Multiresolution and Adaptive Rendering Techniques for
Structured, Curvilinear Data

William C. Wynn!
Department of Computer Science
University of North Carolina at Chapel Hill

J. Fritz Barnes?, Bernd Hamann?»3
Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science
University of California, Davis

Mark Miller*
Lawrence Livermore National Laboratory
University of California

Abstract

In many applications one is concerned with techniques
for visualizing data sets with real-time interaction. One
technique for providing real-time performance is through
the use of multiresolution techniques. These techniques pro-
vide multiple representations of a data set at different lev-
els of detail. The idea is to select a level of detail that can
be rendered within the user’s time constraints. We discuss
a mechanism which renders finer-detailed representations
where the data set has a high frequency, and coarser rep-
resentations where the data set has lower frequency. We
present a new technique for storing curvilinear data sets
within a quadtree representation and discuss two rendering
schemes: an anti-aliasing scheme and a scheme for main-
taining a specified frame rate.

1. Introduction

Novel approaches allowing interactive, real-time visu-
alization are becoming increasingly important due to re-
cent increases in data set sizes. Currently, there is a need

1 Department of Computer Science, University of North Carolina,
Chapel Hill, NC 27599-3175 USA. E-mail: wynn@cs .unc.edu

2 Center for Image Processing and Integrated Computing (CIPIC), De-
partment of Computer Science, University of California, Davis, CA 95616-
8562 USA. E-mail: {barnes, hamann}@cs.ucdavis.edu

8 Co-Director of CIPIC and Visualization Thrust Leader

4Lawrence Livermore National Laboratory, University of California,
Livermore, CA 94551 USA. E-mail: miller8é@llnl.gov

0-7695- 0503-1/00 $10.00 © 2000 [EEE

to visualize data sets on the order of 10° zones and in the
near future simulations will be performed for more than 10°
zones. We are concerned with the development of methods
which allow for the rapid analysis of such large data sets.
The techniques we present are fundamental, and the hier-
archical quadtree data representation we discuss could be
used for many common visualization methods. We demon-
strate our hierarchy’s effectiveness for pseudo-color render-
ing (i.e., shading zones based on associated function values)
and mesh-line rendering (i.e., outlining each zone’s bound-
ary segments.)

In the analysis of previous techniques and the synthesis
of our technique for multiresolution storage and rendering
the objectives considered were:

e Minimizing storage requirements. When we are
dealing with large data sets on the order of 10° zones,
doubling the storage requirements is a very serious
matter; storage should be minimized.

e Developing efficient access mechanisms. It is de-
sirable that utilizing and accessing the multiresolution
representation will not degrade speed.

e Robustness of technique. Potentially, we could de-
sign a separate technique for multiresolution rendering
for every visualization algorithm available. Since this
requires support of multiple techniques this is not fea-
sible. In our development we considered the need of
various visualization techniques.

Considering our goals, it was important that the multires-
olution representation minimize the storage requirements

Logical View

Figure 1. Multiresolution Hierarchy

while maintaining efficient access mechanisms. Our data
structure is based on a quadtree, which is described in [10,
11, 4]. We use a pointer-less scheme for handling quadtrees.
We show how to retrieve zone siblings, neighbors of a given
zone, from the quadtree representation. Xia and Varsh-
ney [16] have developed adaptive surface triangulations to
capture view-dependent properties, e.g., highlights. Multi-
ple quadrilaterals may be rendered in the same pixel region.
This may result in aliasing effects when determining the ac-
tual color for a pixel. Our techniques are used similarly to
Xia’s and Varshney’s to achieve quadrilaterals at roughly
pixel sizes.

Our technique is based on the idea of constructing a mul-
tiresolution pyramid, a data representation hierarchy of tri-
angulations with increasing precision, see [5]. We extend
the idea of a hierarchy to quadrilaterals using a quadtree rep-
resentation. One of the authors has previously looked at this
with regard to terrain representation [9]; in this technique
one stores a very coarse version of the data set (one quadri-
lateral or zone), see Figure 1. As the hierarchy is descended,
each cell is subdivided into four sub-zones. When one de-
scends the pyramid fine-detail representations of the data set
are presented. At the base of the pyramid lies the original
data.

We discuss two schemes for rendering images. The first
scheme discusses the addition of a minimum-size constraint
for the selection of zones from the hierarchy. When con-
sidering very large data sets the data being rendered may
contain graphical primitives smaller than a pixel. One can
reduce the work in the visualization algorithms if one does
not apply the visualization algorithm multiple times to the
multiple zones that are rendered to the same pixel. In our
scheme we descend the hierarchy until we reach zones that
are of approximate pixel size. Instead of continuing to sub-
divide we render this zone. This paradigm can also be ex-
plored in the realm of overlaying a plot with the correspond-
ing mesh. If we have a large data set we will not be able to
see the underlying plot. Our technique can specify a mini-
mum rendering size.

The second scheme we utilize is based on a specified

343

frame rate constraint. When constructing a given plot we
will start with the coarsest representation; we consider the
error between this coarsest representation and the actual
data. We subdivide the quadrangle with the largest error. We
continue the subdivision of the quadrangle with the largest
error until we have selected as many zones as possible while
satisfying the frame rate constraints. The zones that will be
rendered are from a variety of levels of detail. We call the
set of zones that will be rendered a surrogate mesh.

Our drawing paradigm attempts to optimize the quality of
the image with respect to a rendering of the actual data set.
We perform this optimization at run time. Alternatives, such
as (2, 7], look at techniques for specifying a priori how to
optimally subdivide the mesh. These techniques provide the
same output regardless of the view. Our technique differs in
that we attempt to provide an optimal resolutionbased on the
current view. Lindstrom et. al. [8] also take this approach.
Lindstrom’s technique provides continuous levels of detail
for regular grid representations of height fields. Our tech-
nique is applicable to more general rectilinear meshes and
“nice” curvilinear meshes.

Hierarchical data representations have been developed
for unstructured tetrahedral meshes in the context of visu-
alization. An octree-based approach is described in [3]; this
technique has been applied to marching cube algorithms for
iso-surface generation. The idea is to minimize the number
of triangles needed to construct the surface. Wilhelms and
Van Gelder [15] also use octree-based methods for isosur-
face generation.

Wavelet-based multiresolution techniques are concerned
with the construction and application of certain basis func-
tions that allow the approximation of a given function at
increasing levels of detail. These techniques are described
by a variety of authors in [1, 6, 13, 14]. These techniques
describe basis and wavelet functions for obtaining different
resolution views of a dataset. This is different from our tech-
nique in that we store the different resolution views so that
we can render different areas of the same data set at different
resolutions.

2. The Multiresolution Hierarchy and Render-
ing Techniques

Our method attempts to derive a surrogate mesh from
zones in the multiresolution structure. We do not limit our-
selves to selecting zones at the same level in the hierarchy.
This allows us to utilize more zones in areas where the data
set is fluctuating, and utilize fewer zones in smooth sections
of the data set.

We utilize the quadtree representation of the multireso-
lution hierarchy to store information that is too expensive
to calculate while traversing the quadtree during rendering.
Rendering consists of a two-pass traversal of the multireso-

lution hierarchy. During the first pass, we select the zones
to be rendered by the algorithm. During the second pass,
we “patch” holes and remove overlaps due to utilizing mesh
representations at two different levels of representation.

We consider two techniques of zone selection. The first
technique is used to perform anti-aliased rendering. This
technique involves a recursive traversal of the quadtree.
When the size of the quadrilateral representing the parent
zone is below a certain minimum size we select this zone for
rendering.

The second technique optimizes the quality of rendering
while maintaining a pre-specified frame rate. This technique
involves priority queue traversal of the quadtree. Hierarchi-
cal zones are given a priority with respect to the error be-
tween the hierarchical zone and the underlying data. The
zones with the most error are subdivided, by descending the
quadtree.

2.1. Quadtree representation

Although many pointer-based schemes have been used
to represent quadtrees, we use a different approach in or-
der to save memory. Using this approach, an array of lev-
els stores information common to each level in the hier-
archy. Included in this structure is a pointer to the zone
data for each level. The multiresolution hierarchy is stored
conceptually as shown in Figure 2; the zone data is a two-
dimensional array of zones for a given level. We can spec-
ify an address function: “Address(!, r, ¢),” which returns the
address of the hierarchical zone at the given level [, row 7
and column ¢. Since we are dealing with an array of lev-
els and a two-dimensional array of data at each level, we
can determine the location of a hierarchical zone with three
pointer dereferences. In our implementation, we store the
two-dimensional array of hierarchical data at a given level in
a one-dimensional array. This requires only two array deref-
erences while adding a shift, a multiply and an addition op-
eration.

Utilizing the addressing scheme above, provides conve-
nient access to neighboring information. We can calculate
the address for relative zones (relative to a current zone at
level [, row r and column c) as follows:

e Parent zone. The parent zone is the zone located ex-
actly one level coarser in the hierarchy. The current
zone is a higher-detailed fraction of the parent. The ad-
dress for the parent zone is Address(l — 1,r/2,c/2).

Child zones. The children zones are given by the zones
located one level below the current zone. Children
zones are the four children (subdividing both rows and
columns). These addresses are given by Address(! +
1,2r+a,2¢c+), a, 8 € {0,1}.

344

Level /
0 7 /
1 Vg
2 p—
Zone Data
Level Information

Figure 2. Quadtree Array-of-Arrays storage
scheme. The quadtree representation occurs
from the fact that at a level ;, each zone is
subdivided into four children at the : + 1 level.
Therefore each level has four times as much
information.

o Sibling zones. The siblings of a zone are those zones
at the same level that share an edge or vertex with a
given zone. Note that sibling zones do not necessarily
share the same parent. The addresses of sibling zones
is given by Address(l,r + a,c+), a, 8 € {-1,1}.

e Final descendents. One can determine the actual data
that underlies a given hierarchical zone by looking at
all zones in the final mesh which are found by recur-
sively subdividingall children of the current zone. The
final descendents will lie at level f, where f isthe index
of the final level, and have a row index between 2/ ~'r
and 27— (r+1)—1, and a column index between 2 =te
and 2/ ~f(c+1) - 1.

There are several advantages to this approach. It allows
for compact storage of the data hierarchy. Since there is no
need to store pointers to children zones, the amount of mem-
ory required to represent each zone is reduced by four point-
ers. This scheme is advantageous in the ease with which we
can access sibling zones and use them in the calculations for
the current zone. An additional advantage is that we can de-
termine the zones in the underlying mesh in constant time; in
contrast if we were using a pointer-based scheme accessing
the actual data could require time proportional to the num-
ber of levels in the hierarchy. This flexibility allows us to
reuse information at the bottom of the hierarchy rather that
duplicating it at the hierarchical zone representation.

A disadvantage of this approach is that one must take
special care for meshes which are logically non-square or
logically non-power-of-two. Although these requirements
do not significantly increase zone access time, the coding

i -

Slop

Figure 3. Handling non-power-of-two data in
1D.

complexity of the algorithms used for manipulating the hi-
erarchy is slightly increased. Since zone memory is located
in contiguous segments, pruning of the multiresolution tree
cannot be performed where the underlying data is all the
same.

2.2. Handling Non-square and non-power-of-two
data sets

Square power-of-two data sets are easily represented by
the quadtree representation. Unfortunately, most real-life
data sets do not exist in this manner. We will first extend
the quadtree representation discussed above for rectangular
power-of-two data sets. We will then generalize this struc-
ture for non-power-of-two data sets.

For each level in the hierarchy we maintain two flags,
which indicate whether zones in the level should be subdi-
vided into row children, column children or both. For exam-
ple a data set may contain more columns than rows. We have
the flexibility to choose at which levels we will split rows
since there are more column splits than row splits. Our cur-
rent implementation would attempt to postpone splitting the
rows as long as possible. This technique allows us to reduce
the amount of space necessary for storage of the multireso-
lution hierarchy.

Handling logically non-power-of-two data is handled by
combining slop, or leftover, zones. A slop zone is shown
in Figure 3 occurring at level /. In principle, such a slop
zone can occur at any level in the hierarchy. In the one-
dimensional case, a slop zone results when the number
of zones is odd. Slop zones can also occur in the two-
dimensional case, see Figure 4. If a level has an odd num-
ber of rows or columns, the level will have slop zones.
When constructing the hierarchy for a level [; where the
next level /;41 will have an odd number of rows, we split
the children into three, i.e. children addresses will be:
Address(lj+1,2r + «,2c +) where @ € {0,1,2},8 €
{0, 1}. In the above it is assumed that the columns are split.
This scheme specifies how to address children involving
slop.

345

A

1

//_/

g

st

<

slop cells

Figure 4. Handling non-power-of-two data in
2D.

The addressing scheme with respect to determining par-
ents must be slightly modified. When dividing the a zones
row and column indices by two, one needs to check whether
this is greater than the greatest row or column index at the
higher level. This is because slop zones will result in an
incorrect address for parent zones. Addressing for siblings
and final data will not change.

Considering the one-dimensional example, this means
that the last zone in level [— 1 has three children instead
of two. We record which levels have slop children by stor-
ing this information along with the levels. During traversal
of the hierarchy, before subdividing a zone, these slop flags
are checked in addition to the zone’s logical positioning. If
the slop flags indicate that a level has slop children, and the
zone being subdivided is in the last logical position in the
level, then the zone may be divided into three, six or nine
children instead of four.

Combining the techniques for handling non-square and
non-power-of-two data sets, we are able to build a hierar-
chical quadtree representation for any m x n mesh. The
algorithms presented in the rest of the section will assume
square, power-of-two data sets for the sake of clarity.

2.3. Rendering for minimal zone-size

The minimal-feature approach uses a recursive descent
algorithm which systematically selects zones from the hier-
archy based on the size of individual zones. The algorithm
starts by considering the zone at the top of the hierarchy for
rendering. If the zone is inside the field of view and it is
larger than the minimal size threshold, the zone is subdi-
vided, and the zone’s children are considered. If the zone is
in the field of view, but it is smaller than the minimal size
threshold, the zone is selected for rendering. We indicate
zones that are to be rendered with a flag in the data struc-
ture. We use granularity as a measure of size in the terms of
pixels of the smallest zone that should be subdivided. The
size of a pixel in screen coordinates is transformed to object
space and then scaled by the granularity factor. The result-

Hole

Overlap

Figure 5. Discontinuity Problems.

ing width in object space is used to determine the smallest
zones that should be selected from the hierarchy. Note that
if one is creating visualizations where the output zone size
will depend on the projection (i.e. three-dimensional view),
one should perform the comparison of the object in screen
space.

2.4. Rendering for frame-rate or error goals

Here, it is our objective to minimize the error between
rendered polygons and the actual data set, while maintain-
ing a desired frame rate constraint. We utilize a greedy al-
gorithm to perform the zone selection. Initially, we sub-
divide the coarsest representation of the data set, a single
quadrilateral, and place this in the priority queue, where pri-
ority is given by the error. We iteratively remove the hierar-
chical zone from the queue with the largest error and sub-
divide this zone placing its children back onto the priority
queue. If a zone is outside the field of view, it is not placed
on the priority queue. This process is continued until the
number of zones scheduled for rendering, plus those in the
queue, is greater than our polygon budget. Our polygon bud-
get is calculated by the number of polygons that can be ren-
dered while maintaining a given frame rate. We utilize a dy-
namic feedback algorithm so that the frame rate can adjust
the polygon budget to the network and machine load.

2.5. Discontinuity problems and constraints

Since the zone selection process chooses zones from dif-
ferent levels of detail, there is the potential for discontinuity
problems to occur. This problem manifests itself as holes
or overlaps. This is illustrated in Figure 5. The approach
we use for dealing with this problem is similar to the crack
patching strategy presented in [12]. Vertices of higher res-
olution zones are constrained to edges of lower-resolution
zones by moving the vertices to their projections along the

346

Cell from level vl

. R

Gl from level n

Figure 6. Constraining a vertex by projection
onto a lower resolution edge.

edge of the lower resolution zones. This is illustrated in Fig-
ure 6. A similar problem occurs with function value data.
Considering our particular implementation, we con-
strain vertices and function values by making two passes
through the hierarchy. The first pass, zone selection, selects
nodes using either the minimal size approach, or the frame
rate/quality approach. This phase labels zones as:

e leaf cell, if the zone was selected to be rendered;

e branch cell, if the zone is an ancestor of some selected
zone; and

e out cell, if the zone is outside the field of view and it
and all descendents should not be considered.

In the second pass, a recursive algorithm starts at the root
of the quadtree (the coarsest zone) and considers all descen-
dents. If a zone has been labeled a branch zone, the sibling
zones are examined to see if they are labeled as leaf zones.
if at least one sibling zone is labeled a leaf zone then the
vertices of the descendents of the branch zone must be con-
strained.

The above technique for “patching” holes and remov-
ing overlaps provides correct results for “nice” curvilinear
grids. The characteristics of a nice grid is one where for any
coarse zone the cells in the actual grid lie within the grid.
For example: if we have a zone with indices in the final grid
(Xieft,top, Xright,bottom), then all grid points X; ; such that
left < 1 < right,top < j < bottom must lie within the
hierarchical quadrilateral. Examples of some nice and not-
nice grids are shown in Figure 7.

3. Results

We use the scheme described in this paper in two differ-
ent visualization techniques. We support pseudo-color ren-
dering (i.e. Gouraud-shading of zones based on function

Level R
‘ -E “E e, ,‘g‘:.- Y
[Rpn— F%y | "—;t‘.-- H ;.
--------- +2 I :;:‘@;’:.vi:
15 1 £
v
b) Not Nice

Figure 7. Example “nice” and “not-nice”
grids.

value) of a data set and mesh plots. The pseudo-color al-
gorithm is time-constrained by the number of polygons ren-
dered. The mesh plot is not constrained by time (rendering
lines is quick), but produces aliasing effects if the underly-
ing mesh is too dense.

During the build phase of the algorithm we precompute
information that will require too much time to compute dur-
ing the rendering stage. This precomputation is currently
performed on-line since the build stage is relatively inexpen-
sive (on the magnitude of fifteen seconds to a minute). The
attributes that are precomputed are:

e Extensions. This value allows us to build a bounding
box for the zone. The extension value used with the av-
erage position of a zone provides enough information
to perform field of view clipping during traversal of the
quadtree hierarchy.

Function value. Each level of the hierarchy stores an
approximation of the function value. We approximate
the function value associated with a zone by applying a
simple weighting scheme to the underlying mesh. Fig-
ure 8 displays two levels of the hierarchy. The function
values of the finer mesh are averaged as indicated by
the attached weights.

Error. We measure the error between a zone approx-
imating many zones of actual data by using the L
norm (maximum deviation). Thus, we reduce the max-
imum error between our approximation and the actual
data.

Size metric. The size of a hierarchical zone is calcu-
lated for use with minimal size rendering. We utilize
the minimum diagonal of the zone in approximating its
size. This metric is a reasonable estimate of zone size
even if a zone is abnormally elongated.

We have tested our multiresolution techniques for a num-
ber of very large rectilinear and curvilinear data sets and
have observed that real-time visualization is possible for
meshes with reasonable errors. Our implementation allows

347

Figure 8. Weighted average of function val-
ues.

no. frames per sec. no. polygons % error

10 934 25.8

5 2290 19.3
13,654 10.45

0.2 57,884 4.71

Table 1. Frame rates, number of rendered
polygons, and error for the San Francisco Bay
data set.

real-time scaling and translation of data sets with the great-
est benefits occurring when the imaging resolution is much
lower than the resolution of the data set itself or when view-
ing a zoomed in portion of the data.

The statistics and images we provide in this section are
based on our implementation executed on a 250 Mhz SGI
Indigo? IMPACT workstation with 128 megabytes of RAM.
The images were generated at a resolution of 640 x 640 pix-
els.

Table 1 provides the results of adaptive rendering per-
formed on a digital elevation model of the San Francisco
Bay. This data set is comprised of 1.44 million zones
(1200 x 1200). The table lists the number of zones that were
extracted from the hierarchy and rendered (using Gouraud
shading) at various frame rates. In the pseudo-color ren-
dered images a scale from blue to green to red is used to in-
dicate function values. The scale for the San Francisco Bay
images is shown in Figure 9. The relative error measure that
we use in this table is the maximum deviation between the
rendered polygons representing a hierarchical zone and the
actual data. Figures 11 through 14 show the images pro-
duced at the given frame rates and the corresponding sur-
rogate meshes. Figure 15 shows an image of a magnified
portion of the data rendered at one frame per second. The
number of zones chosen from the hierarchy is 7,956 and the
associated error is 2.05%.

We have tested our techniques for plotting grid lines as

! 1000 ft

Sea Level

Figure 9. Color bar used for pseudo-color
plots.

Figure 10. San Francisco Bay Full Resolution
(Non-Adaptive).

well. For many applications it is just as important to visual-
ize and understand the underlying mesh structure as it is to
analyze function values. Figure 16 demonstrates the impor-
tance of minimal-feature rendering when overlaying plots.
In the context of mesh line rendering, the adaptive approach
that we use for minimal-feature rendering allows us to gen-
erate images that do not contain zones occupying fewer than
a certain number of pixels. This is crucial to avoid render-
ing images that do not reflect the underlying mesh structure
at all due to the fact that zone size is less than a single pixel.

4. Conclusions

We have presented a simple and robust approach for the
representation of two-dimensional curvilinear data. This ap-
proach allows one to render large data sets in real time by

348

utilizing a precomputed hierarchy. Based on user specifica-
tions, our rendering algorithm selects the level in this hierar-
chy that is appropriate for either rendering a certain number
of frames per second or rendering graphical primitives that
are not smaller than a certain number of pixels.

We represent the information needed to describe and tra-
verse the hierarchy using a minimal amount of memory. For
moderately sized data sets one can generate the hierarchy in
a matter of seconds. Thus, a stand-alone pre-processing step
to construct the hierarchy is only necessary for extremely
large data sets. The selection process of a set of zones is effi-
cient — it hardly impacts the rendering process itself, i.e., the
selection process does not cause any bottlenecks for image
generation. Low-error images can be produced at relatively
high frame rates.

Our current work suggests several avenues for future
work. Two such avenues include extending these techniques
to an octree representation of three-dimensional data and
generalizing this approach for “non-nice” curvilinear grids,
and unstructured data sets.

5. Acknowledgments

This work was funded by Lawrence Livermore National
Laboratory (LLNL) under contract W-7405-ENG-48 to the
University of California, Davis. We would like to thank
the members of the Visualization Group at the Center for
Image Processing and Integrated Computing (CIPIC) at the
University of California, Davis, and the members of the
MeshTV development team at LLNL for their help.

References

[1] G. P. Bonneau, S. Hahmann, and G. M. Nielson. BLaC-
wavelets: A multiresolution analysis with non-nested
spaces. In R. Yagel and G. Nielson, editors, Visualization
'96, pages 43-48. IEEE Computer Society Press, 1996.

A. Certain, J. Popovi¢, T. Derose, T. Duchamp, D. Salesin,
and W. Stuetzle. Interactive multiresolution surface view-
ing. In SIGGRAPH 96 Conference Proceedings, pages 91
97. ACM SIGGRAPH, 1996.

P. Cignoni, L. D. Floriani, C. Montani, E. Puppo, and
R. Scopigno. Multiresolution modeling and visualization of
volume data based on simplicial complexes. In A. E. Kauf-
man and W. Kriiger, editors, 1994 Symposium on Volume
Visualization, pages 19-26, Los Alamitos, CA, 1994, IEEE
Computer Society Press.

M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

L. D. Floriani. A pyramidal data structure for triangle-based
surface description. IEEE Computer Graphics & Applica-
tions, 9(2):67-78, 1989.

(5]

D] | T
_1&\‘ *5':”! T -
3 f N |- | { ‘ -
-‘%ﬁ‘#— 1 4 ! T
|EEmEm ‘ [1
SRR e | iz M
‘ S H B A T ‘ I
A T LA | 1
’—T.!‘+% e \
: ‘ ‘ L T |
L L
‘ Wit
| o~
‘ \ 1 e
| H
| —
Figure 11. San Francisco Bay at 10 fps.
| H | -‘
T THH
I
| | | e
I
S N -
TR T |
e | A
T
[| He
} [H |
| =
| | 1
‘ Lm@
-
L THH
|
[
|
i H |
mn [
+_.
| | H >;
i3
1 i i
= | e
‘ |
11
% “#
i
.
| [H
|
[
L]
|

Figure 13. San Francisco Bay Render at 1 fps.

349

Figure 14. San Francisco Bay at 0.2 fps.

:‘ﬁii

L

|
H

R HH |

-

Tt

Figure 15. San Francisco Bay at 1 fps (Zoom 6x).

350

Figure 16. Perturbed Mandelbrot set with mesh grid overlay. We show using a 32 pixel minimal
feature constraint (left), and a mesh plot without the minimal feature constraint (right).

(6]

[9]

(10]
(11]

[12]

M. H. Gross, R. Gatti, and O. Staadt. Fast multiresolution
surface meshing. In G. M. Nielson and D. Silver, editors,
Visualization °95, pages 135-142. IEEE Compulter Socieity
Press, 1995.

H. Hoppe. Progressive meshes. In SIGGRAPH 96 Confer-
ence Proceedings, pages 99-108. ACM SIGGRAPH, 1996.
P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust,
and G. Turner. Real-time, continuous level of detail render-
ing of height fields. In SIGGRAPH 96 Conference Proceed-
ings, pages 109-118. ACM SIGGRAPH, 1996.

M. C. Miller. Multiscale compression of digital terrain data
to meet real time rendering constraints. PhD thesis, Depart-
ment of Electrical and Computer Engineering, University of
California, Davis, 1995.

H. Samet. The quadtree and related hierarchical data struc-
tures. Computing Surveys, 16(2):187-260, 1984.

H. Samet. The design and analysis of spatial data structures.
Addison Wesley, Reading, MA., 1990.

R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-
based decimation of marching cubes surfaces. In R. Yagel
and G. M. Nielson, editors, Visualization 96, pages 335-
342. IEEE Computer Society Press, 1996.

351

(13]

(14]

H. Tao and R. J. Moorhead. Progressive transmission of
scientific data using biorthogonal wavelet transforms. In
D. Bergeron and A. E. Kaufman, editors, Visualization ’94,
pages 93-99. IEEE Computer Socieity Press, 1994.

R. Westermann. Compression domain rendering of time-
resolved volume data. In G. M. Nielson and D. Silver, ed-
itors, Visualization '95, pages 135-142. IEEE Computer So-
ciety Press, 1995.

J. Wilhelms and A. V. Gelder. Octrees for faster isosur-
face generation. ACM Transactions on Computer Graphics,
11(3):201-227, 1992.

J. C. Xia and A. Varshney. Dynamic view-dependent simpli-
fication for polygonal meshes. In R. Yagel and G. M. Niel-
son, editors, Visualization '96, pages 327-334. IEEE Com-
puter Society Press, 1996.

