 1984. A
modified version of their algorithm was published by Berger and Colella [2]. AMR
has become increasingly popular in the computational physics community, and it is
used in a variety of applications. For example, Bryan [4] uses a hybrid approach of
AMR and particle simulations to simulate astrophysical phenomena.

Fig. 1 shows a simple two-dimensional (2D) AMR hierarchy produced by the
Berger–Colella method. The basic building block of ad–dimensional Berger-Colella
AMR hierarchy is an axis-aligned, structured rectilinear grid. Each gridg consists
of nj hexahedral cells in each axial direction. We treat this number as an integer res-
olution vectorn1. The grid spacing, i.e., the widths of grid cell in each dimension, is
1 For convenience, we denote thej–th component of a vectorx asxj .
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Fig. 1. AMR hierarchy consisting of four grids in three levels. The root level consists of one
grid. This grid is refined by a second level consisting of two grids. A fourth grid refines the
second level. It overlaps both grids of the second level. Boundaries of the grids are drawn as
bold lines. Locations at which dependent variables are given are indicated by solid discs

constant in a specific direction and given as a vectorδg, see Fig. 1. Fig. 1 illustrates
that the distance between two samples is equal to the grid spacing. Each grid can
be positioned by specifying its originog. The simulation method typically applied
to AMR grids is a finite-difference method. Typically, acell-centered data format is
used, i.e., dependent function values are associated with the centers of cells. Thus,
the dependent function value associated with a cellig, with 0 ≤ ig,j < nj , is located
at

posg,j(ig) = og,j +
(
ij +

1
2

)
δj , (1)

see Fig. 1. Since sample locations are implicitly given by the regular grid structure,
it suffices to store dependent data values in a simple array using a fixed ordering
scheme, e.g., row-major order. We denote the region covered by a gridg by Γg.

An AMR hierarchy consists of several levelsΛl comprising one or multiple
grids. All grids in the same level have the same resolution, i.e., all grids in a level
share the same cell width vectorδg = δΓl . The region covered by a levelΓΛl is
the union of regions covered by the grids of that level. In most AMR data sets, only
the root level covers a contiguous region in space, while all other levels typically
consist of several disjoint regions.

The hierarchy starts with theroot level Λ0, the coarsest level. Each levelΛl may
be refined by a finer levelΛl+1. A grid of the refined level is commonly referred to
as acoarse grid and a grid of the refining level as afine grid. Therefinement ratio
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rl specifies how many cells of a fine grid contained in levell fit into a coarse-grid
cell along each axial direction. The refinement ratio is specified as a positive integer
rather than a vector, as it is usually the same for all axial directions. A refining grid
can only refine complete grid cells of the parent level, i.e., it must start and end at
the boundaries of grid cells of the parent level. A refining grid refines an entire level
Λl, i.e., it is completely contained inΓΛl but not necessarily in the region covered
by a single grid of that level. (This is illustrated in Fig. 1, where the grid comprising
the second level overlaps both grids of the first level.) Thus, in many cases it is
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Fig. 2. To specify the index of a cell with respect to a level rather than a single grid, we
assume that an entire level is covered by a level grid with a cell width equal toδΓl . Individual
grids within a level cover rectangular sub-regions of that level grid. An index of a grid cell
can either be specified with respect to the level grid (li) or with respect to a grid containing
that cell (ig). The integer origin of a grid is the level index of the grid cell with index0 within
the grid

convenient to access grid cells on a per-level basis instead of a per-grid basis.
To obtain the index of a cell within a level, we assume that alevel grid with a cell

width equal toδΛl covers the entire domainΓΛ0 , see Fig. 2. This level grid starts at
the minimum extent of a bounding box surrounding the root leveloΛ0 , where

oΛ0,j = min {og,j |og ∈ Λ0} , (2)

as shown in Fig. 3. Since all grids in a level are placed with respect to boundaries
of grid cells in a parent level, grid cells in the level grid coincide with grid cells in a
grid of that level or are outside the region covered by the levelΓΛl . Thelevel index
li of a grid cell is its index in the level grid. Using the level index, the origin of a
grid in a level can be defined as aninteger origin. The integer originiog of a gridg
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Fig. 3.The AMR hierarchy shown in this figure contains three grids in the root level. Regions
that are not covered by any grid are shaded. The origin of a level grid is the minimum extent
of the bounding box enclosing all grids in the root level

is the level index of the cell with index0 within the grid, see Fig. 2. Its components
are defined by

iog,j =
(og,j − oΛ0,j)

δΓl
, whereg ∈ Λl . (3)

Since all grid cells of a fine grid must start and end at boundaries of cells of a
coarse level, the components of the integer originiog,j and the number of cellsng,j
along an arbitrary axial direction of a gridg belonging to levell are always integer
multiples of rl. Individual grids in a level correspond to rectangular sub-regions
of the level grid. To access a cell with a given level indexli, first the gridg that
contains that level index has to be found, provided that such a grid exists. Second,
the indexig of the cell within that grid is obtained by subtracting this grid’s integer
origin iog from li.

Due to the hierarchical nature of AMR simulations, AMR data lend themselves
to hierarchical visualization. One of the problems encountered when isosurfaces are
extracted using an MC method is the cell-centered AMR format. MC methods ex-
pect dependent data values at a cell’s vertices instead of data associated with a cell’s
center. If a re-sampling step is used to replace the values at a cell’s center with val-
ues at its vertices, “dangling” nodes arise at level boundaries. These dangling nodes
can cause cracks in the isosurface when using an MC method, even if a consistent
interpolation scheme is used, i.e., one that assigns the same value to a dangling node
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as is assigned to its location in the coarse level. To avoid re-sampling, we interpret
the locations of the samples, see Eq. 1, as vertices of a new grid that is “dual” to the
original one. This dual grid is then used in a standard MC approach.

The use of dual grids creates gaps between grids of different hierarchy levels.
We fill those gaps in an index-based stitching step. Vertices, edges and faces of a fine
grid are connected to vertices in the coarse level using a look-up table (LUT) for the
possible refinement configurations. The resulting stitch mesh consists of tetrahedra,
pyramids, triangular prisms and hexahedral cells. By extending an MC method to
these additional cell types, we define an isosurface extraction scheme that avoids
cracks in an isosurface at level boundaries.

The original Berger–Colella scheme [2] requires a layer with a width of at least
one grid cell between a refining grid and the boundary of the refined level. Even
though Bryan [4] eliminates this requirement, we still require it. This is necessary,
as this requirement ensures that only transitions between a coarse level and the next
finer level occur in an AMR hierarchy. Allowing transitions between arbitrary lev-
els would force us to consider a large number of cases during the stitching process.
(The number of cases would be limited only by the number of levels in an AMR hi-
erarchy, since transitions between arbitrary levels are possible.) These requirements
are equivalent to requirements described by Gross et al. [7] who also do not permit
transitions between arbitrary levels.

2 Related Work

Relatively little research has been published regarding the visualization of AMR
data. Norman et al. [14] convert an AMR hierarchy into finite-element hexahedral
cells with cell-centered data that can be handled by standard visualization tools (like
AVS [1], IDL [8], or VTK [15]), while preserving the hierarchical nature of the
data. Ma [10] describes a parallel rendering approach for AMR data. Even though
he re-samples the data to vertex-centered data, he still uses the hierarchical nature
of AMR data and contrasts it to re-sampling it to the highest level of resolution
available. Max [11] describes a sorting scheme for cells for volume rendering, and
uses AMR data as one application of his method. Weber et al. [17] present two
volume rendering schemes for AMR data. One scheme is a hardware-accelerated
renderer for data previewing. This renderer partitions an AMR hierarchy into blocks
of equal resolution and renders the complete data set by rendering blocks in back-
to-front order. Their other scheme is based on cell projection and allows progressive
rendering of AMR hierarchies. It is possible to render an AMR hierarchy starting
with a coarse representation and refining it by subsequently integrating the results
from rendering finer grids.

Isosurface extraction is a commonly used technique for visual exploration of
scalar fields. Our work is based on the MC method, introduced by Lorensen and
Cline [9], where a volume is traversed cell-by-cell, and the part of the isosurface
within each cell is constructed using an LUT. The LUT in the original paper by
Lorensen and Cline contained a minor error that can produce cracks in the extracted
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isosurface. This is due to ambiguous cases where different isosurface triangulations
in a cell are possible. Nielson and Hamann [12], among others, addressed this prob-
lem and proposed a solution to it. Van Gelder and Wilhelms [6] provided a survey
of various solutions that were proposed for this problem. They showed that, in order
to extract a topologically correct isosurface, more than one cell must be considered
at a time. If topological correctness of an isosurface is not required, it is possible
to avoid cracks without looking at surrounding cells. In our implementation, we
use the LUT from VTK [15] that avoids cracks by taking special care during LUT
generation.

Octree-based methods can be used to speed up the extraction of isosurfaces.
Shekhar et al. [16] use an octree for hierarchical data representation. By adaptively
traversing the octree and merging cells that satisfy certain criteria, they reduce the
amount of triangles generated for an isosurface. Their scheme removes cracks in a
resulting isosurface by moving fine-level vertices at boundaries to a coarser level to
match up contours with the coarse level. Westermann et al. [19] modified this ap-
proach by adjusting the traversal criteria and improving the crack-removal strategy.
Nielson et al. [13] use coons patches to avoid cracks between adjacent regions of dif-
ferent resolution. Instead of avoiding T-intersections or matching up contours they
develop a Coons-patch based interpolation scheme for coarse-level cells that avoids
cracks. Gross et al. [7] use a combination of wavelets and quadtrees to approximate
surfaces, e.g., from terrain data. Considering an estimate based on their wavelet
transform, their approach determines a level in the quadtree structure to represent a
given region with a specific precision. Handling transitions between quadtree levels
is similar to handling those between levels in an AMR hierarchy. Weber et al. [18]
have introduced grid stitching to extract isosurfaces from AMR data sets. In this
paper, we extent and elaborate on this work.

3 Dual Grids

The MC method assumes that data values are associated with cell vertices, but
the prototypical AMR method produces values at cell centers. One possibility to
deal with this incompatibility problem is to re-sample a given data set to a vertex-
centered format. However, re-sampling causes “dangling nodes” in the fine level.
Even if the same values are assigned to the dangling nodes as the interpolation
scheme assigns to their location in the coarse level, dangling nodes can cause cracks
when the MC method is applied, see [19]. We solve these problems by using adual
grid for isosurface extraction. This dual grid is defined by the function values at the
cell centers, see Eq. 1. The implied connectivity information between these centers
is given by the neighborhood configuration of the original cells. Cell centers become
the vertices of the vertex-centered dual grid. The indices of a cell with respect to a
grid or a level (level index), defined in Section 1, become indices of vertices in the
dual grid.

The dual grids for the first two levels of the AMR hierarchy shown in Fig. 1 are
shown in Fig. 4. We note that the dual grids have “shrunk” by one cell in each axial



Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data 7

Fig. 4.Dual grids for the three AMR grids comprising the first two hierarchy levels shown in
Fig. 1. The original AMR grids are drawn in dashed lines and the dual grids in solid lines

direction with respect to the original grid. The result is a gap between the coarse grid
and the embedded fine grids. Due to the existence of this gap, there are no dangling
nodes causing discontinuities in an isosurface. However, to avoid cracks in extracted
isosurfaces as a result of gaps between grids, a tessellation scheme is needed that
“stitches” grids of two different hierarchy levels.

4 Stitching 2D Grids

A stitch mesh used to fill gaps between different levels in the hierarchy is con-
strained by the boundaries of the coarse and the fine grids. In order to merge levels
seamlessly, the stitch mesh must not subdivide any boundary elements of the exist-
ing grids. In the 2D case, this is achieved by requiring that only existing vertices
are used and no new vertices generated. Since one of the reasons for using the dual
grids is to avoid the insertion of new vertices, whenever possible, this causes no
problems.

In the 2D case, a constrained Delaunay triangulation, see, for example, Chew
[5], can be used to fill the gaps between grids. For two reasons, we do not do this.
While in the 2D case only edges must be shared between the stitching grid and the
dual grids, entire faces must be shared in the 3D case. The boundary faces of recti-
linear grids are rectangles that cannot be shared by tetrahedra without being subdi-
vided, thus causing cracks when used in an MC-based isosurface extraction scheme.
Furthermore, an index-based approach is more efficient, since it takes advantage of
the regular structure of the boundaries while avoiding problems that might be caused
by this regular structure when using a Delaunay-based approach.
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Fig. 5.Stitch cells for first two levels of AMR data set shown in Fig. 4

The stitching process for a refinement ratio of two is shown in Fig. 5. Stitch
cells are generated for edges along the boundary and for the vertices of the fine
grid. The stitch cells generated for the edges are shown in dark grey, while the stitch
cells generated for the vertices are drawn in light grey. For the transition between
one fine and one coarse grid, each edge of the fine grid is connected alternatingly
to either a vertex or an edge of the coarse grid. This yields triangles and quadrilat-
erals as additional cells. The quadrilaterals are not subdivided, since subdivision is
not unique. (This in turn would cause problems in the 3D case when quadrilater-
als become boundary faces shared between cells.) The vertices are connected to the
coarse grid via two triangles. A consistent partition of the deformed quadrilateral is
possible. The obvious choice is to connect each edge to the two coarse edges that
are “visible” from it.

In the case of multiple grids, a check must be performed: Are the grid points
in the coarse grid refined or not? If a fine edge is connected to a coarse point, this
check is simple. If the coarse point is refined, the fine edge must be connected to
another fine edge; this yields a rectilinear instead of a triangular cell. The case of
connecting to a coarse edge is more complicated and is illustrated in Figs. 6 (i)–(iv).
If both points are refined, see Fig. 6(iv), the fine edge is connected to another fine
edge. As a result, adjacent fine grids yield the same cells as a “continuous” fine grid.
Problem cases occur when only one of the points is refined, see Figs. 6(ii) and 6(iii).
Even though it is possible to skip these cases and handle them as vertex cases of
the other grid, a more consistent approach is to include them in the possible edge
cases. However, the same tessellations should be generated for both cases, as shown
in Fig. 6.
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Fig. 6. Possible cases for connecting a boundary edgee0e1, cases (i)–(iv), or a boundary
vertexv, cases (v)–(viii), to a coarse grid. If cells of the coarse grid are refined, the coarse
grid points (circles) are replaced by the corresponding refining point (solid black discs)

The cases arising from connecting a vertex are illustrated in Figs. 6 (v)-(vii).
In addition to replacing refined coarse grid points by the nearest fine-grid point,
adjoining grids must be merged. If either of the coarse grid points0, see Fig. 6(v),
or 2, see Fig. 6(v), is refined, it is possible to change the border vertex to a border-
edge segment by connecting it to the other refined grid point and treating it as an
edge, and using the connection configurations from the previous paragraph, i.e.,
those shown in Figs. 6 (i)–(iv). (This case occurs along the bottom edge of the fine
grids shown in Fig. 5.)

Even though arbitrary integer-refinement ratiosrl are possible for AMR grids,
refinement ratios of two and four are the most common ones used. The stitching
process can be generalized to more general refinement ratios. Instead of connect-
ing edge segments of the refining grid alternatingly to a coarse-grid edge segment
and point,(rl − 1) consecutive edge segments must be connected to one common
coarse-grid point. Everyrl–th fine edge must be connected to a coarse edge. The
same connection strategy results from connecting each fine grid edge to a parallel
“phantom edge” that would exist if the grid continued in that direction. If both end
points of the phantom edge are within the same grid cell in the parent level, the edge
is connected to the coarse grid point within that cell. If the phantom edge crosses
a boundary between two coarse grid cells, the fine edge is connected to the edge
formed by the two grid points in those cells.

Even though the valence of the grid points of the coarse grid is increased, this is
not a problem with the commonly used refinement ratios. Furthermore, it is impor-
tant to note that arbitrary refinement ratios would not add more refinement config-
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urations. The fundamental connection strategies remain the same. A fine-grid edge
is connected to a coarse-grid vertex or a coarse-grid edge. A fine-grid vertex is con-
nected to two coarse-grid edges. The cell subdivisions shown in Fig. 6 can be used
for arbitrary refinement ratios.

5 Stitching 3D Grids

Our index-based approach can be generalized to 3D AMR grids. In the simple case
of one fine grid embedded in a coarse grid, boundary faces, edges and vertices of
the fine grid must be connected to the coarse grid.

Each of the six boundary faces of a grid consists of a number of rectangles
defined by four adjacent grid points on the face. A boundary face is connected to
the coarse mesh by connecting each of its comprising rectangles to the coarse grid.
For each quadrilateral, the level indices of the four grid points that would extend the
grid in normal direction are computed. These are transformed into level indices of
the parent level by dividing them by the refinement ratiorl of the fine level. In each
of the two directions implied by a rectangle, these transformed points may have the
same level index component. If they have the same index for a direction, the fine
rectangle must be connected to one vertex in this direction; otherwise, it must be
connected to an edge in that direction. The result is the same as the combination of
two 2D edge cases. The various combinations result in rectangles being connected to
either a vertex, a line segment (in the two possible directions) or another rectangle.
The cell types resulting from these connections are pyramids, see Fig. 7(i), deformed
triangle prisms, see Fig. 7(ii), and deformed hexahedral cells, see Fig. 7(iii).

An edge is connected to the coarse grid by connecting its comprising edge seg-
ments to the grids in the parent level. For each segment, the level indices of the six
grid points that would extend the grid beyond the edge are computed. These indices
are also transformed into level indices of the parent level. Depending on whether
the edge segment crosses a boundary face of the original AMR grid or not, the
edge must either be connected to three perpendicular edges or two rectangles of the
coarse grid. This is equivalent to a combination of the vertex and edge connection
types of the 2D case. If the viewing direction is parallel to the edge segment (such
that it appears to the viewer as a point), it must always be connected to two perpen-
dicular edges of the coarse grid. In the direction along the edge, one connects it to
a point or a parallel edge. Connecting an edge segment to the coarse grid results in
two tetrahedra, shown in Fig. 7(iv), or two deformed triangle prisms, shown in Fig.
7(v), as connecting cells.

A vertex is connected by calculating the level indices of the seven points that
would extend the grid. These are transformed into level indices of the parent level.
The result is the same as the combination of two 2D vertex cases. The vertex is
connected to three rectangles of the coarse grid via pyramid cells, as shown in Fig.
7(vi).

When the coarse level is refined by more than one fine grid, one must check each
coarse-grid point for refinement and adapt the generated tessellation accordingly.
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Fig. 7.Possible connection types for quadrilateral, edge and vertex in 3D case

The simplest case is given when a fine grid boundary rectangle is connected to a
coarse point, see Fig. 7(i). If this coarse grid point is refined an adjacent fine grid
exists and the fine grid boundary rectangle must be connected to the other fine grid’s
boundary rectangle. This case illustrates that it is helpful to retain the indices within
the fine level in addition to converting them to the coarse level. In the unrefined case,
the rectangle was connected to a coarse point, because transforming the four level
indices from the fine level to the coarse level yielded the same coarse level index.
If the grid point corresponding to that coarse level index is refined, the “correct”
fine boundary rectangle can be determined using the original fine level indices. (For
a refinement ration ofrl = 2 the correct choice of the fine-level rectangle is also
implied by the connection type, but for general refinement ratios the fine-level index
must be retained.)

Connecting a fine rectangle to a coarse edge, see Fig. 7(ii), is slightly more dif-
ficult. Each of the endpoints of a coarse edge can either be refined or unrefined.
The resulting refinement configurations and their tessellations are shown in Fig. 8.
Refinement configurations, the cases in Fig. 8 and subsequent figures are numbered
as follows: For each connection type shown in Fig. 7, the coarse-grid grid points
that are connected to a fine grid element are numbered according to the correspond-
ing sub-figure. A case number is obtained by starting with case0. For each refined
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(i) Case0 (ii) Cases1 and2 (iii) Case3

Fig. 8.Refinement configurations for connecting a fine-grid rectangle to a coarse-grid edge

coarse-grid vertexk, 2k is added to the number associated with this case. To deter-
mine to which refining grid points the fine rectangle should be connected we retain
the fine-level indices in addition to converting them to coarse level indices.

2 0

1

Fig. 9. If coarse-grid vertex0 is refined, when a fine-grid edge is connected to two coarse-grid
edges, see Fig. 7(iv), two pyramids are generated instead of two tetrahedra

When connecting a fine-grid edge to two perpendicular coarse-grid edges, eight
refinement configurations arise. If all coarse-grid vertices are unrefined, two tetra-
hedra are generated, as illustrated in Fig. 7(iv). If either coarse-grid vertex1 or 2
is refined, the fine-grid edge must be upgraded to a coarse-grid rectangle and the
corresponding tessellation function called with appropriate vertex ordering. (This
procedure ensures that adjacent fine grids produce the same stitch tessellation as
a continuous fine grid.) In the remaining case, when only coarse-grid vertex0 is
refined, two pyramids are generated instead of tetrahedra, see Fig. 9.

For connection types where a fine-grid quadrilateral, see Fig. 7(iii), edge, see
Fig. 7(v), or vertex, see Fig. 7(v), is connected to coarse-grid rectangles, eight points
are considered. These points form a deformed hexahedral cell. One must consider
16 possible refinement configurations when a fine-grid rectangle is connected, since
the four vertices belonging to the fine-grid rectangle are always refined, see Fig. 10.
More cases arise when a fine-grid edge or a vertex is connected to the coarse level.
It is important to devise an efficient scheme to determine the tessellation for a given
refinement configuration. Each cell face corresponds to a possible 2D refinement
configuration as shown in Fig. 6. It is important to note that the 2D refinement
configurations that produce subdivided quadrilaterals are the same configurations
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Fig. 10.Refinement configurations for connecting a fine-grid rectangle to a coarse-grid rect-
angle

that yield non-planar cell boundaries, i.e., boundaries that we must subdivide. The
subdivision information alone is sufficient to determine a tessellation for any given
refinement configuration. It is not necessary to consider the positions of the points.
Each cell face Fig. 10 and subsequent figures is subdivided using the canonical
tessellations depicted in Fig. 6, illustrated by the dotted lines in a figure illustrating
tessellations of a connection type, e.g., Fig. 10.

The subdivision of cell faces implies subdivisions of hexahedral cells into pyra-
mids, triangular prisms and tetrahedra. In certain cases, see, for example, Fig. 10(iv),
a cell type arises that does not correspond to the standard cells (hexahedra, pyra-
mids, triangle prisms and tetrahedra), and that cannot be subdivided further without
introducing additional vertices. Even though it is possible to generate a case table to
extend MC to this cell type, the asymmetric form of this cell makes this extension
difficult. Symmetry considerations that are used to reduce the number of cases that
need to be considered cannot be applied. Therefore, we handle cells of this type by
generating an additional vertex at the centroid of the cell. By connecting the centroid
to all cell vertices we obtain a tessellation consisting of pyramids and tetrahedra.

Edges are connected to the coarse grid by considering eight vertices forming
a deformed hexahedral cell. When an edge is connected, two of these eight points
belong to the edge. The other six vertices are coarse-grid vertices and can be ei-
ther refined or unrefined. Thus, it is necessary to consider64 possible refinement
configurations. It is necessary to consider all six coarse grid points at once, since
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Fig. 11.Possible refinement configurations and corresponding tessellations for triangle prism
cell

the boundary faces need not always be subdivided faces, as Fig. 7(v) implies. If,
for example, all coarse grid points are refined, a single, not-tessellated cell must be
produced. However, in certain refinement situations (Cases0–3, 5, 7, 10, 11, 15,
17, 19, 27, 34, 35, 39, 51), the two cell faces perpendicular to the fine-grid edge
segment must be divided as shown in Fig. 7(v). In these cases it is possible to con-
nect the fine-grid edge segment to the coarse grid by handling each of the triangle
prisms separately. Each triangle prism is tessellated according to the refinement con-
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figurations shown in Fig. 11. When connecting a fine-grid edge to two coarse-grid
rectangles, see Fig. 7(iii), it must be upgraded to to the rectangle case if either grid
points2 and3 or grid points4 and5 are refined. In these cases (Cases12–15, 28–31
and44–63) the refinement configurations for connecting a fine-grid rectangle are
used according to Fig. 10. The tessellations for the remaining cases are shown in
Fig. 12. In Fig. 12, we only considered symmetry with respect to a plane perpendic-
ular to the edge to reduce the number of cases. The cases in Figs. 12(ix) and 12(x)
differ only by rotation but yield the same tessellation. We note that only the partition
of the boundary faces matters in determining a valid tessellation. Even though the
refinement configurations shown Figs. 12(iv) and 12(vi) differ, they yield the same
partition of a cell’s boundary faces and thus the same tessellation.

Vertices can be upgraded to edges, or even quadrilaterals, when more than two
grids meet at a given location. The fine vertex shown in Fig. 7(vi) can be changed
to an edge, if any of the coarse grid points3, 5 or 6 is refined. In these cases,
the procedure used to connect an edge segment is called with appropriate vertex
ordering. As a result, the same tessellations are used as in the case of a continuing
edge. Furthermore, this procedure ensures that an additional upgrade to the rectangle
case is handled automatically when needed. In the remaining cases, each of the
pyramids of the unrefined case can be handled independently. If the base face of a
pyramid is not planer, it is subdivided using the corresponding configuration from
Fig. 6, and the pyramid is split into two tetrahedra.

6 Isosurface Extraction

Within individual grids, we apply a slightly modified MC approach for isosurface
extraction. Instead of considering all cells of a grid for isosurface generation, we
consider only those cells that are not refined by a finer grid. We do this by pre-
computing a map with refinement information for each grid. For each grid cell,
this map contains an index of a refining grid or an entry indicating that the cell
is unrefined. This enables us to quickly skip refined portions of the grid. For the
generation of an isosurface within stitch cells, the MC method must be extended
to handle the cell types generated during the stitching process. This extension is
achieved by generating case tables for each of the additional cell types. These new
case tables must be compatible with the one used in the standard MC approach, i.e.,
ambiguous cases, see Section 2 must be handled in exactly the same way as handled
for typical hexahedral cells.

7 Results

Fig. 13 shows isosurfaces extracted from an AMR data set. This data set is the
result from an astrophyiscal simulation of star clusters performed by Bryan [4].
The isosurface in Fig. 13(i) shows an isosurface extracted from two levels of the
hierarchy, and Fig. 13(ii) one extracted from three levels. To highlight the transitions
between levels, the parts of the isosurface extracted from different levels of the
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(i) Cases4, 8, 16 and32 (ii) Cases6 and9

(iii) Cases18 and33 (iv) Cases20 and40

(v) Cases21 and42 (vi) Cases22 and41

(vii) Cases23 and43 (viii) Cases24 and36

(ix) Cases25 and38 (x) Cases26 and37

Fig. 12. Remaining refinement configurations for connecting fine-grid edge to coarse-grid
rectangles
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hierarchy are colored differently. Isosurface parts extracted from the root, the first
and the second levels are colored red, orange and light blue, respectively. Portions
extracted from the stitch meshes between the root and the first level are colored in
green, and portions extracted from the stitch meshes between the first and second
levels are colored in yellow. The root level and the first level of the AMR hierarchy
each consist of one32 × 32 × 32 grid. The second level consists of12 grids of
resolutions6× 12× 6, 6× 4× 2, 8× 12× 10, 6× 4× 4, 14× 4× 10, 6× 6× 12,
12× 10× 12, 10× 4× 8, 6× 6× 2, 16× 26× 52, 14× 16× 12 and36× 52× 36.
All measurements were performed on a standard PC with a700MHz Pentium III
processor.

8 Conclusions and Future Work

We have presented a method for the extraction of crack-free isosurfaces from AMR
data. By using a dual-grid approach and filling gaps with stitch cells we avoid
re-sampling of data and dangling nodes. By extending the standard MC method
to the cell types resulting from grid stitching, we have developed an isosurfacing
scheme that produces consistent and seamless isosurfaces. Theoretically any con-
tinuous (scattered data) interpolation scheme could also lead to a crack free isosur-
face. However, the use of dual grids and stitch cells ensures that the resolution of
extracted isosurfaces automatically varies with the resolution of the data given in a
region.

Several extensions to our method are possible. The use of a generic triangulation
scheme would allow the use of our method for other, more general AMR data, where
grids might not necessarily be axis-aligned, e.g., data sets produced by the AMR
method of Berger and Oliger [3]. There are also possible improvements to our index-
based scheme. The original AMR scheme by Berger and Colella [2] requires a layer
of width of at least one grid cell between a refining grid and the boundary of a
refined level. Even though Bryan [4] eliminates this requirement, we still require it.
This is necessary, because this requirement ensures that only transitions between a
coarse level and the next finer level occur in an AMR hierarchy. Allowing transitions
between arbitrary levels would require us to consider too many cases during the
stitching process. (The number of cases would be limited only by the number of
levels in an AMR hierarchy, since within this hierarchy transitions between arbitrary
levels are possible.) These requirements are equivalent to the requirements described
by Gross et al.[7], where transitions between arbitrary levels are also prevented.
Unfortunately, this requirement does not allow us to handle the full range of AMR
data sets in use today, e.g., those produced by the methods of Bryan [4].

To handle the full range of AMR grid structures, our grid-stitching approach
must be extended. Any LUT-based approach has inherent problems, since the num-
ber of possible level transitions is bounded only by the number of levels in a hier-
archy. For the transformation of level coordinates to grid coordinates, we currently
examine each grid in a level whether it contains a given grid point. This is efficient
enough for moderately sized data sets; but for larger data sets, a space subdivision-



18 Gunther H. Weber et al.

(i) Isosurface obtained when using two of seven levels of
AMR hierarchy. Stitch cell generation required approxi-
mately55ms, and isosurface generation required approx-
imately250ms

(ii) Isosurface obtained when using three of seven levels of
AMR hierarchy. Stitch cell generation required approxi-
mately340ms, and isosurface generation required approx-
imately600ms

Fig. 13. Isosurface extracted from AMR hierarchy simulating star clusters (data set courtesy
of Greg Bryan, Massachusetts Institute of Technology, Theoretical Cosmology Group, Cam-
bridge, Massachusetts)
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based search scheme should be used. It should be possible to use a modification of
the generalizedk–D trees from Weber et al. [17] for this purpose.
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