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Abstract: We present a distributed architecture for accelerated pre-processing of remote

sensing data for immediate terrain visualization. Interactive 3D visualization approaches

for large terrain datasets employ level of detail techniques that require a multi-resolution

data representation. The high computational cost of constructing these representations is

often not viewed as a major drawback, as it is considered an off-line pre-processing step.

This prevents the application of existing methods in the case of changing data, which is

becoming increasingly important for a multitude of applications where datasets are being

generated, transmitted and must be visualized immediately, such as in disaster management.

Our system uses graphics processing units (GPUs) to accelerate the process of generating

a multi-resolution representation, achieving sufficient performance to enable on-line visu-

alization on a front-end workstation communicating with a back-end cluster of machines

equipped with GPUs. As a reference data structure, we use a quad tree decomposition

of the so-called HEALPix sphere parameterization, which is well-suited for spherical ter-

rain rendering. Our system correctly handles overlapping and unregistered mixed-resolution

datasets. We demonstrate the efficacy of our approach by applying it to the surface of Mars

using both the NASA Mars Orbiter Laser Altimeter and the ESA Mars Express High Reso-

lution Stereo Camera datasets.
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1 Introduction

Interactive three-dimensional terrain visualization has become accessible to a wide audience

due to the development of advanced rendering algorithms which can guarantee interactivity

at very high resolutions. With the emergence of inexpensive remote sensing platforms such

as quadcopters, future challenges will include the integration and visualization of changing

data collected from multiple sources such as situation information necessary for disaster

management or public security.

Rendering algorithms typically require data to be represented using specific multi-resolution



data structures, which encode elevation models and imagery redundantly at multiple differ-

ent resolution levels. The rendering algorithm typically selects a suitable level at runtime

as a function of screen resolution and current view perspective. Due to the static nature of

most terrain datasets, the computational effort for pre-processing remote sensing data into

this format is usually not considered critical.

Our contributions are a GPU algorithm to accelerate the conversion of raster maps into

a multi-resolution data structure as well as a distributed, online pre-processing framework

which uses this algorithm to enable rapid visualization of raster maps within a 3D terrain vi-

sualization system. Composition of multiple, potentially overlapping mixed-resolution raster

maps is performed on the fly. A quad tree hierarchy on top of the HEALPix [GHB+05] sphere

tessellation was used as reference data structure. The benefit of this approach is a significant

reduction in turn-around time required to visualize remote sensing data stored in standard

raster formats.

For evaluation, we used both Mars Orbiter Laser Altimeter (MOLA)[SZF+01] and High

Resolution Stereo Camera (HRSC)[GSP+10] datasets. The MOLA mission has provided a

global Digital Elevation Model (DEM) of Mars with a resolution of 460m per pixel for a

dataset size of 2.0 GiB. The HRSC datasets, which cover about 33% of the surface, include

a high-resolution DEM at an average resolution of 90m per pixel (23.2 GiB) consisting of

1161 individual raster files.

Both datasets were merged into a single database using HRSC data wherever available

and MOLA data to fill the gaps. This database was computed on-the-fly and visualized

within an interactive spherical terrain rendering system.

2 Related work

Interactive terrain rendering is a well-established area of research. Terrain visualization sys-

tems are usually coupled to specific data structures. As computing paradigms shifted over

the decades, algorithms have adapted to exploit the characteristics of the hardware of the

day. Early approaches such as ROAM [DWS+97], introduced by Duchaineau et al., perform

triangle-level adaptation of the rendered geometry on the CPU to minimize geometric com-

plexity before rasterization. These strategies have become prohibitely expensive on modern

hardware which provides very high rasterization bandwidth using GPUs but suffers from

relatively slow CPU performance and bus bandwidths.

Due to these developments, more recent solutions try to optimize batching of the ge-

ometry by treating blocks of geometry as opaque entities which are rasterized as a whole.

Levenburg’s CABTT algorithm [Lev02] extended classical triangle bin-tree algorithms by

processing batches of geometry bounded by a triangular patch instead of individual trian-

gles. These patches are uploaded to GPU memory and re-used for multiple frames to reduce

CPU workload and bus traffic.

The P-BDAM algorithm [CGG+03] of Cignoni et al. uses a similar type of batching but

uses adaptive triangulations within each patch, which are precomputed off-line. Spherical



rendering is realized by using curved patches. Distributed pre-processing is enabled by

subdividing the surface of the sphere into block that can be processed independently.

The Geometry Clipmaps [LH04] scheme by Losasso and Hoppe uses a set of nested

regular grids which decrease in resolution with increasing distance from the viewer. Temporal

coherence in viewer movement is exploited by introducing a toroidal indexing schemes which

allows to minimize the per-frame cost of updates on the GPU as new data is being loaded.

The data structure being used to represent terrain is a pre-filtered mipmap pyramid on a

regular grid.

Planetary-Scale Terrain Composition [KLJ+09] by Kooima et al. is an unconventional

approach for real-time composition of unregistered raster maps which defers traditional re-

sampling to the rendering phase. A mipmap representation of the data being loaded is

required, however. During rendering, sphere geometry is generated on the fly using iterative

subdivision of a base isocahedron. The maximum depth of this subdivision is determined by

a LOD heuristic, depending on viewer position. Finally, vertices are displaced along their

normals according to height values stored in the input datasets, which are uploaded to the

GPU as textures.

Vertices of the triangle mesh being subdivided contain spherical coordinates as well as

normals. Depending on whether an intersecting data set uses spherical or polar projection,

either spherical coordinates or normals are used as texture coordinates to sample a mipmap

representation of the original raster image. Mesh vertices must be displaced and colored

accordingly. This texture look-up is efficient, as texture coordinates have already been com-

puted at that point. The computation of texture coordinates, however, is computationally

expensive. Due to numerical instability, the spherical coordinates can not be computed in a

closed form but have to be maintained as the subdivision progresses. To generate spherical

coordinates for newly interpolated vertices, the haversine geodesic midpoint method is used.

This method is computationally expensive, especially considering that it has to be evaluated

once for every vertex in every frame.

Our system is similar in that we re-sample any given data onto a singularity-free grid. In-

stead of using an implicit subdivision scheme, we apply the HEALPix [GHB+05] parametriza-

tion. HEALPix has an explicit projection formula which is computationally cheap to evaluate

and maps between parameter space and spherical coordinates. This allows for independent

evaluation of grid vertex positions at any refinement level, enabling highly parallel GPU

based resampling. In our online prepprocessing approach, this resampling is only performed

once as tiles are being generated. These tiles are then cached by the front-end visualization

system.

In the Crusta [BCK+11] terrain rendering system, a rhombic triacontahedron is used as

base geometry, which is iteratively subdivided in a similar fashion as in [KLJ+09]. For each

of the 30 base faces, a quadtree is used as a hierarchical multi-resolution representation.

Each tree node stores a tile of 64 × 64 samples for efficient batching in rendering. Data is

re-sampled onto the leaf node grid vertices in an off-line pre-processing step and inner nodes



are computed by iterative downsampling. As in [KLJ+09], the implicit subdivision scheme

makes direct sample addressing computationally expensive.

In our approach we also use a quadtree on top of a sphere tessellation. However we do

not use an implicit subdivision scheme to define our sampling grid. Instead, we apply the

HEALPix parametrization, which uses 12 curvilinear base patches to represent the sphere.

As the HEALPix scheme has an explicit projection formula, coordinate transformations can

be performed independently, which makes it suitable for parallel evaluation on GPU.

Lambers et al. [LK10] have presented a system to generate view-dependent geometry on

the fly to allow for visualization of fully dynamic datasets. The GPU-based per-frame gen-

eration of this triangulation is computationally expensive, however, and does not guarantee

interactivity. Treib et al. [TRAW12] use a compressed wavelet representation for terrain

data which is visualized at interactive rates using GPU-based ray-casting. The chosen rep-

resentation allows for efficient real-time editing of terrain. A quad-tree topology is used

for the multi-resolution data structure, however tree nodes contain only the (compressed)

differences to their parent nodes as opposed to storing absolute height values. When the

terrain is modified at a given resolution level, changes are propagated through the quadtree.

To populate coarse resolution levels, the affected subtree is recomputed using a bottom-up

construction process starting from the modified tiles. To propagate downwards in the tree,

editing operations are recorded and applied on-the-fly to finer nodes as they are loaded into

GPU memory. In our system, data being inserted into the tree is always represented as leaf

nodes, hence only upward propagation is necessary. This is likewise achieved by updating

the tree using iterative downsampling, starting from affected leaf nodes.

GPU algorithms have also been used for pre-processing remote sensing data. Thomas

et al. described a system [TKR+08] for GPU-based orthorectification, which is a process to

remove perspective distortions in imagery to produce a top-down view of uniform scale. In

their approach, imagery obtained from an oblique perspective is projected in real-time onto

an existing DEM to produce a corrected orthophoto using a technique related to shadow

mapping. In the work presented here we assume that the input data is already available

as orthophotos. In an actual crisis management scenario, one could imagine coupling both

approaches to obtain a pipeline for immediate visualization of live remote sensing data.

3 Pre-processing framework

In the following we will characterize the input data used in our approach, describe the

structure of the output database and present an algorithm to construct this database. Sub-

sequently, a GPU implementation of the same algorithm is introduced which is then applied

to realize an on-line pre-processing framework. Using this framework, data tiles can be

generated on-the-fly by a backend GPU cluster for immediate visualization on a frontend

rendering workstation.



3.1 Data representation

Figure 1: The HEALPix hierarchical sphere tessellation. All cells on a given subdivision

level have equal area and their coordinates can be computed using a closed formula.

The input data processed in our framework are geo-referenced raster DEMs (Digital

Elevation Maps). These raster images consist of a regular grid of height values as well as a

so-called georeference which is a projection that associates sample coordinates with physical

locations on the planetary surface.

For the output coordinate system we chose the HEALPix grid as it uniformly samples

the sphere which allows for artifact-free spherical rendering without coordinate singularities.

This is achieved by tesselating the sphere into a set of 12 curvilinear base patches which are

uniformly subdivided to form a grid hierarchy [GHB+05].

We use a quad tree subdivision scheme on top of this hierarchical grid to obtain a multi-

resolution database suitable for Level-of-Detail terrain rendering as well as for representing

sparse and mixed-resolution datasets. A forest of 12 quad trees represents the base patches

and each tree node stores a tile of 255 × 255 samples for efficient batching in database

management and rendering.

3.2 Off-line database construction

In the following we will describe the resampling process which converts a set of raster maps

to a terrain database. This requires selecting a quad tree subdivision depth which adequately

samples the input raster maps. Considering the tiling used in our approach, the ground area

of a single sample at tree depth d for a spherical planet of radius r is given by

Ad =
4πr2

12 · 2542 · 4d
,

which is constant everywhere due to the HEALPix equal-area property. For raster maps, the

area represented by an input pixel is usually given. To preserve data resolution, we chose a

depth d such that the sample size is equal or small than this value.

The construction process then performs two passes over the given data. In the first pass,

the boundary polygon of each raster map is projected to the HEALPix coordinate system

to determine the set of intersected leaf nodes. Output file locations are assigned to nodes at

this point to optimize the data layout for rendering. Note that this pass requires little I/O

as only file header information is required.
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Figure 2: Coordinate systems involved in the resampling process

In the second pass, each raster map is loaded sequentially and the intersecting leaf nodes

are populated. To compute sample values for each node, each sample coordinate pair is first

converted from parametric HEALPix space to geographic coordinates. These geographic

coordinates are then converted to pixel coordinates within the input raster image, according

to the provided georeference (compare Figure 2). The image is then sampled using bilinear

interpolation. Note that all coordinate system conversions are performed at double precision

as single precision is not sufficient to encode distinct points on the surface at or below

meter-scale [KLJ+09].

Note that datasets can assign a special NODATA value to samples which do not have a

meaningful value. This is often the case near the boundaries of a raster map when the actual

support is not rectangular in shape. These NODATA values are propagated in interpolation

and for sample coordinate outside of the raster image extents, NODATA values are produced

as well.

Figure 3: Embedding of a high-resolution DEM (HRSC) into a low-resolution DEM (MOLA).

Arrows indicate dataset boundaries.

Nodes which already exist in the database are loaded and composited with newly gener-

ated data. Each existing sample is replaced by the new sample, unless that new sample was

marked as NODATA. This implies that the composition result depends on the order in which

input files are processed. Maps which are processed later in the sequence take precedence

and replace already existing data. Therefore, care must be taken that data is specified in

corresponding order from coarse to fine resolution. This could easily be automated, how-



ever, since the sample resolution of each dataset is given as header information. Figure 3

demonstrates the result of combining HRSC with MOLA DEMs.

After producing the finest level of the hierarchy in this manner, the inner nodes of each

quad tree are generated by successive downsampling of the leaf nodes.

3.3 GPU-accelerated resampling

To accelerate the resampling process described above, we developed a GPU implementation

using the CUDA framework. As before, raster images are processed sequentially. Large

images which do not fit into GPU memory are first subdivided into chunks which are then

transformed individually.

For processing, each chunk and the associated georeference is uploaded to GPU memory

and the set of intersecting tiles is produced. For performance reason, tiles are processed in

batches of 64 elements. For each batch, tile coordinates are uploaded and a CUDA kernel

is executed which performs projection and resampling. Kernel execution and downloading

of result tiles to CPU memory are overlapped using CUDA streams, which allows finished

data to be transferred as other tiles are still being processed.

As in the CPU implementation, all coordinate conversions are performed using double

precision arithmetic, which was not feasible on early CUDA implementations that suffered

from very low double-precision performance. On current hardware generations, however,

double-precision arithmetic is efficient and achieves half of the single-precision bandwidth.

After tile generation and downloading, the tree is populated by iterative downsampling as

before. This is still executed on CPU, as it is a relatively inexpensive operation.

3.4 On-line approach

To eliminate the turn-around time for visualizing raster maps, we developed an on-line

approach in which tiles needed for visualization are generated on-the-fly by a distributed

pre-processing back-end (Figure 4). In contrast to the previous hierarchical construction

scheme, which used iterative downsampling to produce inner nodes, the online scheme uses

point sampling to directly compute sample values for inner nodes.

To enable the cluster nodes to answer random queries in short time, the datasets to

be visualized are loaded into host RAM when the system is started. To optimize memory

utilization, input files are distributed equally (by size) across all cluster nodes. As the input

files are loaded they are subdivided into chunks and tile coverage for each chunk is computed.

When all data is loaded, the cluster nodes start receiving requests from the front-end.

Tile requests which are not covered by any loaded chunk generate an empty reply message.

All other requests are handled using the GPU resampling algorithm. To generate a tile it is

necessary that the corresponding chunk is resident in GPU memory. However, replacing the

currently loaded chunk is expensive because it involves copying the data over a relatively

slow bus.



BackendFrontend

LoD scheme
requests tile

Find overlapping local files

Resample files onto tile

Compose
received tiles

Insert tile into
visible set

Node 0 Node 1 Node 2 Node 3

Samples with data

NODATA samples

Figure 4: Illustration of distributed on-the-fly processing

To minimize this paging of chunks, a set of outstanding tile requests is maintained. These

tile requests are grouped by the chunk they refer to and each group is processed as a batch.

Tiles which are intersected by multiple chunks are included in each corresponding batch.

For these tiles, the resulting data is composed as described in 3.2. After processing all

outstanding requests, resulting tiles are sent to the rendering front-end and the process is

repeated with the set of requests which have been received asynchronously in the meantime.

Once the front-end has received a reply by each cluster node for a given request, it

composes the data received and incorporates it into the visible set of tree nodes.

4 Results

For benchmarking, we used a machine equipped with a dual Intel Xeon X5670 hexacore

processor with hyper-threading, resulting in 24 “virtual” cores, as well as 48 GiB of host

RAM and a NVIDIA Quadro 6000 GPU with six GiB of memory. The cluster used for

on-line pre-processing consists of four machines of the same hardware configuration.

4.1 Raw resampling performance

Resampling performance was measured using the set of 1173 HRSC archival DEMs [GSP+10]

with a total size of 23.2 GiB. Out of these, 12 files (80 MiB) had to be excluded as they use



stereographic projection, which was not supported by our CUDA kernel at that time. Using

the formula given in 3.2, we chose a quad tree depth of d = 8.

For each input file, the intersecting tile set was computed and all tiles at the finest

resolution were generated, measuring total CPU and GPU implementation runtimes for tile

generation only. The CPU resampling kernel was parallelized using OpenMP to make full

use of all available CPU cores.

The CPU implementation required a total time of 52 minutes in tile generation while the

GPU implementation completed the same workload in 2 minutes, of which 15 seconds were

required for data upload. Download of results was not measured separately but is included

in the given time. The GPU implementation therefore achieved a speed-up factor of 27.9

for resampling and downloading of results and 24.7 when including the time required for

uploading input data.

This result is explained by the fact that the GPU architecture is well-suited for the prob-

lem since samples can be evaluated in parallel. For implicitly defined grids as in [KLJ+09]

and [BCK+11] this would not be the case. Furthermore, the kernel exhibits a high arithmetic

density due to the multiple coordinate system transformations involved for each sample.

4.2 Off-line pre-processing

To measure the impact our improvements have in an actual application, a quad tree rep-

resentation of the same dataset was constructed on external storage, producing a 120 GiB

database. The CPU-based construction required 101 minutes while the GPU variant re-

quired 59 minutes, a 70% performance increase. Disk I/O was identified as a bottleneck as

a significant fraction of the time (about 50 minutes) was spent waiting for I/O completion.

4.3 On-line pre-processing

To demonstrate on-line pre-processing of mixed resolution datasets, the input dataset used

previously was extended by the MOLA MEG128 data, which is two GiB in size. A tree

depth of five was chosen for this data.

The data files (26 GiB total) were distributed about equally among the four cluster nodes.

The start up time required for all server processes was 70 seconds. The additional time then

required to provide a coarse initial rendering (at tree depth 0) was measured to be about

ten seconds. This is explained by the fact that the root nodes of the hierarchy contain all

map chunks. Therefore each chunk had to be uploaded in turn to generate the root nodes.

However, performance improved once the initial levels of the tree had been generated and

cached by the front-end. See Figure 5 for a timeline of convergence for the first four levels

in a top-down view of Vall es Marineris. Figure 6(a) shows the average time the front-end

needed to wait for a requested tile, depending on tree depth, collected during an extended

browsing session.

Because tree nodes contain a fixed number of height samples and the LoD scheme em-

ployed by the front-end attempts to maintain a fixed ratio between number of triangles and



(a) Resolution level 0 (after 9.9 seconds) (b) Resolution level 1 (8.27 seconds later)

(c) Resolution level 2 (4.72 seconds later) (d) Resolution level 3,(3.03 seconds later)

Figure 5: Top-down view of Valles Marineris showing convergence of image resolution.

screen pixels, the number of visible nodes is approximately constant. As the viewer moves

closer to the planetary surface, however, the number of visible chunks decreases and requests

for tiles deeper in the tree are serviced faster as paging is reduced.

Statistics revealed an average batch size of 27 tiles, meaning that for every 27 tiles

produced one chunk had to be uploaded. Uploading a single chunk took 0.23 seconds on

average, while resampling of all tiles in a batch required only 0.017 seconds. Bus bandwidth

is therefore clearly a bottleneck in this system.

Considering the speed-up factor established in 4.1, the CPU implementation would be

expected to require 0.47 seconds for processing a batch, which is still almost twice the time

needed by the GPU solution. The break-even point of similar performance would then be

expected at 13 tiles per batch.

5 Conclusion and future research possibilities

We have presented a GPU-based approach to pre-process geo-referenced raster maps for

spherical terrain rendering. Furthermore, the algorithm was extended to an on-line pre-

processing scheme which enables interactive visualization of large datasets within minutes.

Key to our approach is the assumption that the input data is resident in host RAM.

Constructing pre-filtered mipmaps of the input files on external storage as in [KLJ+09]
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Figure 6: a) Average delay between the front-end issuing a tile request and receiving the

data. b) Valles Marineris on Mars using both MOLA and HRSC datasets, composited on

the fly. Image resolution: 1920× 1200 pixels, 26.5 million triangles. Starting from an empty

cache, image quality converges within 30 seconds.

would increase startup time of the system but allow for out-of-core visualization of larger

datasets. Mipmap generation can be expected to be fast as it requires only linear I/O, as

opposed to construction of a quad tree database.

In the future, we want to apply the system to actual dynamic data which changes at

runtime. This would require a mechanism by which the back-end can load files at runtime

and instruct the front-end to invalidate sub-trees of the visible set. This would in turn make

the front-end request the affect tiles again. The newly generated tiles from the backend

would then represent the updated data.
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