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ABSTRACT

We introduce a new technique to segment a point set, where
the connectivity between points is not known. Our tech-
nique is based on multi-level segmentation of the point set
and is computationally efficient. We apply our technique to
point sets obtained from scans of 3D models and demon-
strate that it results in good segmentations.

1. INTRODUCTION

A point set is a collection of points, where each point is
defined by a fixed-length coordinate vector, but the connec-
tivity between points is not known. One example of a point
set is a 2D image, which is defined by the two pixel (%, j).
Other examples include sets of protein molecules and hand-
written characters represented as points in high dimensional
spaces.

The problem of point set segmentation is to segment the
points within a point set such that the points in one segment
are strongly related while the points in different segments
are weakly related. The basic framework of our multi-level
segmentation approach follows these steps:

1. Compute the distance between points along an approx-
imate surface (geodesic distance approximation).

2. Collapse the original point set to construct a coarse
point set.

3. Define a similarity measure between points in the coarse
point set.

4. Segment the coarse point set, using the normalized cut
(NC) technique.

5. “Uncoarsen” the segments of the coarse graph to ob-
tain the segmentation of the original point set.

2. DISTANCE COMPUTATION

The distance between points can be computed as the short-
est distance between points along an approximated surface,
which is sometimes referred as the geodesic distance of the
points [2]. The geodesic distance of points is approximated
as follows:

1. Compute the Euclidean distance between points.

2. Construct a graph G(V, E) by connecting each given
point to its k-nearest “neighbor points.”

3. Compute the shortest path between all pairs of points
in G and store the distance in an n X n matrix GD,
where n = |V| and GD(, j) is the approximated geodesic
distance between v; and v;.

For our experiments, seven nearest neighbors are connected
to construct the graph G.

3. COARSENING

The purpose of coarsening is to reduce the number of ver-
tices in the graph by collapsing multiple vertices into a single
“supernode.” At the same time, the structure of the original
graph needs to be preserved in the coarse graph so that a
segmentation of the coarse graph reflects that of the orig-
inal graph. With a good coarsening of the original graph,
the computational cost to segment the point set can be re-
duced significantly while the quality of the segmentation is
maintained.

Many of the previous coarsening techniques are based on
the matching and collapsing of vertices such as “strong edge
matching,” “weak edge matching,” or “random edge match-
ing” where matched points are collapsed into a supernode.
We propose a coarsening approach based on the notion of
local features defined by local maxima of a function defined
over the point set [3]. We perform these steps:

1. Construct a diagonal matrix D = diag(d;), where d; =
2221 GD(i, j). A vertex v; is a local maximum if d; >
d; f?(é)r all neighbors v; of v;.

2. Sort V according to D in descending order, i.e., d; > d;
if v;,v; € V and i < j.
3. Create a supernode containing v;. Notice that v is a
local maximum.
4. Tterate over all v; € V' in descending order.
(a) Create a supernode containing v; if v; is a local
maximum.

(b) Collapse all neighbors v; of v;, that have not been
collapsed yet, to the supernode that contains v;.



5. Construct a coarse graph é(V,E‘), where V consists
of supernodes. Edge weights between the supernodes
consist of four weighted components: the distance be-
tween the local maximum that represents the supern-
odes F1; the relative size of removed feature (maxi-
mum difference of D within the supernodes) F»; the
cut between the two supernodes (sum of all edge dis-
tances between supernode) F3; and measure of com-
mon boundary between the supernodes (number of
crossing edges) F4. The similarity measure matrix
W = ((vi, v;)) is computed as
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4. HIERARCHICAL NORMALIZED CUT
Given a graph G = G(V, E) and a corresponding similarity
matrix W, the normalized cut step constructs a 2-way dis-
joint segmentation of V"= V1 UV, and Vi NV; # 0 such that
the total normalized cut
Cut(Vl, f/z)
assoc(V1,V)

cut(Vl, Vz)
assoc(Va, V)’
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where
cut(Vi, Va) = W (o1, 02)
and
assoc(V;, V) =
€V, 0EV
is minimized [1]. It can be shown that minimizing equa-
tion (1) also maximizes

assoc(Vi, Va)
assoc(Va, V)

assoc(Vi, Va)
assoc(Vi, V)

(2)

Thus, the cut between VlAand V5 is minimized while the as-
sociations within Vi and V> are maximized. It can be shown
that the above minimization problem is equivalent to finding
the eigenvector corresponding to the second smallest eigen-
value (Fiedler vector) of the generalized eigenvalue system,
i.e., finding n-vector y such that

(D — W)y = ADy, (3)
where D is a diagonal matrix such that d; = 2 iy W(0i, 05).
The normalized cut Aof V is constructed such that v; € Vi if
y(i) < o and 9; € Va otherwise for some threshold . We
apply 2-way segmentation recursively until the normalized
cut value between two segments is greater than a specified
threshold.

5. REFINEMENT

To construct a segmentation of the original point set from
that of the coarsened point set, we replace the supernode
with the points that have been collapsed into the supernode.
We will examine more sophisticated refinement techniques
to generate a better segmentation in the future.

6. RESULTS

We presents results for the point sets describing 3D surface
models. Figure 1 shows the segmentation of three sample

| # of points  # of local max # of segments
skeleton 6,000 35 6
hand 6,000 28 6
horse 4,000 32 6

Figure 1: Segmentation of point sets obtained from
range scans of 3D surface models. Top row shows
the result after coarsening step. Bottom row shows
segments after normalized cut step.

point sets. For the similarity matrix used in these results,
distances between local maxima F'1 and the relative sizes of

removed features F'2 are considered, using weights 0.1 and
0.1XF1 0.7XF2

0.7, respectively, i.e., W = e maz(FID) 4 gma=([F2])

7. CONCLUSION

‘We have described a new segmentation technique for point
set data. Our results have shown that our technique pro-
duces good segmentations of point sets of 3D model surface.
We will test our technique on higher-dimensional data sets
such as point sets of molecules and hand-written characters.
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