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An improved method for object detection in astronomical images
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ABSTRACT
This paper introduces an improved method for detecting objects of interest (galaxies and
stars) in astronomical images. After applying a global detection scheme, further refinement
is applied by dividing the entire image into several irregularly sized sub-regions using the
watershed segmentation method. A more refined detection procedure is performed in each
sub-region by applying adaptive noise reduction and a layered strategy to detect bright objects
and faint objects, respectively. Finally, a multi-threshold technique is used to separate blended
objects. On simulated data, this method can detect more real objects than SEXTRACTOR at
comparable object counts (91 per cent versus 83 per cent true detections) and has an increased
chance of successfully detecting very faint objects, up to 2 mag fainter than SEXTRACTOR on
similar data. Our method has also been applied to real observational image data sets to verify
its effectiveness.
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1 . I N T RO D U C T I O N

Astronomical images provide useful information about the physical
characteristics and evolution of celestial objects in the Universe. In
order to better understand the cosmos, astronomers have to search
for astronomical objects (sources) in extremely high resolution im-
ages captured. However, due to the vast number of objects (dozens
per square arcminute, in deep surveys) in astronomical images,
many of which overlap and are very faint, it becomes overwhelm-
ing for a user to manually identify such objects. For this reason,
it is necessary to develop efficient and robust algorithms to auto-
matically detect the objects in astronomical images by using highly
specialized and adapted image processing and computer vision tech-
niques. Compared to ordinary images, astronomical images have a
higher proportion of noise relative to the signals of interest, a larger
dynamic range of intensities, and objects with unclear boundaries.
These characteristics make detection of astronomical objects ex-
tremely challenging and complicated.

Several approaches have been proposed to perform object de-
tection in astronomical images. Slezak, Bijaoui & Mars (1988)
applied ellipse fitting and radial profile determination to automat-
ically detect objects in images. In this method, Gaussian fitting
of histograms was used for noise characterization, and detection
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thresholds were determined based on the peaks of the distribution.
Damiani et al. (1997) used Gaussian fitting, a median filter, and the
‘Mexican hat’ wavelet transform to smooth the fluctuations in the
background of the image, and objects were detected as the local
peaks whose pixel values exceeded some thresholds. Andreon et al.
(2000) classified objects and background by using principal com-
ponent analysis (PCA) neural networks. Perret, Lefevre & Collet
(2008) proposed a morphological operator called hit-or-miss trans-
form to enhance objects for better detection. Guglielmetti, Fischer
& Dose (2009) adapted Bayesian techniques to detect objects based
on prior knowledge. The inverse-Gamma function and exponential
were used as the probability density functions and thin plate splines
were used to represent the background. Broos et al. (2010) devel-
oped a wavelet-based strategy to reconstruct images, and defined
the peaks of reconstructed images as the objects. Bertin & Arnouts
(1996) developed the widely used SEXTRACTOR software tool based
on local background estimation and thresholding to detect objects.
Generally, these methods can produce good results but easily miss
faint objects or detect a relatively large number of false positives
under several image conditions. Low signal-to-noise ratio, variable
background, and large differences in brightness between the bright-
est and faintest objects in the images can lead to these problems.

Recently, there has been a focus on detecting more faint objects
in astronomical images. For instance, Torrent et al. (2010) detected
faint compact sources by what they called a boosting classifier in
radio frequency images. In this approach, a dictionary of possible
object classes needs to be built first by cataloguing local features
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extracted from images convolved with different filters. Afterwards,
the boosting classifier was trained on the training image data set to
obtain a near-optimal set of classification parameters for extracting
objects in the test data set. The time taken to build the dictionary
and train the classifier is significant and it requires an initial set
of ground-truth images to be constructed. Peracaula et al. (2009,
2010) used a local peak search based on wavelet decomposition
and contrast radial functions to detect faint compact sources in
radio and infrared images. In addition, Masias et al. (2012) found
that multi-scale transforms such as wavelet decomposition are com-
monly applied to infrared, radio, and X-ray images; however, more
basic image transformations (e.g., filters and local morphological
operators) perform well when applied to multi-band and optical
images.

In this paper, we present a novel object detection method for op-
tical images taken by a wide-field survey telescope by employing
irregularly sized sub-regions and a layered detection strategy. Sev-
eral image pre-processing steps are incorporated to enhance images,
including greyscale stretching, background estimation, histogram
equalization and adaptive noise reduction based on a noise-level
estimation technique. A working prototype of the code is also made
available.1

This paper is structured as follows: Section 2 describes our
method. Section 3 evaluates the accuracy of our method for a syn-
thetic simulated data set and an observational data set, comparing
the obtained results with those obtained by a competing method.
Section 4 provides conclusions and points out possible directions
for future work.

2 . M E T H O D

2.1 Overview

The simultaneous detection of both bright and faint objects in astro-
nomical images with many objects of varying sizes and brightness
is challenging. We present a local and layered detection scheme
which, based on the appropriate image transformations and adap-
tive noise removal, deals with bright and faint objects separately.
The fundamental idea and goal of our approach is to extract more
real objects and more faint objects close to bright objects in im-
ages with very large dynamic intensity ranges and high levels of
noise. To illustrate this, the results of applying both our method
and SEXTRACTOR to the same region of LSST’s publicly available
image simulations are shown in Fig. 1. The images in Fig. 1(a)
show the same region in which many faint objects are present. In
this region, more genuine faint objects (marked by triangles) were
detected by our method. The images in Fig. 1(b) show a region that
has a high dynamic range, including a bright object and some faint
objects. More authentic faint objects (marked by triangles) in the
neighbourhood of the bright one are detected by our method.

Our method can be understood as consisting of two main com-
ponents: global detection (which can be run as an independent
detection routine) and local detection. Global detection includes
several simple steps for fast detection of objects for an entire im-
age. The global method adopts smoothing based on a Gaussian fil-
ter (Blinchikoff & Zverev 2001), background subtraction (Bertin &
Arnouts 1996), and histogram equalization of intensities (Laughlin
1981) to remove noise and enhance the image. Objects are detected

1 https://github.com/zhengcx789/Object-Detection-in-Astronomical
-Images

Figure 1. The contribution made in this paper is the presentation of a
highly specialized and adapted method to detect (a) more real objects and
(b) more faint objects in the neighbourhood of bright ones. Squares mark
object positions known to be true. Ellipses on the left-column pictures show
objects detected by the competing method (SEXTRACTOR); among them there
is one false positive (marked by the pentagram). Ellipses on the right-column
pictures indicate objects detected by our method, and triangles mark real,
faint objects exclusively detected by our method. Comparing the left-column
pictures and the right-column pictures, our method detects more real, faint
objects with fewer false positives, and it can find more faint objects in the
neighbourhood of bright objects.

with Otsu’s method (Otsu 1979). When the global method is used
alone, deblending is applied as a last step for attempting to sepa-
rate touching objects that have been detected. The local detection
component consists of five major steps: division of the image into ir-
regular sub-regions, image transformation, adaptive noise removal,
layered object detection, and separation of touching objects through
deblending. Fig. 2 shows a flow chart of the overall procedure of
our method, demonstrating the primary steps involved.

2.2 Global detection method

The global detection in our method consists of a Gaussian filter,
background subtraction, histogram equalization, and thresholding
by Otsu’s method. These steps are applied to a normalized image
with intensities from 0 to 1. As these steps are prerequisites to the
local detection method, these global detection components will be
further described alongside the local detection method in the next
section.

2.3 Local detection method

Initially, the local method divides an entire image into non-uniform
and non-overlapping sub-regions by using the watershed segmen-
tation method (Beucher & Meyer 1993). This method subjects
an image a changing threshold that starts at the value of the
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Figure 2. Complete object detection pipeline. Rectangles denote computational processes executed, while ellipses denote data used or created. Specifically,
the novel steps used in our method are irregular sub-region division, adaptive noise removal, and layered object detection.

brightest pixels and gradually decreases. At each threshold value,
pixels that cross the threshold are assigned to the neighbouring sub-
region until the image has been completely segmented. To obtain
the best results through the watershed segmentation method, several
large and bright objects are extracted by the global detection com-
ponent as the seed points for generating sub-regions. This division
benefits later object detection steps in the pipeline.

The division is followed by the image transformation step, in
which we apply greyscale stretching, background estimation, and
histogram equalization. This step improves the contrast of images
for faint object detection.

Adaptive noise removal is used to suppress undesired noise in
astronomical images. The dynamically sized Gaussian filter is cre-
ated based on the noise-level estimation for more accurate noise
reduction.

When the local method performs astronomical object detection
and extraction, a layered detection is used to detect bright and faint
objects separately. The aim of the layered detection is to weaken

the influence of the large and bright objects on the detection of faint
objects.

Finally, the detected objects are individually checked to de-
termine whether deblending is needed through the use of multi-
threshold techniques and an additional watershed application.

2.3.1 Irregular sub-region division

In general, astronomical images contain background noise that
makes it difficult to apply object detection directly as a global
operator. Background noise can vary widely in different regions of
an image. The traditional approach to solve this problem is to use a
uniform mesh to divide the image into small square or rectangular
regions. The background is evaluated and a detection threshold is
defined for each region (as done by SEXTRACTOR). The choice of
mesh size is a key factor in background estimation and threshold
computations. If the size is too large, small variations in the back-
ground cannot be described. Likewise if too small, the background
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Figure 3. Irregularly sized sub-regions created by the watershed segmen-
tation method. The different colour areas denote sub-regions obtained; the
white object in each sub-region is the brightest object, which was used as
the seed point.

noise and the presence of real objects will affect the background
estimation.

The watershed segmentation method has been broadly used in the
fields of computer vision and graphics. Beucher & Meyer (1993)
first proposed and applied this method for the segmentation of re-
gions of interest in images. Later, Mangan & Whitaker (1999) found
a new application of watersheds to partition 3D surface meshes for
improved rendering. Inspired by this approach, we present a novel
non-linear partitioning method which divides an image into local
regions.

The watershed segmentation method takes every local minimum
pixel as a seed point to grow by merging surrounding non-seed
pixels for the purpose of image segmentation. In our application,
we determine several very bright objects found by global detection
as seed points and set the pixel value of these seed points to 0, and all
the remaining pixel values in the image are set to 1. The seed points
are grown to obtain sub-regions and stop only when neighbouring
sub-regions touch each other and cover the entire image. The results
of the division can be seen in Fig. 3 where 30 brightest objects are
selected as seed points.

This method can assure that each obtained sub-region includes
at least one very large and bright object. One advantage of having
these sub-regions is that more accurate thresholds can be computed
for detecting more real objects. Another advantage over the conven-
tional approach is that the watershed prevents bright objects from
being split between neighbouring regions as the method always cre-
ates regions around objects. In Fig. 3, the usage of the watershed
segmentation method allows for the isolation of the large star that
also contains camera artefacts. This region can be handled better
for extraction of objects compared to a conventional partitioning
scheme where this large star would span multiple regions. Further,
by combining this sub-region division with layered detection, more
faint objects can be detected.

2.3.2 Image transformation

Astronomical images contain several characteristics that make ob-
ject detection difficult. These include but are not limited to the
high dynamic intensity range and variable background intensity.
The proposed image transformation step is carried out to make the
objects more visible, remove variable background, and enhance the
contrast of image prior to the detection of objects.

Although the original intensity values of an astronomical survey
image of an uncrowded field might range from 0 to 105 (depending
on the gain of the amplifiers and the depth of the CCD wells),
most of the pixel values lie within a small intensity range near
the median. This makes the visualization of the entire data set
containing a full range of intensities difficult (Taylor et al. 2003;
Stil et al. 2006). Greyscale stretching is used to stretch the image
intensities around an appropriate pixel value to make details more
obvious for automatic detection. The greyscale stretching function
used in our method is the sigmoid function (Gevrekci & Gunturk
2009), which has the following form:

f (I (x, y)) = 1

1 + e−s(I (x,y)−c)
, (1)

where c defines the intensity centre, around which the intensity is
stretched, s determines the slope of this function, and I(x, y) is the
normalized intensity value of the pixel. In experiments, I(x, y) is
computed according to the following formula for making the image
intensity range from 0 to 1,

I (x, y) =
√

(Iori (x, y) − Imin)/(Imax − Imin), (2)

where Iori(x, y) is the original image intensity at (x, y), Imin and Imax

are the minimum and maximum intensities of the image. Due to the
large dynamic intensity range of astronomical images, the square
root operator is applied to avoid intensities so small as to suffer from
numerical noise in floating point operations. Fig. 4 illustrates the
different shapes of the sigmoid function with different parameters.
In our method, c is the median intensity of the image, and s is set
to 40. The result of greyscale stretching is shown in Fig. 5. When
comparing Figs 5(a) and (b), more objects can be clearly seen in
(b) otherwise not visible in the original image (a). The effectiveness

Figure 4. The shape of the sigmoid function. The x-axis is the original
intensity of images, and the y-axis is the transformed intensity obtained
by using the sigmoid function transformation. With this transformation,
the intensity of the high-intensity pixels becomes higher, while that of the
low-intensity pixels gets lower.
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Figure 5. Results of greyscale stretching. The top picture in panel (a) is the original astronomical image, and the bottom picture in panel (a) provides a
magnified view of the area in the rectangle. The top picture in panel (b) is the image obtained by greyscale stretching, and the bottom picture in panel (b)
provides a magnified view of the area in the rectangle. Comparing panels (a) and (b), the objects in panel (b) are more clearly visible.

of greyscale stretching is apparent for making faint objects more
visible which benefits faint object detection.

Besides the high dynamic range, the second factor that needs
to be considered is the background noise in astronomical images.
Due to this, the background of an image needs to be estimated
and subtracted from the original image for improving the object
detection quality. This operation is achieved in our pipeline by using
an approach applied in SEXTRACTOR (Bertin & Arnouts 1996) where
the background is computed as a function of the statistics of an
image. The value of the background BG in the non-crowded field is
estimated as the mean of the clipped histogram of pixel distribution,
and in the crowded field, the background BG is computed as

BG = 2.5 · med − 1.5 · m, (3)

where ‘med’ is the median and m is the mean of the clipped his-
togram of pixel distribution.

Astronomical images typically have low image contrast and cause
faint objects to blend in with the background. Normally this causes
these faint objects to be classified as the background and ignored
when object detection is done. The peak distribution of the intensity
histogram of astronomical images is typically concentrated in the
lower spectrum. Since fainter objects are generally more common
than brighter ones, many pixels will appear empty and contain
no detectable objects at all. Histogram equalization is used in our
pipeline to further enhance the quality of the image by scaling
the intensities to effectively spread out the most frequent values
to generate a better distribution compared to the original intensity
histogram. This non-linear operation is only applied for the purpose
of object detection and not used for the purpose of computing
photometry. This procedure strengthens the contrast of the objects
against the background making the boundaries of objects clearer and

easier to identify. It can result in a substantial improvement to the
quality of the final detection. The result of histogram equalization
is given in Fig. 6. Compared to the image in Fig. 5(b), the object
intensities are strengthened and the boundaries are clearer.

2.3.3 Adaptive noise removal

The ability to detect objects is commonly limited at the faintest flux
levels by the background noise, otherwise known as the apparent
brightness of objects. In modern charge-coupled devices (CCDs),
apparent brightness is dominated by photon shot noise on the diffuse
emission from the Earth’s atmosphere. Some improvement in object
detection can be achieved simply through filtering of the image for
noise reduction prior to detection. A spatial Gaussian filter is used
in our method as a simple and effective noise reduction method.
As mentioned in Masias et al. (2012) and Stetson (1987), Gaussian
filter can also be seen as an approximation to the point spread
function, which would act as a signal-matched filter to enhance the
real objects.

The noise levels within astronomical images vary; for instance,
the neighbourhood of a large, bright object (which might also be
the source of image artefacts) has high noise levels. An adaptive
noise removal strategy is carried out in our method based on the
estimation of noise levels. Before applying the Gaussian filter, the
noise level in each local sub-region is estimated by the algorithm
proposed by Liu, Tanaka & Okutomi (2012). This method uses
numerous image regions and selects the patches with the maximum
eigenvalue of the gradient covariance matrix below a threshold as
the weak textured patches. The noise level σ̂ 2

n is estimated from the
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Figure 6. The result of histogram equalization. The right image shows an enlarged view of the sub-region in the rectangle. Histogram equalization results in
enhanced contrast of objects, background, and clearer object boundaries.

selected weak textured patches based on the theory of PCA. After
mathematical deductions, σ̂ 2

n can be simply estimated as

σ̂ 2
n = λmin

(∑
y′

)
, (4)

where
∑

y′ denotes the covariance matrix of the selected weak tex-

tured patches and λmin

(∑
y′
)

represents the minimum eigenvalue

of the matrix
∑

y′.
Once the noise level has been calculated, the window size of

Gaussian filter is modified dynamically and adapted according to
the following criterion: if the noise level is high, the size of the
window will be increased, otherwise, the size of the window should
be decreased.

Note that this adaptive noise removal procedure is so far only used
in the local method pipeline. The computation was prohibitively
time-consuming in our implementation when applied to a full res-
olution astronomical image. The noise-level estimation iteratively
selects weak textured patches (7 × 7) and computes the noise level
σ̂ 2

n until σ̂ 2
n is unchanged. When applying this technique to a large

full resolution data set, the image will be divided into many small
patches needed for the iterative computation and selection of weak
textured patches, creating very long processing times.

For the global method, a fixed-sized Gaussian filter window is
used instead to give a preliminary set of results. Given sufficient
computing resources and optimized code, a global adaptive Gaus-
sian filter might yield even better results.

2.3.4 Layered object detection

Due to the large dynamic intensity range and the large ratio between
the area of the smallest and the largest objects presented in an
astronomical image, detecting faint objects is difficult. In order to
detect more faint objects, especially those in the neighbourhoods of
bright ones, a layered object detection scheme is applied based on
Otsu’s method (Otsu 1979).

Objects are detected by classifying pixels that belong to objects
and separated from the background according to a threshold. In his
paper, Otsu uses an algorithm to search for an optimum threshold
top, which minimizes the intra-class variance σ 2

ω (a weighted sum
of the variance within objects and that within the background), to

distinguish objects and the background. The intra-class variance σ 2
ω

is computed as

σ 2
ω (t) = ω1 (t) σ 2

1 (t) + ω2 (t) σ 2
2 (t) , t = 1, 2, . . . , Imax, (5)

ω1 =
t∑
0

p (i) , (6)

ω2 =
Imax∑
t+1

p (i) , (7)

where t represents all the candidate thresholds, Imax is the maximum
intensity of the image, p(i) is the value of the ith bin in the intensity
histogram of the image, ω1 and ω2 standard for the probabilities
(weights) of objects and the background classified by the threshold
t, and σ 2

1 and σ 2
2 are the variances of objects and the background,

respectively.
Using the threshold top, the image is converted into a binary image

where the pixels are mapped to 1 (where the original pixel intensities
below the threshold) or 0 (where the original pixel intensities above
the threshold). The pixels with value 0 are preliminary detected
objects.

Because of the high intensity of the brightest objects in each
sub-region, the initial detection threshold computed may not be ap-
propriate. This limiting factor is also mentioned by SEXTRACTOR,
which uses a simple median filter to suppress possible background
overestimations due to bright stars in each of their 32 × 32 image
tiles. Although median filter can be applied to improve the estima-
tion of the background for increasing the accuracy of the calculated
detection threshold, we found that relatively bright objects will still
cause fainter objects to be discarded with the background. To im-
prove this, we propose a layered detection scheme to detect fainter
objects in the neighbourhood of brighter ones.

As mentioned in Section 2.3.1, each sub-region divided by the
watershed segmentation method includes at least one bright ob-
ject. These bright objects can weaken the detection capabilities of
fainter objects. To reduce this adverse influence, we apply a layered
detection scheme in each sub-region partitioned as follows.

(I) Detect objects by Otsu’s method and only keep the large and
bright ones.

MNRAS 451, 4445–4459 (2015)
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Figure 7. Results of the layered object detection approach. Panel (a) shows
the detection results of directly using Otsu’s method to detect all objects,
and panel (b) shows the result obtained when adapting the layered detection
strategy to extract faint objects and bright objects separately. Comparing
panels (a) and (b), more faint objects can be detected by the layered detection
step.

(II) Subtract the detected large and bright objects from the trans-
formed image (the image obtained after background subtraction),
and mark the residual image as image A.

(III) Set the intensity of the body area of the subtracted large and
bright objects to the mean intensity of image A. This generates a
new residual image B.

(IV) Apply histogram equalization, adaptive Gaussian filter and
Otsu’s method again to image B to detect more faint objects. The
median filter is used in the detection results (the binary image
obtained) to remove very small objects as outliers.

(V) Combine the bright objects retained by step (I) and all small
and faint objects detected by step (IV) as the final detection result.

Fig. 7 demonstrates the results of the layered object detection.
Compared to Fig. 7(a), Fig. 7(b) clearly shows that more faint
objects are detected by this layered approach.

2.3.5 Deblending

When applying the layered object detection routine described in
the previous section, it is possible that a group of adjacent pixels
are detected as a single object or overlapping ‘blended’ objects.
Deblending is a separation scheme that decides whether a set of
pixels (a preliminary detected object) should be separated into ad-
ditional objects. Here we apply the multi-threshold method which
is similar to the approach used in SEXTRACTOR. This method first
defines N thresholds exponentially spaced between the minimum
and the maximum intensity of the preliminary detected object in the
following form:

Ti = Imin · (Imax/Imin)(i/N) , i = 1, 2, . . . , N, (8)

where Imin and Imax are the minimum and maximum intensity of the
preliminary detected object, respectively, and N is the number of
the defined thresholds.

A tree structure is constructed by branching every time when
pixels above a threshold Ti can be separated from pixels below it. A
branch is considered as a separate object when at a branch level i of
the tree, there are at least two branches which satisfy the following
condition: the sum of intensity of each branch is larger than a certain
fraction p of the total intensity of the tree. The N and p parameters
are set to 32 and 0.001, respectively, in our experiment.

The outlying pixels which have a flux lower than the separation
thresholds Ti need to be assigned to their own proper objects. We
adapt the watershed segmentation method described in Section 2.3.1
to perform this separation. The objects identified by the multi-
threshold method are used as the seed points and, in the process,
consider the outlying pixels as objects that need to be merged with
the seed points. To complete the deblending process, the outlying
pixels are finally merged into their respective neighbouring objects.
Fig. 8 shows the results of a successful deblending operation.

Figure 8. The result of the deblending operation. Each group of black con-
nected pixels is considered as one preliminary detected object. Deblending
is used to check these objects and separate them as separately objects. A
real single object obtained by the deblending step is marked by an ellipse,
and plus signs represent the centre of objects.
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3 TESTS AND RESULTS

3.1 Data sets

Simulated astronomical data made public by the Large Synoptic
Survey Telescope (LSST) image simulation group and a sample of
observational data from the Deep Lens Survey (DLS; Wittman et al.
2002) are used to evaluate the accuracy of our approach.

3.1.1 LSST data set

The LSST ImSim data set2 (Connolly et al. 2010) is a high-fidelity
simulation of the sky. CCD images of size 4096 × 4096 pixels are
generated by simulating a large-aperture, wide-field survey tele-
scope and formatted as Flexible Image Transport System (FITS)
files. These images simulate the same sky field but with varying
airmass, seeing, and background. The ground-truth catalogues of
these synthetic images are also offered which are used to test and
evaluate the algorithm presented in this paper.

For the following benchmarks, the synthetic images
‘Deep_32.fits’ and ‘Deep_36.fits’ are selected to show the detection
results of our method and a competing method. Both of the images
contain the same airmass and sky background model but differ in
noise levels and seeing.

According to the catalogue provided by the LSST group, there
are 199 356 galaxies and 510 stars present in each LSST simulation.
Due to the large number of simulated galaxies and variables, most
of the galaxies are too faint in image space and overlap one another,
resulting in many barely visible or non-visible and hard-to-detect
objects. Therefore, before using these catalogues as the ground
truth, invisible galaxies are discarded by the following criteria: if the
magnitude (‘r_mag’ in the LSST catalogue) of a galaxy is smaller
than r_magt, it will be kept as a visible object; otherwise, it will be
discarded. r_magt is computed as follows:

r magt = r magmin + (r magmax − r magmin) · T , (9)

where r_magmin and r_magmax are the minimum and maximum
magnitudes of galaxies in the LSST catalogue, and T is set to 0.35,
which is a good value for keeping all objects that have the same
brightness as the objects that can be detected by our method and
SEXTRACTOR.

By removing non-visible objects, this pre-processing step allows
for accurate confirmation of detected objects with the ground-truth
catalogue. Hereafter, these processed ground-truth catalogues will
simply referred to as the ground truth.

3.1.2 DLS data set

The DLS data set3 used for testing is taken from a deep BVRz’
imaging survey that covers 20 sq. deg. to a depth of approximately
28th magnitude (AB) in BVR and 24.5 in z(AB). Our subsample
includes four FITS files of size 2001 × 2001. The survey was taken
by the National Optical Astronomy Observatory’s (NOAO) Blanco
and Mayall 4 m telescopes. The images ‘R.fits,’ ‘V.fits,’ ‘B.fits’,
and ‘z.fits’ in the DLS data set are observations of the same sky
area using four different waveband filters, chosen so as to include a
representative sample of objects and imaging artefacts.

2 http://lsst.astro.washington.edu/data/deep/
3 http://dls.physics.ucdavis.edu

Table 1. Detection results for the LSST data set.

Total detected True positives Precision rate
objects (%)

OM SE OM SE OM SE

Image:
Deep_32.fits 1433 1441 1310 1189 91.42 82.51
Deep_36.fits 1375 1386 1251 1138 90.98 82.11

Note. OM = our method; SE = SEXTRACTOR.

Since we lack a ground-truth catalogue, we compare the ob-
jects detected in different bands to gather a coinciding subset of
detected objects which are likely to be real. Based on these cross-
band identifications, we can reasonably estimate which objects are
true positives and false positives. Since the R band is used as a
detection band by the DLS survey due to its excellent depth and
seeing, we verify the detection results of other bands by checking
against the objects detected in the R band. In addition, we construct
a ground-truth subset based on objects detected by both our method
and SEXTRACTOR.

3.1.3 Raw DLS data set

In order to test our software on a more difficult real-world data
set, we selected a section from one of the individual unstacked
DLS R-band input images. This image had been flat-fielded and
sky-subtracted using the generic calibration data for DLS, other-
wise no additional processing had been done; this image is called
as ‘DLS_R_raw.fits’. An additional test image was generated by
applying Malte Tewes’ PYTHON implementation4 of Van Dokkum’s
L.A. Cosmic algorithm (Van Dokkum 2001) to remove obvious cos-
mic rays from the image. This implementation is a simple Laplacian
filter to remove unrealistically pointy sources. The generated im-
age is referred to as ‘DLS_R_cosmic_ray_cleaned.fits’. For both of
these images, although we lack a ‘ground-truth’ image, we can refer
to the equivalent stack of 20 DLS images at that sky location to learn
which detections should be considered real and which spurious.

3.2 Evaluation on simulated data

The first experiment is designed to test our global detection pipeline
on the LSST data set. We compare the accuracy of our method
to SEXTRACTOR using minor changes to SEXTRACTOR’s default pa-
rameters. The parameters ‘DETECT THRESH’ and ‘DETECT
MINAREA’ of SEXTRACTOR are set to 1.64 and 1, respectively, in
order to obtain the best detection and a comparable total number
of detected objects. When dealing with artefacts around large de-
tected objects, SEXTRACTOR uses a ‘cleaning step’ to remove them
while we use ‘open’ and ‘close’ morphological image processing
operators with radius 2 for each neighbourhood. After this removal,
detection results are compared to the ground truth. The detection
results for images ‘Deep_32.fits’ and ‘Deep_36.fits’ are shown in
Table 1, comparing the total number of objects detected and the true
positive detection rate.

Although we detect fewer total objects with our method, we
are able to identify 121 (8.91 per cent) more genuine objects
in the image ‘Deep_32.fits’. Within the total 1375 objects de-
tected by our method in the image ‘Deep_36.fits’, there are 113

4 http://obswww.unige.ch/∼tewes/cosmics_dot_py/
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Figure 9. Unique objects detected by our method and SEXTRACTOR. Panel (a) shows the detection result of exclusive to SEXTRACTOR, where squares mark true
positives and the plus signs mark false positives; panel (b) shows the exclusive detection results of our method, where ellipses mark real objects and the asterisk
marks a false detection. The black pixel regions without any marks are the objects detected by both methods.

Table 2. Unique objects detected by our method and SEXTRACTOR.

Image
Deep_32.fits Deep_36.fits

Objects detected by OM and not by SE:
True 228 219
False 112 108

Objects detected by SE and not by OM:
True 107 106
False 225 216

Note. OM = our method; SE = SEXTRACTOR.

(8.87 per cent) more true positives compared to SEXTRACTOR. Our
method also generates a smaller number of false positives.

We also compare the objects exclusively detected by each
method. Unique objects detected by each method in a 512 × 512-
sized sub-region of ‘Deep_32.fits’ are shown in Fig. 9. The numer-
ical detection results in the entire image are provided in Table 2.

Taking the unique detection results for the image ‘Deep_32.fits’
as an example, there are 340 objects (23.73 per cent of 1433 total
detected objects) that can be detected only by our method, and 228
(67.06 per cent) objects among them are real objects. SEXTRACTOR

uniquely detects 332 objects (23.04 per cent of 1441 total detected
objects) of which 107 (32.23 per cent) are real objects. Our method’s
unique detections are more than twice as likely to be real objects
compared to those only found by SEXTRACTOR.

Faint object detection is challenging and it is an important ‘cost
and value factor’ in terms of optimal use of telescope time and
higher density of objects. This makes a method that can detect
more faint objects valuable and attractive. The standard astronom-
ical magnitude ‘Rmag’ characterizes the brightness (large ‘Rmag’
values defining fainter objects). It is computed as

Rmag = zero − point − 2.5 · log10 (TS) , (10)

where ‘zero-point’ is the magnitude of an object that has only one
count and TS is the total data counts of star.

To evaluate the ability of detecting faint objects, a log-histogram
is used. This histogram does not represent the number of detected

objects with certain magnitude in each bin, but rather the logarithm
of that number. The log-histograms of objects detected in the image
‘Deep_32.fits’ by our method and SEXTRACTOR are plotted in Fig. 10.

Fig. 10 shows that the distribution of the log-histogram of our
method is wider than that of SEXTRACTOR (right side). The value of
largest magnitude of objects detected by our method is about 28,
while for SEXTRACTOR the largest magnitude is about 26. Fig. 10(a)
justifies our discarding of objects that are too faint to be possibly
detected in the ground truth and shows that the magnitudes of all
visible objects retained are visible by our method and SEXTRACTOR.

To further evaluate the accuracy of our method, object position
and angle are compared using the following two criteria:

(I) position difference, calculated as the Euclidean distance of
the detected objects’ centre and the centre of the same objects in
the ground truth, and

(II) position angle (the angle between the major axis of objects
and the x image axis) difference, computed as the absolute difference
between the position angle of detected objects and the true position
angle of the same objects in the ground truth.

The average position difference of objects detected in the image
‘Deep_32.fit’ by our method is 0.6921 pixels, and the average posi-
tion angle difference is 0.6054 rad; the average position difference
of objects detected by SEXTRACTOR is 0.7128 pixels, and the average
position angle difference is 0.7009 rad. Our method has, on average,
a more accurate centre-point location detection than SEXTRACTOR.
These results are plotted in Fig. 11 for position accuracy and Fig. 12
for angular accuracy.

Fig. 11 shows the position difference between detected objects
and their ground-truth counterparts. Comparing the dashed curve
and the solid curve, for objects with index smaller than 400 (i.e.
large and bright objects), our method’s location accuracy is worse
than SEXTRACTOR’s. This is most likely due to our finding the near-
est pixel to the centre rather than interpolating to a fractional pixel
location. However, for objects with an index larger than 400 (i.e.
relatively small and faint objects), our method performs better than
SEXTRACTOR. This may indicate that we have an advantage for cen-
troiding small and faint objects. Comparing the left and right plots
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Figure 10. Log-histograms of detected objects. Panel (a) shows the log-
histogram of the ground truth, panel (b) our method, and panel (c)
SEXTRACTOR. The horizontal axis represents the value of magnitude, and
the vertical axis represents the logarithm of the number of objects with that
magnitude.

in Fig. 12, the position angle difference (delta-PA) of objects found
by our method is generally smaller than SEXTRACTOR’s, especially
for small objects. This becomes apparent when comparing the circle
symbol objects, where our method is denser than SEXTRACTOR in the
range of delta-PA less than 0.4. This demonstrates that our method
is more accurate when describing the angular direction of objects.

To summarize, our method can detect more real and faint objects
than SEXTRACTOR (Table 1 and Fig. 10), and, on average, has better
location accuracy (shown in Figs 11 and 12). One limitation of our
method is location accuracy of large and bright objects compared
to SEXTRACTOR’s. Since SEXTRACTOR can detect more additional
objects that we cannot detect (Fig. 9 and Table 2), SEXTRACTOR and
our method can also be combined to detect objects more accurately
and obtain more real and faint objects, overall.

3.3 Applying our local method to observational data

In order to show the adaptability of our method, we test it on real
observational data. Due to lack of the ground truth, our detection
results in B, V, and z are compared to results in the detection R band.
Although this will bias our sample against objects with extreme
colours (and also variable sources), when we compare our results
to SEXTRACTOR’s results on the same data, the biases should be
comparable.

Our global method is first used to extract objects where the 30
brightest objects are selected as seed points to generate sub-regions.
Finally, our layered detection is carried out to detect objects. The
parameters ‘DETECT THRESH’ and ‘DETECT MINAREA’ of
SEXTRACTOR are set to 1.5 and 1, respectively, to detect a comparable
total number of objects. Fig. 13 shows the detection results of our
method and SEXTRACTOR for a 250 × 250 sub-region of the image
‘V.fits’. It can be seen that most of the objects detected exclusively
by our method are faint objects located near bright objects. Table 3
shows a quantitative comparison of the detection results.

Table 3 compares results for the different band images. Al-
though the R-band objects detected by our method are about
60 fewer than the objects extracted by SEXTRACTOR, we can
detect more objects in the V-, B-, and z-band images where
objects are generally fainter. When comparing the objects de-
tected in V-, B-, and z-band images to those in the R band,
our method detects 85.25, 81.71, and 76.66 per cent true
positive objects, while SEXTRACTOR detects 82.08, 83.8, and
74.27 per cent objects. Our method detects more objects in
V- and z-band images with a higher percentage of objects which
can be detected in the R-band image. Though the percentage of
the R-band matched objects in the B-band image is smaller (about
2 per cent) than that of SEXTRACTOR, the total number of the matched
objects (3524) is larger than that of SEXTRACTOR (2917). Overall, our
method detects more objects in V-, B-, and z-band images where
more faint objects are present. To obtain results with fewer false
positives, a user could use SEXTRACTOR to extract objects in the
image ‘B.fits’ and combine the results produced by both methods.

The distributions of the log-histograms of objects detected by our
method and SEXTRACTOR for ‘V.fits’ are compared in Figs 14(a) and
(b). This figure shows that the largest Rmag value (using instrumental
magnitudes, with no zero-point applied) for objects detected with
our method is about −2, while the largest magnitude for objects
found by SEXTRACTOR is about −3. Although there are a few false
positives in these results, this demonstrates that our method can
detect fainter objects than SEXTRACTOR.

Due to the DLS data set not having a ground truth,
we constructed a ground truth to compare both methods.
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Figure 11. Position difference of our method and SEXTRACTOR. The horizontal axis represents the index of real objects detected by our method and SEXTRACTOR.
(The smaller the index is, the larger and brighter the object is.) The vertical axis represents the value of the position difference. Dots indicate the position
difference of our method, and the star symbols indicate the position difference of SEXTRACTOR. The dashed curve and the solid curve result when fitting the
position difference of our method and SEXTRACTOR by a third-order least-squares polynomial, respectively.

Figure 12. Angle difference of our method and SEXTRACTOR’s. The horizontal axis represents the size of the major axis of real objects detected by our method
and SEXTRACTOR. The vertical axis represents the value of the position angle difference (delta-PA). Circle, star, and triangle symbols indicate the small-, middle-,
and large-sized objects, separately. Our method captures 43.04 per cent of objects with 2 < major axis < 10 correct to within 15 deg, while SEXTRACTOR only
achieves 28.75 per cent.

The ground truth of the DLS data set is constructed as
follows:

(I) compute the intersection of objects detected in the different
band images by our method and call this intersection Inter_our,

(II) compute the intersection of objects detected by SEXTRACTOR

in the different band images and call this intersection Inter_SE, and

(III) calculate the union of Inter_our and Inter_SE and view it as
the ground truth of the DLS data set.

Since the z-band image is a lossy image, we construct two differ-
ent ground truth of data set. One is constructed by computing the
intersection of the objects detected in all band images in the DLS
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Figure 13. Detection results obtained with SEXTRACTOR (a) and our method
(b). Ellipses in panels (a) and (b) represent objects that can be detected by
both methods, triangles in panel (a) represent the objects detected exclu-
sively by SEXTRACTOR, while the star signs in panel (b) represent the objects
detected uniquely by our method.

Table 3. Detection results for the DLS data set.

Total detected objects Matched objects Precision rate (%)
OM SE OM SE OM SE

Image:
V.fits 4421 4091 3769 3358 85.25 82.08
B.fits 4313 3481 3524 2917 81.71 83.80
z.fits 3115 2876 2388 2163 76.66 74.27

Note. OM = our method; SE = SEXTRACTOR. Matched objects are objects
detected in the images ‘B.fits,’ ‘V.fits’, and ‘z.fits’ that can also be detected
in the image ‘R.fits’. Our method and SEXTRACTOR detect a total of 6065
and 6126 objects in the image ‘R.fits’, respectively.

data set, called GT_RVBZ; the other one is called GT_RVB and it
does not consider the z band.

When the union is computed for both GT_RVBZ and GT_RVB,
we first include the mutually exclusive objects detected by both
our method and SEXTRACTOR. For objects found by both meth-
ods, we compute the averages of object descriptors (e.g., Rmag and

Figure 14. Log-histograms of objects detected in the image ‘V.fits’. Panels
(a) and (b) show the log-histograms of our method and SEXTRACTOR, sepa-
rately. The horizontal axis represents the value of magnitude and the vertical
axis represents the logarithm of the number of objects with that magnitude.

position) and add them into the ground-truth catalogue. The results
of comparing the two methods based on the constructed ground-
truth catalogues are shown in Table 4.

Table 4 shows the numbers of true positives for the detection
results of both methods. Our method can detect 82, 171, and 284
more real objects in the V-, B-, and z-band images compared to
SEXTRACTOR when using the lossy GT_RBVZ as ground truth. When
using GT_RBV as ground truth, our method detects 335, 413, and
212 more real objects compared to SEXTRACTOR. Our method has
overall better detection capability concerning fainter and smaller
objects. Regarding images where objects are brighter and larger, our
method has detection capability comparable to that of SEXTRACTOR.

The tests performed for the observational data set demonstrate
that our method is better suited for detecting fainter objects. Hence,
our method can also be used as an additional tool to detect the faint
objects that would be missed by SEXTRACTOR.
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Table 4. The number of true positives.

GT_RBVZ GT_RBV
OM SE OM SE

The average number of true positives in R.fits 2061 2070 3199 3212
The average number of true positives in V.fits 2053 1971 3197 2862
The average number of true positives in B.fits 2046 1882 3192 2784
The average number of true positives in z.fits 1991 1707 2003 1781

Note. OM = our method; SE = SEXTRACTOR.

3.4 Applying our local method to raw stacked DLS data set

To further evaluate our pipeline, we select a raw observational
data set that contains a noise not present in the previous data
sets.

In this data set, two unstacked DLS images are used as a
detection benchmark and one 20 × stacked DLS image named
‘DLS_R_stacked.fits’ as the ground truth. One of the unstacked im-
ages is an R-band image named ‘DLS_R_cosmic_ray_cleaned.fits’
from which we remove cosmic rays using edge detection. This data
set provides a high-noise test case for DLS. The other unstacked
image is the raw R-band image named ‘DLS_R_raw.fits’.

Detection is first applied to the ground-truth image, and then
to the unstacked DLS images, and a comparison is performed.
The detection results of our method are compared to the results
of SEXTRACTOR. The parameters ‘DETECT THRESH’ and ‘DE-
TECT MINAREA’ of SEXTRACTOR are set to 1.5 and 1, respectively,
to detect a comparable total number of objects in the unstacked im-
ages. The same parameters are changed to 1.33 and 1, respectively,
to detect a comparable total number of objects in stacked images
by our method.

Fig. 15 shows the object detection results of our method
and SE-1.33-1 for a 250 × 250 sub-region of the image
‘DLS_R_stacked.fits’. Unfortunately, we do not have ground-truth
data, and we cannot confirm that our method can detect more
objects than SEXTRACTOR; nevertheless, we can state that the ob-
jects exclusively detected by our method are faint objects. As
mentioned above, combining the detection results of our method
and SEXTRACTOR can increase the total number of detected faint
objects.

Table 5 shows the detection results by both methods.
Considering Table 5, when comparing our method to SE-

1.5-1, our method can detect 823 more objects than SE-1.5-1.
Although both methods can detect similar numbers of objects
in ‘DLS_R_raw.fits’ and ‘DLS_R_cosmic_ ray_cleaned.fits’, our
method is able to detect the largest percentage of true objects
(50.25 per cent). When compared to SE-1.33-1, our method and
SE-1.33-1 can detect almost the same objects (nearly 6300) in
the image ‘DLS_R_stacked.fits’. Although SE-1.33-1 can detect
more objects in the two unstacked images compared to SE-1.5-1,
the results also include more false objects (about 2 per cent more
false objects than resulting from our method). In summary, our
method can detect more objects with less false objects compared to
SEXTRACTOR.

The log-histogram distribution of objects detected by our method
and that by SE-1.33-1 for ‘DLS_R_stacked.fits’ are shown in
Figs 16 (a) and (b). It can be seen that the largest Rmag value
for objects detected by our method is about −2, while the largest
magnitude for objects found by SEXTRACTOR is about −4. This
demonstrates that our method can detect fainter objects than SE-
1.33-1, although our method and SE-1.33-1 detect almost the same
number of brighter objects in ‘DLS_R_stacked.fits’.

Figure 15. Detection results obtained with SE-1.33-1 (a) and our method
(b). Ellipses in panels (a) and (b) represent objects that can be detected by
both methods, triangles in panel (a) represent the objects detected exclu-
sively by SEXTRACTOR, while the star signs in panel (b) represent the objects
detected only by our method.

4 C O N C L U S I O N S

A novel approach for the detection of objects (stars and galaxies)
in optical astronomical images has been proposed. Irregular sub-
region division was constructed using the watershed segmentation
algorithm. Adaptive noise removal strategy based on noise-level
estimation and layered object detection step were effectively applied
in each sub-region.
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Table 5. Detection results for the raw stacked DLS data set.

DLS_R_stacked.fits DLS_R_raw.fits DLS_R_cosmic_ray_cleaned.fits
Total detected Total detected Matched Precision Total detected Matched Precision

objects objects objects rate (%) objects objects rate (%)

Method:
OM 6381 2783 1392 50.02 2762 1388 50.25

SE-1.5-1 5558 2750 1294 47.05 2493 1226 49.18
SE-1.33-1 6387 3585 1698 47.36 3335 1629 48.85

Note. OM = our method; SE-1.5-1 = SEXTRACTOR using parameters ‘DETECT THRESH’ 1.5 and ‘DETECT MINAREA’ 1, SE-1.33-1 = SEXTRACTOR

using parameters ‘DETECT THRESH’ 1.33 and ‘DETECT MINAREA’ 1. Matched objects are objects detected in the images ‘DLS_R_raw.fits’ and
‘DLS_R_cosmic_ray_cleaned.fits’ that can also be detected in the image ‘DLS_R_stacked.fits’.

Figure 16. Log-histogram of magnitudes of objects detected in the image
‘DLS_R_stacked.fits’. Panel (a) shows the log-histogram of the magnitudes
of objects detected by our method. Panel (b) shows the log-histogram of the
magnitudes of objects detected by SE-1.33-1. The horizontal axis represents
the magnitude and the vertical axis represents the logarithm of the number
of objects having that magnitude.

We have compared results obtained with our software tool and
with SEXTRACTOR. Specifically, our tool is particularly suited for
detecting objects in regions that contain objects with low contrast
relative to the background, or are very close to bright and large

object. Our tool can serve two purposes. It can be used as a stand-
alone tool for processing astrophysical images or it can be used
in combination with another tool, such as SEXTRACTOR, to increase
the overall number of correctly recognized stars and galaxies. Con-
sidering the results discussed in this paper, it can be said that our
method, when used in conjunction with a tool like SEXTRACTOR,
identifies about 10 per cent additional true objects. Assuming a
power-law distribution of faint object magnitudes with α = 0.6
(uniform spatial distribution), our 10 per cent improvement in faint
object density would be equivalent to 0.07 mag in additional survey
depth, or approximately a 13 per cent decrease in the survey time
required to reach a desired number density of galaxies per square
arcminute. Assuming that these galaxies are not defective for some
other reason (such as unreliable noise properties or shape bias),
these expanded detection methods could measurably improve the
speed and/or depth of large astronomical surveys such as LSST
and PanSTARRS. A public version of our code has also been made
available.5

In the future work, we will focus on improving the location accu-
racy of large object detection. We also plan on adding classification
support for the detected objects.
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