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Fig. 1. Three views of the tornado data set. (a) Arrows pointing along streamlines of velocity reveal the basic structure of the tornado.
However, we are primarily interested in its vortex core, and specifically, where the vortex core resembles a Gaussian vortex. (b) The
Q-criterion for the tornado data set, as expected, shows a vortical interior surrounded by a strain cell, where the spinning air of the
tornado shears against the calmer air outside. The vortex core is brought out in the strong negative domain of Q, but an additional
vortical funnel appears in the upper half of the tornado. (c) For our method, we compute the similarity of different Q thresholds to an
idealized Gaussian vortex. The similarity holds well on the interior, where the flow of air resembles an idealized vortex, but quickly
decays outside the core. Additionally, the funnel on top is not modeled well by Gaussian vorticity (except near the interface between
the funnel and the main core), so it also has a low fit value and is excluded.

Abstract—We consider the problem of extracting discrete two-dimensional vortices from a turbulent flow. In our approach we use
a reference model describing the expected physics and geometry of an idealized vortex. The model allows us to derive a novel
correlation between the size of the vortex and its strength, measured as the square of its strain minus the square of its vorticity. For
vortex detection in real models we use the strength parameter to locate potential vortex cores, then measure the similarity of our ideal
analytical vortex and the real vortex core for different strength thresholds. This approach provides a metric for how well a vortex core
is modeled by an ideal vortex. Moreover, this provides insight into the problem of choosing the thresholds that identify a vortex. By
selecting a target coefficient of determination (i.e., statistical confidence), we determine on a per-vortex basis what threshold of the
strength parameter would be required to extract that vortex at the chosen confidence. We validate our approach on real data from a
global ocean simulation and derive from it a map of expected vortex strengths over the global ocean.

Index Terms—Vortex extraction, feature extraction, statistical data analysis

1 INTRODUCTION

Vorticity is defined as the magnitude and rotational axis of vortical be-
havior in a turbulent flow. In real flow, however, noise creates small

• Sean Williams is with the Institute for Data Analysis and Visualization at
University of California, Davis and Los Alamos National Laboratory,
E-mail: sjwill@ucdavis.edu.

• Mark Petersen is with Los Alamos National Laboratory, E-mail:
mpetersen@lanl.gov.

• Peer-Timo Bremer is with Lawrence-Livermore National Laboratory,
E-mail: bremer5@llnl.gov.

• Matthew Hecht is with Los Alamos National Laboratory, E-mail:
mhecht@lanl.gov.

• Valerio Pascucci is with the Scientific Computing and Imaging Institute at
University of Utah, E-mail: pascucci@sci.utah.edu.

• James Ahrens is with Los Alamos National Laboratory, E-mail:
ahrens@lanl.gov.

• Mario Hlawitschka is with the Universität Leipzig, Germany, E-mail:
hlawitschka@informatik.uni-leipzig.de

• Bernd Hamann is with the Institute for Data Analysis and Visualization at
University of California, Davis, E-mail: hamann@cs.ucdavis.edu.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

perturbations in the vorticity and other derived fields that must be sep-
arated from actual vortices. The standard solution to this problem is
to only consider vorticity with magnitude above a specified threshold.
However, it is not obvious how to choose such a threshold automat-
ically nor whether a globally valid threshold even exits. In practice,
one typically tries multiple thresholds until one produces “reasonable”
results. Nevertheless, more sophisticated methods do exist, such as
choosing maximum contours ofλ2 [14], but theoretical justifications
for maximum contours decisions are still lacking.

For this research, we begin instead from a fluid dynamics definition
of an ideal vortex in a two-dimensional domain. This analysis also
allows axis-aligned three-dimensional vortices, i.e., vortices in which
the vorticity vectors inside the vortex core are fairly well-aligned. No-
tably, this includes most vortices of interest in the oceanic and atmo-
spheric sciences. The fluid dynamics definition we use models vortic-
ity as a Gaussian, from which we derive several other properties, such
as the strain tensor. We describe a nearly-linear relationship between
Q-criterion thresholds and the surface area of the feature entirely be-
low each threshold. Furthermore, we show that this relationship only
holds while the vortex is dominated by Gaussian vorticity. Once a
threshold begins including the background flow, the relationship no
longer holds—providing information about what threshold ofQ is ap-
propriate for that vortex.

We specify the similarity of an actual vortex to an ideal vortex as
a coefficient of determination of a linear fit, so rather than thresholds



Fig. 2. The Gaussian function used for idealized vorticity, ω(r) =

exp
(

−r2

2

)

, plotted as a function of r, the distance from the center of

the vortex. A corresponding Gaussian vortex is inset, with arrows point-
ing along streamlines of velocity and colored by speed. Despite be-
ing a Gaussian, for the regions where vorticity dominates this idealized
vortex—out to a radius of about 1.5—the vorticity function is very close
to linear. To quantify this, for each value of radius, we plot the coefficient
of determination (R2) of vorticity to a least-squares linear fit of vorticity
out to that radius. This fit indicates that the Gaussian is at least 90%
similar to a linear function to a radius of about 3.5, which is well past the
edge of this vortex. Thus, we assume for this research that, for vortex
interiors, vorticity can be approximated as a linear function of radius.

being chosen as semi-arbitrary values of vorticity orQ, we instead use
statistical confidence levels. Another way of looking at this result is
to compare theQ thresholds that produce vortices meeting a particular
confidence level. Since the vortices are rated based on how well they
structurally conform to an ideal vortex, derivingQ thresholds from a
confidence level produces an approximation of the stability of vortices
throughout a data set.

To take advantage of this additional information, we apply our
method to a simulated global ocean data set to begin quantifying the
structural differences between vortices in a variety of currents around
the world. Comparing these results against what is observationally
known about the real ocean lends further validity to our method, and
opens a new avenue of study for vortices in applied scientific domains.

The primary contributions of this paper are:

• An algorithm for detecting vortices based on a new physics-
based characterization

• A local criterion to find aQ threshold for each vortex based on
statistical confidence

• An empirical study to validate the procedure both on classical
visualization data, and on global ocean simulation data showing
different characteristics in different oceans

2 RELATED WORK

Extracting and visualizing turbulence in vector fields has long been of
interest to the visualization community [8]. Methods generally focus
on either extracting specific structures (e.g., vortices) and drawing a
bounding volume [15], or extracting the overall topology and visualiz-
ing it through glyphs or other proxies [18]. For extracting vortex-like
structures in particular, popular methods include finding regions of
high vorticity [19], streamline geometry [12] or, if the data are avail-
able, by looking for regions of low pressure at the center of a vor-
tex [1].

For two-dimensional or axis-aligned vortices, one can also look for
circular behavior in the velocity field directly. Jiang et al analyze the
problem topologically [5], by looking for kernels in which each vector
in the kernel points in a unique direction range. Similarly, Sood et
al [17] identify vortex centers in the ocean by passing a 5×5 kernel of
the angles between an east-pointing vector and the tangents of a circle
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Fig. 3. Schematic views of the three components that make up the
Q-criterion. Vorticity is caused by flow circling an axis, normal strain
is caused by two flows colliding and pulling apart, and shear strain is
caused by a lateral change in velocity.

centered in the kernel to find circular flows, then fitting an ellipse over
the entire vortex.

Several techniques have also been developed to further refine anal-
ysis of the vorticity field. We begin from theQ-criterion [4], which
highlights areas where vorticity dominates strain. TheQ-criterionwill
be explained in greater detail in the next section. Our choice of this
criterion was initially motivated by its use in oceanography, where the
Q-criterion is known as theOkubo-Weiss criterion[11]. Also of note
is the λ2-criterion [6], that uses the second eigenvalue of the strain
tensor times the sum of the squares of strain and vorticity to determine
whether vorticity or strain are dominant in a region. We chose theQ-
criterion overλ2 because it is the standard vortex criterion within the
oceanographic community.

3 VORTEX DETECTION

We begin with the assumption that vorticity in an ideal vortex can be
modeled as a Gaussian in the radial direction. This is an established
model in the fluid dynamics community [7]. Further, in the ocean
it has been found to be a reasonable model both analytically [3] and
observationally [13], and in the atmosphere, this idealization has been
used to approximate the vorticity profile of hurricanes [9]. The general
form of this Gaussian, for vertical and horizontal scaling coefficients
c1 andc2, is:

ω(r) = c1exp

(

−r2

2c2
2

)

(1)

To simplify this analysis, we claim, based on the graph in Figure 2
that, for vortex interiors, vorticity can be approximated as a linear
function of radius. If we consider the vortex interior to be the neg-
ative domain ofQ, then by figure 4a, this extends to a radius of about
1.5. At this distance, the linear fit is still extremely high. Now con-
sider the definition of theQ-criterion, Q = ε2−ω2. Here,ε is the
magnitude of the strain tensor, andω is the magnitude of vorticity.
Schematics of flows typical of high vorticity and the two components
that contribute to strain are shown in Figure 3. The chief assumption
of theQ-criterion is that, inside a vortex, strain is low and vorticity is
high, while the boundary of a vortex is indicated by high strain and low
vorticity. Since vorticity dominates strain on vortex interiors, we con-
clude thatQ≈ ω2 ≈ r2. Furthermore, we can see from Figure 4b that
the dominance of vorticity inside the vortex (again, for the negative
domain ofQ) is such that this does in fact create a linear relationship
betweenQ andr2 (sincer2 is proportional to area).

We also assume that an ideal vortex is circular. As a result, the
area of the vortex will grow quadratically with radius. If the vortex is
elliptical, it will grow as the product of half its major and minor axes.
This still results in quadratic growth: given an ellipse with major and
minor axis lengthsa andb, respectively, and constant eccentricitye,
thenb = ae, so the area grows as14ea2.

Hence, for a vortex that is governed by Gaussian vorticity in its
core and has a core that is either circular or a well-behaved ellipse, the
Q-criterion and its area will grow linearly with respect to each other.
This result is important for three main reasons.



First, how well a vortex conforms to these rules can be quantified as
a statistical measure. We are concerned with how closelyQ and area,
both as functions of radius, grow linearly with respect to each other,
which can be done by computing the coefficient of determination (R2)
betweenQ versusA and a linear least-squares fit of the same. This
changes the art of choosing a threshold from one based onQ-criterion
values that are difficult to interpret to a straightforward choice of how
confidently the data fit an ideal model.

Second, a statistical confidence level still implies a threshold onQ,
but on a per-vortex basis. This provides a consistent way of comparing
the relative stabilities of different vortices, since the higher the allow-
able value ofQ, the longer Gaussian vorticity remains the dominant
effect in the flow. We specifically apply this to data from a global
ocean simulation to show the stabilities of vortices in different major
currents around the world.

Finally, this relationship provides an easy way to separate Gaussian-
like vortices from other high-vorticity features. In the Figure 6a, sharp
turns in strong currents like the Gulf Stream generate comma-shaped
spikes in vorticity that, on visual inspection, are clearly not vortices.
As a result of these high-vorticity meanders in the strong currents be-
ing neither Gaussian vortices nor represented by a circle or ellipse, al-
most all of them fail to hold this linear relationship. The few that hold
this relationship are extremely special cases, and will be discussed in
greater detail later.

For the next three sections, we will demonstrate this relationship
empirically, first with an idealized analytical vortex, then a simple tor-
nado data set, and finally with data from a complex global ocean sim-
ulation.

4 IDEAL VORTICES

According to [7], a planar slice of an idealized axis-aligned vortex can
be described in polar coordinates in terms of vorticityω and strainε:
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Here,vr andvθ are the radial and azimuthal velocities, respectively.
If this vortex is placed at the origin, and taking the idealized case that
vr = 0 and ∂

∂θ = 0, theQ-criterion is then:

Q = ‖ε‖2−‖ω‖2 (4)
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One may compute a profile of velocity, strain, and theQ-criterion
for this vortex as a function of radius, as shown in Figure 4a. In the vor-
tex core, the vortex is dominated by vorticity, so it initially increases
with radius as a particle must travel faster to make a full revolution of
the vortex center in the same amount of time. Further from the center,
however, flow begins to slow down as vorticity is less dominant and,
to compensate, the flow begins shearing. This causes strain to increase
while vorticity decreases. The combination of these effects causes
the characteristic behavior of theQ-criterion: Q is negative inside the
vortex core, where vorticity dominates, but increases until becoming
positive, where strain dominates. Finally, all parameters converge to
zero as the vortex loses all influence over the flow.

Figure 4b then demonstrates the near-linear relationship between
Q and area.Q is plotted with respect to area, then broken into three
regions, colored red, green, and blue. For each region, a linear fit is
taken betweenQ and area for the points in that region and all points
in all previous regions, so the green fit is for data in both the red and

(a)

(b)

(c)

Fig. 4. The properties of an idealized vortex, with vorticity modeled
as a Gaussian in radius. (a) Azimuthal velocity, strain, vorticity, and
Q-criterion as functions of radius. Vorticity is modeled as a Gaussian,
from which the other properties were derived. The interaction of vorticity
and strain causes the characteristic behavior of the Q-criterion: Q is
negative inside the vortex core, where vorticity dominates, but increases
until becoming positive, where strain dominates. (b) The Q-criterion as
a function of area, along with stippled lines showing a least squares
linear fit of each component of the curve from 0 until the end of that
color. Inside the vortex core (red), the two grow nearly linearly. Taking
a linear fit of the red section yields a coefficient of determination of 0.99.
If the area under consideration is expanded outside the vortex core, this
nearly-linear relationship breaks down (green), and gets worse as more
of the background flow is added (blue). (c) The Q-criterion and the
coefficient of determination (R2) as a function of radius. The R2 value
plotted in this graph is the quality of a linear fit of area versus Q if the
corresponding Q value were used as a threshold, i.e., an R2 value here
is the quality of fit for all points to its left. As expected, in the vorticity-
dominated region, area and Q conform well to a linear relationship, while
outside, the coefficient of determination drops precipitously.



green regions. The fit is initially quite good, at 99% in the red re-
gion (to a radius of about 0.96), but afterQ passes 0 and ceases being
dominated by vorticity, the relationship breaks down. By the time one
considers both the red and green regions (at a radius of about 1.8) the
fit is already down to 88%, while the fit over the entire data set is down
at 63%. Taking instead a “rolling fit”—computing the fit at each re-
solved radius—we get Figure 4c, in which the fit is shown to be quite
high for radii still within the vortex core, but dropping off quickly once
the radius extends outside the core.

We now present an algorithm to make use of this relationship, as-
suming a data set with a single vortex and no local minima other than
the global minimum (i.e., the data decrease monotonically), as a list of
Q values for all points, here just calledQ. We take an inputr, the reso-
lution of Q values to be checked, and an inputc, the desired confidence
level. The algorithm returns the maximumQ threshold that results in
the desired confidence, or⊥ if that confidence is never reached. The
assumptions (one vortex and monotonic values ofQ) can be discarded
by making the algorithm instead breadth-first search from minima of
Q, and preserving search visitation marks between vortices, so that a
point is never visited again, even on future searches. This way if mul-
tiple minima are contained in a single vortex, they will all be visited
(and marked to not be considered in the future), so that the vortex will
not be counted multiple times.
Input: r > 0,c∈ [0,1]

Qh,Ah← /0 {Lists to store a history of (Q, A) pairs}
q←min(Q) {Iterated value, from min(Q) to 0}
s←−q/r {How much to step Q to get r iterations}
cq←⊥ {Highest Q value meeting c% confidence}
while q≤ 0 do

a← |{qc ∈Q,qc ≤ q}| {Area: #points below current threshold}
Qh←Qh

⋃{q}
Ah← Ah

⋃{a}
r ← cod(Qh,Ah) {Coefficient of determination of a linear fit}
if r ≥ c then

cq← q
end if
q← q+s

end while
return cq

The function “cod” returns the coefficient of determination of a lin-
ear fit between the two input sets. This is computed first by finding a
linear least squares fit of the data, which returns a fitting function, i.e.,
it returns coefficientsc0 andc1 such thatAa = c0 + c1Qa. Thus, for
anyi, the predicted area isfi = c0+c1qi . Additionally, we need̄A, the
average of allai ∈ Ah. Then the coefficient of determination is:

R2 = 1− ∑i(ai − fi)2

∑i(ai − Ā)2 (7)

5 SIMPLE VORTICES: THE TORNADO

In order to demonstrate the effectiveness of this method on real data,
we begin with a simulation of a tornado [2]. The data are on a 643

regular grid, containing a three-vector of velocity at every point. The
data contain only a single tornado, with surrounding air, and the core
of the tornado roughly follows the z-axis. For a first look at the tor-
nado data set, we show arrows pointing along streamlines of velocity,
colored and sized based on speed (Figure 1a). Notably, the tornado is
faster and wider at the top than near the bottom, but primarily only in
an outer envelope.

Computing theQ-criterion for the tornado data set, in Figure 1b,
shows a strong vortex core up the center surrounded by a large strain
cell. However, theQ field also shows a strong cone-shaped vortical
funnel near the top that is not part of the main core of the tornado.
Additionally, as before, it is unclear which threshold ofQ to use to
extract the relevant extent of the vortex core:Q ranges from−0.2848
to 0.003329, while the color scale in that visualization (from−0.003
to 0.003) was chosen to elucidate the structure of the data without
creating color scale discretization problems, i.e., from putting less than

Fig. 5. Area and R2 plotted against Q for a middle z-slice of the tornado
data. Area (computed as the number of points in the slice below a
given Q threshold) initially grows quite linearly. The growth of the vortex
begins speeding up after Q thresholds of −0.06, while after −0.02 the
growth is dramatically faster. For this slice, then, the linearity of this
vortex crosses a confidence of 90% with a Q threshold of −0.04. If this
graph continued into the positive domain, at a threshold of 0.01 there
would be almost 4000points in the vortex and a confidence of just 8%.

2% of the data range (the positive domain ofQ) into half the color
scale.

To analyze the tornado data set for Gaussian vorticity behavior, we
treat the data as stacks of two-dimensional slices, though allowing
them to still have âk (depth) velocity component. To visualize the
effect of the fitting criterion, for each slice we take discrete iterative
thresholds ofQ and computeR2 for that threshold’s linear fit against
area, computed as the number of points in that slice below the thresh-
old. This is repeated on intervals ofQ to a maximum of 0.002, versus
the data set maximum of about 0.003. The resultingR2 value for each
interval is stored at all points in that interval. In other words, thisR2

value is assigned to all points that are at or below the current thresh-
old, but above the previous threshold. ThisR2 field is shown volume-
rendered in Figure 1c, with a transfer function specifically highlight-
ing points with highR2. For most of the tornado data set, this extracts
roughly the same vortex core as the rawQ parameter, with two notable
exceptions. First, the conic funnel near the top is nearly gone, show-
ing that only the center of the tornado behaves like a Gaussian vortex.
Second, the transfer function can now be set much more meaningfully
and without any tuning: the transfer function ofR2 ramps opacity lin-
early from a low level at 0.75 to opaque 1.0, while all values below
0.75 are kept at very low opacity.

To address the question of what threshold to choose forQ, we also
plot area andR2 againstQ threshold for slice 31 in Figure 5. For
very low values ofQ, the linear fit matches the data quite well, with
the R2 value staying above 95% up toQ thresholds of about−0.06.
R2 crosses 90% confidence at about−0.04, and begins falling rapidly
after thresholds of about−0.02. Consistent with this, area as a func-
tion of Q threshold rises in a near-linear fashion until thresholds of
about−0.06, then bumps up and climbs at a slightly higher rate. After
thresholds of−0.02, area climbs quite rapidly. Once theQ thresholds
near 0, the background flow enters the threshold, and the area jumps
into the thousands of points.

6 COMPLEX VORTICES: GLOBAL OCEAN SIMULATION

Now that our method has been established for a reference data set,
we use this technique to extract vortices from a global ocean simula-
tion while gathering statistical information about the behavior of the
vortices over time. To this end, we employ Los Alamos National Lab-
oratory’s Parallel Ocean Program (POP) [16]. The runs of POP we
use employ a 3600×2400×42 rectilinear grid, providing a horizon-
tal resolution of about110

◦
, or approximately 10 km at the equator.

Depths span a range of 5000 m, with vertical grid cell thickness rang-
ing from 10 m near the surface to 250 m in the deep ocean. We only
require velocity information to computeQ. In the ocean, horizontal
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Fig. 6. Here we compare how different confidence levels affect vortex identification in the region of the Gulf Stream. (a) The Q-criterion at the
surface of the Atlantic Ocean shows both a rich population of vortices, and regions of high vorticity caused by the meandering path of the Gulf
Stream. For the purpose of visualization, this field is extremely dense and difficult to understand, and for the purpose of analysis, the presence of
so many false positives (i.e., meanders and boundary shear) will corrupt any data about the vortices. (b) The confidence levels associated with
each high-vorticity feature, discretized to 5%. Features above 95%(in bright magenta) very closely resemble what we would expect a vortex to look
like, while those below 85% (in dark red, yellow, and green) almost all look dubious. The quality of features between 85%and 95% (blue and cyan)
is mixed, with several good features in that range, but some dubious features as well. We choose a 90% threshold for future analysis based on
a qualitative trade-off between false positives and false negatives, and to ensure that vortices could survive minor distortions for the purposes of
vortex tracking.

velocities (i.e., in thexy-plane) are about three orders of magnitude
greater than vertical velocities, so we only consider longitudinal and
latitudinal components of velocity.

Oceanic vortices, also known as eddies, isolate heat and nutrients
from the surrounding waters, and transport these properties across
great distances. This in turn influences biological productivity and
carbon uptake from the atmosphere, and ultimately affects the rate
of carbon accumulation that forces atmospheric climate change. In
studying oceanic vortices, researchers would like to categorize them
into well-formed vortices that tend to transport water properties and
be long-lived, while rejecting areas of vorticity caused by shear lay-
ers near boundaries and jets. TheQ-criterion is the standard oceano-
graphic statistic to find vortices, but it does not differentiate between
these behaviors, while the method we propose here does.

The first issue to consider with the ocean simulation data is vor-
tex identification, followed by non-vortex removal. One of the ana-
lytical problems with theQ-criterion in the oceanographic commu-
nity is one of reconciliation. Different techniques yield different nu-
merical ranges and scaling, but oceanographers prefer to communi-
cate and share data in an internally consistent way. To address these
problems, oceanographers typically normalize theirQ values to the
standard deviation ofQ over the domain they consider. This creates
more problems, since the different current structures in various regions
lead to different normalizations based on the domain being considered.
For example, a regional study of the North Atlantic, with the strong
shearing and eddies of the Gulf Stream, could have a more drastic
Q-criterion normalization than the relatively quiescent Mediterranean
Sea. Nonetheless, theQ values shown in this section are normalized to
the standard deviation at the surface over the entire domain to maintain
the standard used by oceanographers. Since our study is concerned
with confidence rather than a particularQ threshold (or range), and
the confidences are computed per-vortex, this normalization does not
affect our results in any meaningful way.

We demonstrated in the previous section that our method can be
used to identify suitable values ofQ for extracting a vortex at a chosen
confidence. For the ocean data, we do this extraction on a per-vortex
basis. Beginning with minima ofQ, we iteratively add adjacent points,
always selecting the neighboring point with lowestQ value. As the
value ofQ in a vortex rises, we keep track of pairs ofQ and area (point

count) and computeR2 for the running list of(Q,A) pairs against their
linear fit. Once theR2 value falls below a chosen threshold, the method
stops and the maximumQ found on this search is associated with that
vortex.

Figure 6a shows theQ field off the eastern coast of the United
States, where the powerful Gulf Stream carries warm water from the
Gulf of Mexico north along the coast, before departing the continental
shelf at Cape Hatteras and eventually flowing into the North Atlantic
Current. In a standard oceanographic analysis, everything below−0.2
in theQ-criterionwould be considered a vortex; in our visualizations,
this corresponds to all the red and pink regions in Figure 6a. Our new
method shows that two distinct types of structures are not Guassian-
like vortices and are filtered out: small scale boundary shear and me-
anders of jets.

Vorticity due to boundary shear is clearly seen in Figure 6a at the
edge of the Greenland coast, Labrador Sea, and Hudson Bay, and is
simply the result of fluid rolling up between ocean currents and a no-
slip land boundary. Almost all of this is filtered out at the 95% confi-
dence level in Figure 6b (in pink), showing that the boundary vorticity
does not closely fit the description of a Gaussian vortex. At lower con-
fidence levels, a small number of vortices in the roll-up regions are
admitted.

On the other hand, as the Gulf Stream slowly meanders, large vor-
tices are pinched off into the Atlantic Ocean. The meanders them-
selves, however, also generate very high vorticity, and appear in the
Q plot as quarter- and half-turns in the negative (red) domain. Again,
these meanders do not generally match the description of a Gaussian
vortex, so are rejected. When our method is applied, as in Figure 6b,
features that appear to be true vortices are shown to be highly preferred
(i.e., in blue or pink) over meanders. For many meanders, simply fail-
ing to match one of the two assumptions of our method (Gaussian vor-
ticity, and near-circular or elliptic shape) causes them to be excluded.

There are however some corner cases where a meander’s vorticity
profile can resemble that of a Gaussian vortex, and where its quarter- or
half-turn shape is similar enough to a deformed ellipse. In most cases
such meanders will still be ruled out at high confidence levels, as the
meander causes water inside the area of the arc to turn as well, creat-
ing a lower-magnitude patch of vorticity that the meander turns about.



(a)

(b)

Fig. 7. Graphs of Q threshold versus area, and Q threshold versus R2,
for a well-behaved vortex (a) and a well-behaved meander (b) in the
global ocean simulation data, with the features themselves inset. (a):
Q grows linearly with respect to area for almost the entire span of the
vortex: the graph ends just before the Q threshold is high enough to
begin including the background ocean. After some initial noise (our de-
tection algorithm accounts for this by allowing a vortex to grow initially
without R2 checks, to ensure it contains enough samples to be numeri-
cally stable), the R2 of the vortex is above 90% for all the span checked
here, and most of it above 95%. Note in the inset that the near-quadratic
growth of Q with respect to radius causes each colored ring to be thin-
ner than the last. (The color scale clips all values below −3 to the same
purple, hence the large purple center.) (b): The core of the meander
also resembles a vortex, and has fairly good R2 for low thresholds of
Q. However, this meander induces rotation inside its arc, causing a
larger secondary vorticity patch. Once this patch begins being added at
Q thresholds of about −1.5, the rate of growth of the vortex increases,
causing its confidence to fall below 90% past thresholds of about −0.7.
In the inset, the purple and blue form bands in a similar fashion to the
vortex in (a), while the green region (representing values near −1.25) is
much larger than the blue. This violates the expectation that Q grows
quadratically with radius, and corresponds to the Q value in the plot
where R2 starts dropping.

The minimumQ for a meander will lie within the meander itself, so
propagation will begin within the meander, and could very well grow
with area at a fairly linear rate. Once the propagation reaches this inner
vorticity zone, however, the amount of area added with each change of
theQ threshold will greatly out-pace that inside the meander, as shown
in Figure 7b, andR2 will fall off rapidly.

Finally, we present two more in-depth analyses of the additional
data generated by this method in Figures 8 and 9. These analyses rely
on tracking to see whether a high confidence is related to long-term
stability. We wish to summarize the data, which in their raw form take
up almost a terabyte. To do this, after computing the confidence of a
vortex, we write out a summary that approximates the vortex as a cir-
cle with center of the vortex’s centroid at the depth where the vortex
is strongest (i.e., with minimumQ value), and radius of

√
πA, where

A is the number of points at the same depth. (That is, the summary
is generated from the intersection of the vortex with a plane parallel

to the surface of the Earth.) Additionally, we approximate the transla-
tional velocity of the vortex as the average velocity of all points in the
vortex. This follows from the idea of a spinning hockey puck translat-
ing across a rink: points on opposite sides of the puck will cancel each
other’s rotational velocity, leaving the translational velocity to emerge
from the sum.

To compute the tracking, each vortex is translated into the next time
step by converting its velocity in degrees per day, since each time step
is one day long, and adding that velocity to its centroid. Two vortices
are considered the same (i.e., given the same id number) if their cen-
troids are close together, and their radii are similar. Centroid closeness
is taken as a ratio between centroid separation and the smaller radius,
which we require to be below 0.25, and we require that the ratio be-
tween the smaller and larger radii be above 0.7. We plot the courses
followed by the 5000 longest-lived vortices in Figure 8a, with colors
assigned randomly in order to distinguish between nearby vortices.
This plot agrees with the standard observations about ocean vortices.
First, they primarily occur near three major currents: the Gulf Stream
off the eastern coast of the United States, the Kuroshio Current off
the coast of Japan, and the Antarctic Circumpolar Current, ringing
Antarctica in the Southern Ocean. Additionally, large vortices appear
in this plot at several well known regions of eddy activity: the Agul-
has Rings following a course from the southern tip of Africa heading
towards Brazil, and a Gulf Ring, created as a meander as the Loop
Current passes through the Yucatan Channel, appearing as a coherent
vortex downstream of the Channel and then migrating west across the
Gulf of Mexico. Several large and long-lived vortices are seen in the
Mediterranean Sea, most of which are nearly stationary.

In order to address the complementary question, of whether the vor-
tices being excluded by this criterion should be excluded, we next an-
alyze the relationship between our criterion and lifetime. We apply the
tracking algorithm to the full set of high-vorticity features regardless
of confidence. The algorithm assigns an id number to each vortex,
such that vortices considered to be the same across different time steps
receive the same id number. Each id is then given a lifetime, computed
as the date of the last time step that id appears in minus the first time
step it appears in plus one. We then divide the high-vorticity features
into those that have at least 90% confidence, and those that do not. For
each of these sets, we compute the probability distribution function of
lifetime. In other words, for a given vortex, what is the probability
that it will live for n days, for alln? These two PDFs are shown in
Figure 8b, with logarithmic scaling on probability. This plot shows
that, indeed, high-confidence vortices are more likely to live longer,
and low-confidence vortices are more likely to have a shorter life.

For our second analysis, shown in Figure 9, we focus on five rela-
tively long-lived vortices in the North Atlantic. The vortices are drawn
in time step order, so that later time steps occlude earlier time steps.
Thus we can see that all six vortices are traveling roughly west. Below
the map, the confidence in each vortex is plotted over its lifetime. All
plots fall between confidences of 0.8 and 1.0, with the center line at
0.9. The plots show a large amount of small-scale jitter (on a scale of
about 0.02), and occasionally the vortex will jump abruptly down and
back up. This is most likely due to either the vortex interacting with
another, causing each to distort, or possibly due to numerical issues.
Interestingly, only the blue vortex has a confidence drop-off before the
tracking is lost. This could either indicate that the time scale of vor-
tex death is quite fast, or that the algorithm excludes the dying vortex,
e.g., because a fast change in radius meant the tracking criteria were
not met. The specific mechanics of vortex death in the ocean, anyway,
is a generally open question that we hope to investigate in future work.

7 CONCLUSIONS

We introduced a new, statistically-driven technique for specifying and
extracting vortices from theQ-criterion. Our method derives from the
math and physics of Gaussian vortices a novel near-linear relationship
that can easily be evaluated using a coefficient of determination. This
produces, on a per-vortex basis, a level of confidence of a compari-
son between a real vortex and a model vortex. We can then backtrack
from a statistical confidence to the maximum threshold ofQ associ-



(a)

(b)

Fig. 8. (a) After applying feature tracking to the data, we take the 5000longest-lived vortices and plot the courses they take, with random coloration
to distinguish individual vortices. As expected from observation, vortices appear primarily associated with the Gulf Stream off the eastern coast of
the United States, the Kuroshio Current off the coast of Japan, and the Antarctic Circumpolar Current around the Southern Ocean near Antarctica.
Also as expected, vortices are relatively rare near the equator, where Coriolis forces are weak. (b) To determine whether high-confidence vortices
are also longer-lived, we take all high-vorticity features (regardless of confidence) and apply tracking. Vortices are given id numbers based on the
tracking (so if two vortices in adjacent time steps are identified as being the same vortex at different times, they’re given the same id), then each id
number is given a lifetime of the date of the last time step it appears in minus the date of the first time step it appears in plus one. We then compute
a probability distribution function of vortex lifetime, but splitting vortices into those with confidence above 90%and those below. A vortex can over
time go above and below the threshold, so each vortex of each id number is counted separately. We see from this that low-confidence vortices are
indeed more likely to have shorter lives, while high-confidence vortices are more likely to live longer.



Fig. 9. We extracted five long-lived vortices from the North Atlantic and plotted them in different colors. All five vortices are tending west: the circles
representing the vortices were drawn in time step order, so later time steps occlude earlier time steps. Below, the confidence of each vortex is
plotted over its lifetime. All confidences range between 0.8 and 1.0, and each graph is associated with the vortex with the same color as the graph’s
line. The x-axis of each graph is time, scaled over each vortex’s lifetime, so the start, end, and horizontal scaling of the graphs are not directly
comparable. Despite some small-scale jitter and occasional sharp jumps (most likely caused by temporary distortion from interacting with another
vortex), the confidences are fairly stable up until the vortex is lost.

ated with that confidence, allowing us to further describe how well,
within a single confidence level, different vortices adhere to the def-
inition of Gaussian vortices. Doing so removes the ambiguity from
choosing transfer functions for rendering, and from choosing thresh-
olds to define a vortex for data analysis.

Using data from a global ocean simulation, we show that our new
method is able to pick out well-formed, Gaussian-like vortices, while
rejecting vorticity in boundary shear layers and meanders of jets. This
distinction is scientifically important because well-formed vortices
isolate source waters and transport heat and nutrients that influence the
carbon cycle and climate change [10]. One may track eddies across the
ocean, and observe that its maximum confidence value remain fairly
consistent for isolated eddies.

The next step is to apply this Guassian vortex method to other ve-
locity data sets, such as satellite observations of the ocean and atmo-
sphere, and to expand our vortex tracking to collect time-dependant
statistics of other fields like temperature and salinity for each vortex.
We could then investigate what component of heat and salt transport is
due to discrete eddies, and whether Gaussian-like eddies transport wa-
ter properties more efficiently than other eddies. Applying this method
to three dimensional flows is another potential direction, which would
require expanding the analytical foundations of this work and testing
it on non-geophysical data sets.
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