
High-quality Volume Rendering of Adaptive Mesh Refinement Data

Gunther H. Weber1,2,3, Oliver Kreylos1,3, Terry J. Ligocki3, John M. Shalf3,4

Hans Hagen2, Bernd Hamann1,3, Kenneth I. Joy1 and Kwan-Liu Ma1

1 CIPIC, Department of Computer Science, University of California, Davis, USA
2 AG Computergraphik, Department of Computer Science, University of Kaiserslautern, Germany

3 NERSC, Lawrence Berkeley National Laboratory, Berkeley, USA
4 NCSA, University of Illinois, Urbana-Champaign, USA

Abstract

Adaptive mesh refinement (AMR) is a numerical
simulation technique used in computational fluid
dynamics (CFD). By using a set of nested grids of
different resolutions, AMR combines the simplic-
ity of structured rectilinear grids with the ability
to adapt to local changes in complexity in the do-
main. Without proper interpolation on the bound-
aries of grids of different levels of a hierarchy, dis-
continuities can arise. Treating locations of data
values given at cell centers of AMR grids as ver-
tices of a dual grid creates gaps between hierarchy
levels. Using an index-based tessellation approach
that fills these gaps with “stitch cells” we define an
interpolation scheme that avoids discontinuities at
level boundaries. We use the resulting interpolation
scheme to generate volume-rendered images. Mod-
ifying transfer functions on a per-level basis allows
us to emphasize (or de-emphasize) a specific level
and gain a better understanding of the underlying
hierarchical structure.

1 Introduction

AMR was introduced to computational physics by
Berger and Oliger [2] in 1984. A modified version
of their algorithm was later published by Berger and
Colella [1]. AMR has become increasingly popular
especially in the computational physics community.
Today, it is used in a variety of applications. For ex-
ample, Bryan [3] has used the technique to simulate
astrophysical phenomena using a hybrid approach
of AMR and particle simulations.

Figure 1 shows a simple two-dimensional (2D)
AMR hierarchy produced by the Berger–Colella
method. The basic building block of ad–

Figure 1: AMR hierarchy consisting of four grids
in three levels. Grid boundaries are drawn as bold
lines. Locations at which dependent variables are
given are indicated by solid discs.

dimensional Berger-Colella AMR hierarchy is an
axis-aligned, structured rectilinear grid. Each grid
g consists of hexahedral cells and is positioned by
specifying its local originog. AMR typically uses
acell-centered data format,i.e., dependent function
values are associated with cell centers. Since loca-
tion and connectivity can be inferred from the regu-
lar grid structure, it suffices to store dependent data
values in arrays.

An AMR hierarchy consists of several levelsΛl
comprising one or multiple grids. All grids in the
same level have the same cell size. A hierarchy’s
root level Λ0 is the coarsest level. Each levelΛl
may be refined by a finer levelΛl+1. A grid of a
refined level is referred to as acoarse grid and a
grid of a refining level as afine grid. A refinement
ratio r specifies how many fine grid cells fit into
a coarse grid cell, considering all axial directions.

VMV 2001 Stuttgart, Germany, November 21–23, 2001



This value is always a positive integer. A refining
grid refines an entire levelΛl, i.e., it is completely
contained in the region covered by that level but not
necessarily in the region covered by a single grid of
that level. Each refining grid can only refine com-
plete grid cells of the parent level,i.e., it must start
and end at the boundaries of grid cells of the par-
ent level. The Berger-Colella scheme [1] requires a
layer with a width of at least one grid cell between
a refining grid and the boundary of the refined level.

We generate volume-rendered images from AMR
data using a cell-projection approach. For interpo-
lation purposes, dependent data values should be as-
sociated with a cell’s vertices rather than its center.
To avoid a re-sampling step, we interpret the loca-
tions of the samples as vertices of a new grid and
use this dual grid for interpolation. The use of dual
grids creates gaps between grids of different hier-
archy level. We fill those gaps in an index-based
stitching step. The resulting stitch mesh can be used
to define an interpolation scheme for the whole do-
main of a data set. We use this interpolation scheme
for progressive volume rendering of AMR hierar-
chies,i.e., we start with an image obtained by ren-
dering a coarse level and refine this image by incor-
porating the results produced by rendering finer lev-
els. In addition, we introduce a method that allows
a user to emphasize or de-emphasize certain levels
by modifying the transfer functions used for vol-
ume rendering on a per-level basis. For each level,
an opacity weight and a saturation weight are spec-
ified. A base transfer function is multiplied with
these weights to obtain a level transfer function.

2 Related Work

Little research has been done to date regarding the
visualization of AMR data. Published work has
mainly focused on converting AMR data into suit-
able conventional representations and visualizing
these, see Normanet al. [10], while preserving the
original hierarchical structure as much as possible.
Ma [6] describes a parallel rendering approach for
AMR data. Even though he re-samples the data to
vertex-centered data, he still uses the hierarchy and
contrasts this approach to re-sampling the data to
the finest available resolution. Max [8] describes a
sorting scheme for cells for volume rendering and
uses AMR data as one application of his method.
Weber et al. [13] extract isosurfaces from AMR

data sets. To avoid discontinuities and re-sampling
problems they introduce an approach based on dual
grids: By interpreting the locations of cell-centered
data values as vertices of a new dual grid they avoid
the need for re-sampling. The use of a dual grids
produces gaps between hierarchy levels. Using a
scheme related to that used by Grosset al. [5],
Weber et al. fill these gaps via a generic stitch-
ing scheme using deformed hexahedra, triangular
prisms, pyramids and tetrahedra.

Direct volume rendering is, besides the extrac-
tion of isosurfaces and slice-based methods, the
most common visualization method for scalar vol-
ume data. Using so-calledtransfer functions, scalar
values are “mapped” to illumination and color prop-
erties. Regions in the volume are associated with
color/illumination properties that a transfer function
assigns to scalar values. Direct volume rendering
methods can be differentiated by their underlying il-
lumination models (i.e., by the “optical properties”
of transfer functions) and whether they operate in
image space or object space. Image-space-based
algorithms,e.g., ray casting [11], operate on pixels
in screen space as “computational units,”i.e., they
perform computations on a per-pixel basis. Object-
space-based methods, like cell-projection [7], oper-
ate on cells as computational units,i.e., they per-
form computations on a per-cell basis. Max [9] sur-
veys various optical models used for volume ren-
dering.

Weber et al. [12] present two volume render-
ing schemes for AMR data. One scheme is a
hardware-accelerated renderer for previewing, the
other scheme is based on cell projection and allows
the progressive rendering of AMR hierarchies. It is
possible to render an AMR hierarchy starting with
a coarse representation and refining it by subse-
quently integrating the results from rendering finer
grids.

3 Dual Grids and Grid Stitching

Most interpolation techniques expect dependent
data values to be located at a cell’s vertices, while
grids in an AMR hierarchy typically use a cell-
centered format. By using thedual grid, i.e., the
grid defined by the locations of the function values
at the cell centers, it is possible to avoid a resam-
pling step and use the original data values for inter-
polation purposes.

666



Figure 2: Dual grids of the three AMR grids com-
prising the first two hierarchy levels shown in Fig-
ure 1. The original AMR grids are drawn in dashed
lines and the dual grids in solid lines.

Figure 2 shows the dual grids for the first two
levels of the AMR hierarchy shown in Figure 1. We
note that the dual grids have “shrunk” by one cell
in each axial direction when compared to the origi-
nal grid. The result is a gap between the coarse grid
and the embedded fine grids. In order to interpolate
values in these gaps, we use a tessellation scheme
that “stitches” grids of two different hierarchy lev-
els. The resultingstitch mesh is constrained by the
boundaries of the coarse and the fine grids and can
be used to merge levels seamlessly. This stitch mesh
must not subdivide any boundary elements of the
existing grids, only existing faces, edges and ver-
tices can be used and may not be subdivided.

In Weberet al. [13], an index-based scheme is
used to generate stitch cells. Boundary faces, edges
and vertices of a fine grid must be connected to a
coarse level. In the simple case of a single fine
grid that is embedded in a coarse grid, the rectan-
gles comprising a fine-grid boundary face must be
connected to a coarse-grid vertex, edge or rectangle.
The cell types resulting from these connections are
pyramids, deformed triangle prisms and deformed
hexahedral cells. A fine-grid edge must either be
connected to two perpendicular edges (resulting in
two tetrahedral cells) or two quadrilaterals (result-
ing in two deformed triangular prism cells) of the
coarse grid. Each fine-grid vertex is connected to
three quadrilaterals of the coarse grid via pyramid
cells.

When a coarse grid is refined by more than one
fine grid, each coarse-grid point must be checked

v6v7

1v’ (z)

3v’ (z)

v3

v2v1

v5v4

v00v’ (z)

2v’ (z)

1

x

y

z

p

(i) Unit cube

v2

v3

v4 v5

1v’ (x)

3v’ (x)

pv0

v1

x

y

z

0v’ (x)

1

(ii) Standard triangular
prism

v0

v1 v2

v3

v4

x

y

z

p
3v’ (y)

1v’ (y)

0v’ (y)

2v’ (y)1

(iii) Standard pyramid

v0

v1

v3

v2
x

y

z

p

1

(iv) Standard tetrahedron

Figure 3: Base elements for interpolation.

for refinement. If a fine-grid boundary edge is ad-
jacent to a boundary edge of another fine grid, this
edge must be “upgraded” to the quadrilateral case
by connecting it to the adjacent edge. Vertices can
be upgraded to edges, or even quadrilaterals when
several grids meet at a given location. All possible
refinement configurations of coarse-grid points re-
sult in a large number of possible cases that needs
to be considered when a fine grid is connected to
a coarse level. Weberet al. [13] describe in detail
how to deal with these cases.

4 Interpolation

We use the standard elements shown in Figure 3
for interpolation by mapping all cells generated in
the stitching process to the appropriate standard el-
ement. All cells generated in our stitching approach
have either triangular or quadrilateral faces. On
boundary faces we have to ensure that interpolation
yields consistent results, regardless of element type.
We use bilinear interpolation for quadrilateral faces
and linear interpolation (based on the barycentric
coordinates of the interpolated point) for triangular
boundary faces.

666



Single grid cell

Scan

tin
conversion

Back−facing part

Front−facing part

Screen

Ray−segment queues

outt

Figure 4: Cell projection.

Values in the unit cube 3(i) are interpolated us-
ing standard trilinear interpolation which corre-
sponds to bilinear interpolation when restricted to
the boundary faces.

In the case of a triangular prism cell, see Fig-
ure 3(ii), we first compute the values at the ver-
tices of the triangle containing the pointp (i.e., the
triangle that is obtained by intersecting the prism
with a plane being parallel to its two triangular end
faces and containingp) by linear interpolation in
x–direction. The value atp is obtained by linear
interpolation within this triangle.

Interpolation in pyramid cells, see Figure 3(iii),
is done by a combination of bilinear and linear in-
terpolation. To obtain a function value for a point
p, we first interpolate linearly along the four side
edges emanating from the point(0, 1, 0): This step
interpolates the values at the vertices of a square in
they = constant plane containingp. Subsequently
we interpolate bilinearly in they = constant plane.

Linear interpolation is used for tetrahedral cells.
p is expressed in term of its barycentric coordinates
and these are used as interpolation weights.

5 Cell Projection

Cell projection [7] is an object-space-based method
for volume rendering. It is similar to ray casting, a
widely used image-space approach. Both methods
trace rays through the volume, accumulating light
along each ray. Ray casting does this on a per-
pixel basis. Cell projection methods construct ray
segments passing through the individual cells and
merge them.

We maintain a priority queue for each pixel that
collects all ray segments contributing to that pixel.
Figure 4 shows the fundamental idea of our im-
plementation of cell projection. Boundary faces
of cells are divided into two parts, afront-facing
part (faces with normals directed toward the viewer)

t in

outs

ins

s

s

t

x

y

t out

t

p

Screen 1

1
out

in

Figure 5: The transformation between a stitch cell
and its standard element is linear. Line ray segments
in the stitch cell are mapped to line segments in the
standard element.

and aback-facing part (faces with normals directed
away from the viewer). First, the front-facing part
is scan-converted into a buffer. For each pixel in-
fluenced by a cell, this buffer holds a depth corre-
sponding to an entry parameter, calledtin, along
the ray and an interpolated scalar value at that po-
sition. Subsequently, the back-facing part is scan-
converted. For each generated pixel, the depth cor-
responding to the exit parameter, calledtout, along
the ray and an interpolated scalar value are com-
puted. The entry parameter valuetin and the cor-
responding scalar value are read from the buffer,
and the ray segment fromtin to tout is constructed.
This ray segment is inserted into the ray-segment
queue of the corresponding pixel. If the ray seg-
ment is adjacent to existing ray segments in the
ray-segment queue, it is merged with them. Two
ray segments are adjacent when the union of their
parameter intervals along the ray, given by the in-
tervals ([t0,in, t0,out] and [t1,in, t1,out]) is “contin-
uous,” i.e., when eithert0,in = t1,out or t0,out =
t1,in holds. When all cells are processed, each ray
segment buffer contains only one ray segment cor-
responding to the complete ray originating from the
pixel.

To create ray segments, interpolated values must
be computed along these segments. As mentioned
in Section 4, this is done by mapping each cell to
its corresponding standard/unit element and using
the interpolation function for that element. Map-
ping a cell to its associated standard element can be
integrated into cell projection. For each vertex, we
store its physical coordinates and corresponding co-
ordinates in its standard element. When cell faces
are scan-converted using physical coordinates, the
standard-element coordinates are linearly interpo-
lated on the face and stored along with depth val-

666



ues. Thus, pointssin andsout are known for a ray
segment in standard-element space along with its
entry and exit parameter valuestin and tout. All
cells generated by our stitching approach, and the
specific AMR meshes that we are dealing with, can
be mapped to standard elements by a linear map-
ping: Line segments within a cell are mapped to
line segments within a standard element. Thus, it
is possible to obtain values along a ray segment by
linearly interpolating the position in the standard el-
ement betweensin andsout and using the standard-
element interpolation function for this position, see
Figure 5.

We use the absorption and emission light model
described by Max [9]. We specify emission by three
components (red, green and blue) and absorption by
one achromatic component, which implies that this
component has the same effect on all color compo-
nents. During cell projection, we compute trans-
parency and emission for parts of ray segments that
intersect a cell. The transparency function for a cell
is given by

TC(s) = exp

− s∫
tin

τ(x)dx

 , (1)

whereτ(x) denotes the extinction coefficient. The
transparency of a cell is computed asTC =
TC(tmax), and its emission contribution as

EC =

tout∫
tin

C(s)τ(s)TC(s)ds. (2)

The two valuesTC andEC are stored for each ray
segment. Two adjacent ray segmentsS1 and S2

with transparenciesTS1 andTS2 and emission con-
tributionsES1 andES2 , respectively, are merged
into a larger segment with combined transparency

Tcombined = TS1TS2 (3)

and combined emission

Ecombined = ES1 + TS1ES2 , (4)

where we assume thatS1 is the ray segment closer
to the screen.

Instead of specifying the extinction coefficientτ
in the transfer function, we specify and use an opac-
ity valueα(s). (Opacity specifies the percentage of
light that remains after a ray has passed through a

layer of material of unit thickness having an extinc-
tion coefficientτ(s).) We define this opacity value
α(s) as

α(s) = 1− exp
(
−τ(s)

)
, (5)

If we approximate the integrals in Equations
1 and 2 numerically by the Riemann sum using
equidistant samplessi with a constant spacing∆x
between consecutive samples we obtain approxima-
tions for a cell’s transparency

TC,approx(s) =

n∏
i=0

(
1− α(si)

)∆x

(6)

and emission contribution

EC,approx(s) =

n∑
i=0

C(si)o(si)

i−1∏
j=0

(
1− α(si)

)∆x

, (7)

with
o(si) = 1−

(
1− α(si)

)∆x
(8)

This is equivalent to compositing the samples, see
[14]. To approximate ray segments within a cell,
we use Equations 6 and 7 with a fixed number of
samples (usually two samples per cell).

6 Progressive Cell Projection of AMR
Data

We render an AMR hierarchy by subsequently cell-
projecting its constituent levels. Two schemes are
possible: Bottom-up rendering which first renders
the finer levels and proceeds with filling gaps by
rendering the corresponding portions of the coarser
levels. In a top-down approach, a coarse level is
rendered first. The result can be displayed and used
as an intermediate visualization. An image is re-
fined by proceeding to the finer levels and replacing
portions of an already rendered image with versions
at higher resolution.

A bottom-up rendering scheme starts with cell-
projecting the grids of the finest level. Grids of
the coarser levels are cell-projected subsequently.
While rendering coarser grids, cells overlapped by
a finer grid must be skipped. Ray segments for the
regions covered by these cells are already computed
using a representation at a higher resolution. This is

666



p3

p2

p1

p0

0L

1L

L2

v

Figure 6: Progressive rendering of AMR hierarchy.

done by using anintersection map. The intersec-
tion map contains an entry for each cell of the orig-
inal AMR grid that specifies the index of the grid
that overlaps it, should such a grid exist. In Weber
et al. [12], the original grid is used to calculate in-
terpolated values. Thus, for each cell, there exits
a unique finer grid that refines it. Each cell of the
dual grid used in our current approach is defined by
eight vertices. Each of these vertices corresponds to
a cell of the original AMR grid and can be refined
by a different grid. It is no longer possible to spec-
ify a single grid that refines a given cell. However,
it is still possible to specify, for each cell, whether it
is refined by finer levels. If at least one of the origi-
nal AMR cells corresponding to one of the vertices
of a cell is refined, then that cell must be skipped.
Unfortunately, this prevents us from performing re-
finement on the basis of single AMR grids. In our
new approach, we must use complete levels when
generating a refined image.

The top-down approach is modified in a similar
way. The supplemental information added to each
ray segment specifies the level in which a segment
was created and the level that affects it (either the
next finer level or no level) rather than specifying
grid indices. Ray segments are merged only when
they are adjacent, were created in the same level and
are affected by the same level. Figure 6 shows a
ray traced from a specific viewpoint. After render-
ing the root levelL0, the ray-segment queue cor-
responding to this ray contains three ray segments:
one spanning from the entry point inp0 to the be-

ginning of the first level (p1), one that is contained
within the first level (fromp1 to p2) and one after
the exit point from the first level (fromp2 to p3).
The region fromv to p0 is “empty” and contains no
cells. No ray segments are created for this region.

Using an approach of partitioning rays into seg-
ments that are affected by finer grids and those that
are not, it is straightforward to refine an already
rendered image by rendering a finer level. Before
a finer level is rendered, all ray segments affected
by the finer level are erased from the ray-segment
queues. When the level grid is rendered, the gaps in
the ray segments resulting from this step are filled
with more accurate ray segments, resulting in an
overall improved image.

7 Level-dependent Transfer Func-
tions

When rendering a hierarchical data set it is often
desirable to emphasize or de-emphasize certain lev-
els. For example, it is possible that a coarser level
is used to specify only the “context” within which
a finer level resides, but otherwise this coarser level
might be of little interest. In this case, the coarse
level should not hide relevant information present
in the finer level. One way to achieve this is to de-
emphasize the coarse level and render it with lower
opacity,i.e., to scale the opacity portion of the trans-
fer function by a level-specific constant. By spec-
ifying a constant for each level, and modifying the
transfer function for that level accordingly, it is pos-
sible to specify how much a level influences the fi-
nal image.

Another possibility to de-emphasize a level is to
scale its color saturation. This can be done by con-
verting RGB color values from the transfer function
into HLS or HSV color space and scale the satura-
tion by a second, level-dependent color map. De-
creasing the saturation of a level does not prevent it
from hiding details of a finer level, but this method
adds the possibility to distinguish levels and illus-
trate their presence in a final image.

8 Results

Figures 7 and 8 show results from rendering the
“bubble” data set. This data set is the result from
a simulation of a shock wave passing through an

666



Argon–bubble surrounded by another gas. The vi-
sualized scalar field is gas density. The simulation
result is stored in AMR format with a80× 32× 32
root-grid resolution. In the initial time step, this grid
is refined by204 grids in a three-level hierarchy.
Rendering all levels of the initial time step takes
about two minutes and23 seconds. Figures 7(ii),
7(iii) and 7(iv) show the results from rendering one
time step near the end of the simulation. This time
step consists of three hierarchy levels containing
682 grids in total. Rendering the root level required
approximately57 seconds, rendering the first level
one minute and42 seconds and rendering the sec-
ond level three minutes and41 seconds. The im-
provement in image quality by using the finer levels
is clearly visible.

Figure 8 shows another time step form the same
data set. Rendering time was40 seconds for the
root level, one minute and32 seconds for the first
level and two minutes and48 seconds for the second
level. This time step consisted of525 grids in total.
Rendering times were one minute and23 seconds
for the root level, one minute and55 seconds for
the first level and four minutes for the second level.
The quality improvement from using finer represen-
tations is clearly visible. (All time measurements
were done on a700 MHz Pentium III processor and
using a Linux system.)

Figure 9 show images generated from an astro-
physical simulation of a star cluster. Figures 9(i),
9(ii) and 9(iii) show images resulting from render-
ing one, two and three levels. Here, the quality im-
provement is not so obvious, because features of the
coarse root level hide details from the finer levels.
In Figure 9(iii), the opacity of the root level is scaled
by a factor of0.6 and the opacity of the first level by
a factor of0.8. Details of the finer level are clearly
visible while retaining features from the coarse lev-
els as orientation aid. In Figure 9(iv), the satura-
tions of root and first level are scaled by a factor of
0.2 in addition to the opacity weights. This further
de-emphasizes these levels and allows us to clearly
distinguish between the details in the third level and
the “context” provided by the first two levels.

9 Future Work

Several extensions to our approach are possible.
The original AMR scheme by Berger and Colella
[1] requires a layer with a width of at least one grid

cell between a refining grid and the boundary of
a refined level. Even though Bryan [3] abandons
this requirement, we still require it to be satisfied.
This is necessary, because this requirement ensures
that only transitions between a coarse level and the
next finer level occur in an AMR hierarchy. Allow-
ing transitions between arbitrary levels would result
in the need to consider too many cases during the
stitching process. (The number of cases would be
limited only by the number of levels in an AMR hi-
erarchy, since within this hierarchy transitions be-
tween arbitrary levels are possible.) These require-
ments are equivalent to the requirements described
in [5] that also prevent transitions between arbi-
trary levels. Unfortunately, this requirement pre-
vents us from handling the full range of AMR data
sets generated,e.g., those produced by the methods
of Bryan [3]. To handle the full range of AMR grid
structures, our whole grid-stitching approach must
be extended. Any lookup-table approach has in-
herent problems since the number of possible level
transitions is bounded only by the number of levels
in the hierarchy.

The generation of ray segments during cell pro-
jection can be improved as well. More advanced
lighting models and numerical integration schemes
can be used. Furthermore, alternative interpolation
functions for pyramid cells could be explored. We
also plan to support refinement on a per-grid ba-
sis instead of a per-level basis. Our cell projection
scheme is completely implemented in software and
does not utilize special purpose graphics hardware.
Even though this results in longer computation time
this fact will allow us to parallelize our approach.

10 Acknowledgments

This work was supported by the Directory, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098; the Lawrence Berkeley National Laboratory;
the National Science Foundation under contracts ACI 9624034 and ACI
9983641 (CAREER Awards), through the Large Scientific and Software
Data Set Visualization (LSSDSV) program under contract ACI 9982251, and
through the National Partnership for Advanced Computational Infrastructure
(NPACI); the Office of Naval Research under contract N00014-97-1-0222;
the Army Research Office under contract ARO 36598-MA-RIP; the NASA
Ames Research Center through an NRA award under contract NAG2-1216;
the Lawrence Livermore National Laboratory under ASCI ASAP Level-
2 Memorandum Agreement B347878 and under Memorandum Agreement
B503159; and the North Atlantic Treaty Organization (NATO) under contract
CRG.971628 awarded to the University of California, Davis.

We also acknowledge the support of ALSTOM Schilling Robotics and
SGI. We thank the members of the NERSC/LBNL Visualization Group; the
LBNL Applied Numerical Algorithms Group; the Visualization and Graph-
ics Research Group at the Center for Image Processing and Integrated Com-
puting (CIPIC) at the University of California, Davis, and the AG Graphis-
che Datenverarbeitung und Computergeometrie at the University of Kaiser-
slautern, Germany.

666



(i) (ii) (iii) (iv)

Figure 7: Images generated from “Bubble” data set (data set courtesy of Center for Computational Sciences
and Engineering (CCSE) [4], Ernest Orlando Lawrence Berkeley National Lab, Berkeley, California). (i)
Initial time step at full resolution. (ii) Time step near end of simulation using only coarsest level of hierarchy.
(iii) Time step near end of simulation using two levels of hierarchy. (iv) Time step near end of simulation
using all levels of hierarchy.

(i) (ii) (iii)

Figure 8: Different view of the “bubble” data set (data set courtesy of Center for Computational Sciences
and Engineering (CCSE) [4], Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, Califor-
nia). (i) Coarsest level only (ii) Two levels (iii) Entire AMR hierarchy

(i) (ii) (iii) (iv)

Figure 9: Images generated from cosmology simulation (data set courtesy of Greg Bryan, Massachusetts
Institute of Technology, Theoretical Cosmology Group, Cambridge, Massachusetts). (i) Coarsest level only.
(ii) Three levels. (iii) Three levels using opacity weights0.6, 0.8 and1 for levels0, 1 and2, respectively.
(iv) Three levels using same opacity weights as in Figure 9(iii) and a saturation weight of value0.2 for
levels0 and1.

666



References

[1] Marsha Berger and Phillip Colella. Local
adaptive mesh refinement for shock hydrody-
namics. Journal of Computational Physics,
82:64–84, May 1989. Lawrence Livermore
National Laboratory, Technical Report No.
UCRL-97196.

[2] Marsha Berger and Joseph Oliger. Adaptive
mesh refinement for hyperbolic partial differ-
ential equations. Journal of Computational
Physics, 53:484–512, March 1984.

[3] Greg L. Bryan. Fluids in the universe: Adap-
tive mesh refinement in cosmology.Comput-
ing in Science and Engineering, 1(2):46–53,
March/April 1999.

[4] Center for Computational Sciences and En-
gineering (CCSE). WWW site:http://
seesar.lbl.gov/ccse/ .

[5] Markus H. Gross, Oliver G. Staadt, and Roger
Gatti. Efficient triangular surface approxima-
tions using wavelets and quadtree data struc-
tures. IEEE Transactions on Visualization
and Computer Graphics, 2(2):130–143, June
1996.

[6] Kwan-Liu Ma. Parallel rendering of 3D AMR
data on the SGI/Cray T3E. In:Proceedings
of Frontiers ’99 the Seventh Symposium on
the Frontiers of Massively Parallel Computa-
tion, pages 138–145, IEEE Computer Soci-
ety Press, Los Alamitos, California, February
1999.

[7] Kwan-Liu Ma and Thomas W. Crockett. A
scalable parallel cell-projection volume ren-
dering algorithm for three-dimensional un-
structured data. In: James Painter, Gordon
Stoll, and Kwan-Liu Ma, editors,IEEE Par-
allel Rendering Symposium, pages 95–104,
IEEE Computer Society Press, Los Alamitos,
California, November 1997.

[8] Nelson L. Max. Sorting for polyhedron
compositing. In: Hans Hagen, Heinrich
Müller, and Gregory M. Nielson, editors,Fo-
cus on Scientific Visualization, pages 259–
268. Springer-Verlag, New York, New York,
1993.

[9] Nelson L. Max. Optical models for volume
rendering. IEEE Transactions on Computer
Graphics, 1(2):99–108, 1995.

[10] Michael L. Norman, John M. Shalf, Stuart

Levy, and Greg Daues. Diving deep: Data
management and visualization strategies for
adaptive mesh refinement simulations.Com-
puting in Science and Engineering, 1(4):36–
47, July/August 1999.

[11] Paolo Sabella. A rendering algorithm for vi-
sualizing3D scalar fields. In: John Dill, edi-
tor,Computer Graphics (SIGGRAPH ’88 Pro-
ceedings), volume 22(4), pages 51–58, 1988.

[12] Gunther H. Weber, Hans Hagen, Bernd
Hamann, Kenneth I. Joy, Terry J. Ligocki,
Kwan-Liu Ma, and John M. Shalf. Visu-
alization of adaptive mesh refinement data.
In: Robert F. Erbacher, Philip C. Chen,
Jonathan C. Roberts, Craig M. Wittenbrink,
and Matti Groehn, editors,Proceedings of the
SPIE (Visual Data Exploration and Analysis
VIII, San Jose, CA, USA, Jan 22–23), volume
4302, SPIE – The International Society for
Optical Engineering, Bellingham, WA, Jan-
uary 2001.

[13] Gunther H. Weber, Oliver Kreylos, Terry J.
Ligocki, John M. Shalf, Hans Hagen, Bernd
Hamann, and Kenneth I. Joy. Extraction of
crack-free isosurfaces from adaptive mesh re-
finement data. In: David Ebert, Jean M.
Favre, and Ronny Peikert, editors,Proceed-
ings of the Joint EUROGRAPHICS and IEEE
TCVG Symposium on Visualization, Ascona,
Switzerland, May 28–31, 2001, Springer Ver-
lag, Wien, Austria, May 2001.

[14] Craig M. Wittenbrink, Thomas Malzbender,
and Michael E. Goss. Opacity-weighted
color interpolation for volume sampling. In:
William Lorensen and Roni Yagel, editors,
Proceedings of the 1998 Symposium on Vol-
ume Visualization (VOLVIS-98), pages 135–
142, 177, ACM Press, New York, New York,
October 19–20 1998.

666


