Chapter 2
Visualization techniques for trivariate data

2.1. Existing methods and terminology

Several methodologies for visualizing trivariate data have been outlined in the first
chapter. Contemporary computer graphics equipment is capable of performing mil-
lions of arithmetic operations per second, providing an excellent tool for rendering
three-dimensional data sets in real time. All techniques presented here are designed
to allow interaction with the user.

Imaging three-dimensional data is known as volume visualization or vol-
ume rendering. Algorithms based on ray-tracing have been widely used for vol-
umetric data, e.g., in the medical field ([Fuchs et al. ’89], [Kajiya & Herzen '84],
[Levoy 88,°90], [Ney et al. '90], [Sabella ’88], [Tiede et al. ’90]). Considering the
huge amount of data, ray-tracing is undoubtedly computing-intensive and hardly
interactive. In [Foley et al. 90| nearly real time computing of ray-traced images
is discussed. All these algorithms simulate the behavior of light rays (X-rays, for
instance) passing through a finite volume containing the data to be visualized. “Ob-
jects” inside this volume usually appear more or less translucent. In Figure 2.1.,
CAT scan data (68 axial slices, each containing 64 - 64 integer density values in

{0,1,...,255}) of a human skull are rendered using the algorithm from [Levoy ’88].

Fig.2.1. Skull rendered using Levoy’s algorithm for CAT scan data.

Several rendering techniques are extensions of the bivariate to the trivariate
case. In order to make use of lower-dimensional methods, a three-dimensional vol-
ume is intersected with a hyperplane, the trivariate function is restricted to this
plane and rendered only for the single slice obtained (see examples in [Banchoff
’90]). Numerous volume visualization techniques based on drawing graphs of bi-
variate functions and general overviews can be found in [Drebin et al. ’88], [Nielson
et al. '91], [Hamann ’90a], and [Nielson & Hamann ’90]. Algorithms based on
approximating contours of trivariate functions are not discussed in this chapter.
Generating linear contour approximations and modeling them is the content of the
following chapters. A definition is given to understand the common nomenclature

used in combination with visualizing and modeling multivariate data.

Definition 2.1. A scattered trivariate data set is the set
{ %7, fi)) = @i, 95,2, fi) | xi € R?, fi € R, i=0..n }, (2.1
a rectilinear trivariate data set is the set

{ (xi%, fi) = (@i, Y5, 2k, fij k) | Xi € R ficR,i=0..n4j= 0..ny,k=0...n, }

(2.2.)
Often, these two data sets are simply referred to as scattered or rectilinear data. It is
this kind of data that is visualized and modelled. Physical measurements are usually
given as scattered data, whereas rectilinear data arise from evaluating some known
trivariate function in a structured fashion. The geometry of an equidistantly-spaced

rectilinear data set is directly reflected by the data’s indices:

. Tp, — o .
T, =Ty +1 —=—— 1 =0...ng,
naz
. Yn, — Yo .
Yi=yo+J) ——— = 0..ny,
Ny
Zn, — 20
2 =20+ k 22— k=0..n,.
nZ

The convex hull C of a rectilinear data set is therefore given by

C = [0, Tn,] X [Y0,Un,] X [20, 2n.] = [Tmin; Tmaz] X [Ymin, Ymaz] X [Zmins Zmaz]-
In the case of scattered data, there is no underlying structure hidden in the geometry
of the data points. For modeling purposes, the convex hull of scattered data points
is split into a set of tetrahedra, usually, to obtain the Delaunay triangulation implied

by the points (see [Preparata & Shamos ’90]).

9

The different approaches used in computer-aided geometric design to model
scattered or rectilinear data are not reviewed in detail in this dissertation. Gen-
erally, the modeling process can be divided into derivative estimation (typically,
first and second order derivatives), construction of some trivariate function approx-
imating the given function values and evaluation and visualization of that function.
Normally, the function constructed to approximate either scattered or rectilinear
data is evaluated on a rectilinear grid. This is the motive to primarily develop

rendering techniques for rectilinear data sets.

Methods addressing the problem of estimating derivatives and approximating
scattered and rectilinear data can be found in [Alfeld ’89], [Barnhill & Little '84],
[Boehm et al. ’84], [Dahmen '89], [Davis ’75], [Farin ’83], [Farin '90], [Franke &
Nielson ’91], [Hoschek & Lasser '89], [Sederberg '85], [Stead ’84], and [Worsey &

Farin ’87].

2.2. Domain subdivision and transparency techniques

The objective is to develop simple algorithms which can easily be implemented and
can be used in a real-time, interactive fashion. All algorithms described here visu-
alize rectilinear data sets. The domain-subdivision technique is based on extracting
subvolumes V;. ; ; from the convex hull C' of the data points and coloring the surfaces
of these subvolumes according to the function values on the surfaces of each such

subvolume (V;. s is a box defined by its width, depth, and height).

Here, the idea is to allow for space between all subvolumes so that it is possible

10
to “look inside” the data set when all subvolumes are rendered simultaneously. It
is sufficient for this technique to specify resolution parameters g, g, and g, for the
three spatial directions and ratios oy, oy, and o, determining the relative length of
space between two consecutive subvolumes and an edge of a subvolume. Denoting
the three edge lengths of a subvolume by Az, Ay, and Az, a subvolume V, , ; is

given by its left-front-lower corner point (z,,ys, 2)T and its three edge lengths:

T — Loms
- 1 A Ag = e men =0...(qg, — 1
'/L.T‘ xmzn + r (+ a.’l)) '/E’ Z qm + (yw(q.z _ 1)) r (Qm)7

Ymazx Ymin
= nt+s(1+a,) Ny, Ay= , s§=0...(g, — 1),
Ys = Ymin (y) Y Yy 1y + 0y (qy 1) (Qy)

z — Zmi
= Zmin +1 (1 A Ny = T2 TR t=0..(g, —1).
2t Zmin + ("I' az) Z, 4 0z + a, (Qz _ 1) 9 (Qz)

If the function to be rendered is known, it is evaluated at the eight corner points
of each subvolume V; , 4; if it is not known, i.e., one is solely given a rectilinear data
set, function values for V. ; ;’s corner points are obtained by trilinear interpolation of
those eight given function values in the rectilinear data set associated with a certain
corner point. For example, if x, € [x;, Ti11], Ys € [Yj, Yj+1], and 2z € [2k, 2k41], the
function value at (x,,ys,2:)T is the value of the trilinear interpolant to the set of
known values {fi j k, fi+1,5.r s fit1,541,k+1} ab (Tr, Ys, 2¢6) T

Now, minimal and maximal function values are determined among the corner
function values of all subvolumes. They are denoted by fin and fpez- A linear
map is used to assign (integer) color values to each corner point of each subvolume.

If ¢iin and g, are the extreme (integer) color indices referring to a predefined

11

color map, a (real) corner function value f is mapped to the color (-index) ¢, where

[fmaz — [J = Jfmin "

Fanaz — Frin ™™ " Fonae — Fruim "

Each face of the subvolumes is then Gouraud-shaded, i.e., a face’s color is
obtained by bilinear interpolation of the four colors (color-indices) associated with
that face. If the function to be rendered is known and the extension of a subvolume
Vst (given by Az, Ay, Az) is relatively large compared to the extension of the
convex hull C of the entire data set, it is appropriate to evaluate the function
at more points than at the eight corner points of each subvolume. In principle,
(k+1)(I+1) function (and color) values are determined for points x; j,¢ = 0...k, j =
0...l, arranged in a rectilinear fashion on a subvolume’s face. Each two-dimensional
grid cell on a single face, given by the four points x; ;, X;41,j, Xi j+1, and X;41 j41,
is then Gouraud-shaded itself.

Rendering all ¢, g,q, subvolumes and rotating them in real-time is possible. The
impression of the three-dimensional structure can further be improved by drawing
lines between the centroid of V. s ; and the centroids of the six “neighbor” subvol-
umes Vi_q15¢, Vig1,s,t, -y and Vi 5 141. Two examples for the domain-subdivision
method using different resolution parameters are shown in Figures 2.2. and 2.3.
The trivariate function visualized in both cases is
f(z,y,2) =15 (e—0-005((z—10)*+(y—10)*+(2—10)*)

+ ¢—0.0025((z—15)%+(y—20)*+(2—20)*) +e—0.005(($—25)2+(y—25)2+(z—25)2))’

z,y,z € [0,39]. Low values are mapped to green, high ones to white.

Fig. 2.2. Domain subdivision method for exponential function,
QEZQy:CIz:5; Olm=ay:az:1.

Fig. 2.3. Domain subdivision method for exponential function,
QwZQyZQZ:& am:ay:a’z:2-

12

13
The domain-subdivision technique can also be applied to volumes obtained by
a map from three-dimensional uvw—space to three-dimensional zyz—space,
(z,y,2) = (z(u,v,w), y(u,v,w), z(u,v,w)),
U € [Umin, Umaz]s U € [Umin, Vmaz], W € [Wmin, Wmaz)-
Here, z, y, and z are continuous functions in all three variables. The function
to be rendered is defined in zyz—space and the subdivision parameters actually
refer to uvw—space. Using this approach, it is possible to visualize functions de-
fined over more general volumes, such as volumes bounded by spheres, ellipsoids or
paraboloids. Figure 2.4. shows the function
f (@, y,2) =cos (2 /a2 +y?+22),

defined over a part of the unit ball.

Fig. 2.4. Domain subdivision method for trigonometric function,
unit ball, g, = ¢, = quw =5, Qu = ay = Qyy = 2.

14

The volume considered is the set of points (z, v, 2)T, where
(z,y,2) = (ucosv, usinvcosw, usinvsinw), u € [0,1], v € [0,n], w € [0, 37].

Some graphics-workstations support a technique called alpha blending. It is
a tool used for rendering transparent objects. Objects to be visualized in three-
dimensional space are approximated by a set of planar polygons, where the term
polygon is understood as the area bounded by a planar, closed, and non-self -
intersecting piecewise linear curve. Alpha-blending requires an ordered set of poly-
gons sorted with respect to their distance to the screen. Among a polygon’s corner
points one can use the one closest to the screen as sorting criterion.

A parameter, denoted by ¢, specifies the degree of transparency of polygons. If
Cotd 18 the color currently displayed at a screen position (¢, j), and another polygon
is to be rendered covering this particular area of the screen, the new color ¢, for
(¢,7) is obtained by linear interpolation of the current color and cpey, the color of
the polygon at (¢,7) : cpew = (1 —t)Cpoly + tcota, t € [0, 1]. This implies that objects
appear non-transparent, if ¢ is 0.

In order to utilize alpha-blending, a trivariate function defined over [zg, z,,] X
[%05 Yn,] X [20, 2n,] is evaluated on a rectilinear grid yielding (ny +1)(ny +1)(n, +1)
points and function values. Three sets of polygons are constructed: the first set
consists of rectangles parallel to the xy—plane, the second of rectangles parallel to
the xz—plane, and the third of rectangles parallel to the yz—plane. Each rectangle
in the rectilinear grid in the first set is defined by the points x; ; k, X155, Xi j+1 k5

and X;41,j+1,ks ¢ = 0...(nz — 1),5 = 0...(ny — 1), k = 0...n,. Similarly, one generates

15
the rectangles of the other two sets. Again, the function values at these points
determine the colors used for rendering.

The transparency parameter ¢ and an orientation for the domain must be spec-
ified. Sorting all 3 nynyn, +mngny, +ngzn, +nyn, rectangles becomes an obstacle for
using alpha-blending as an interactive visualization technique with high resolution
parameters ng, n,, and n,. Real-time performance can be achieved for varying ¢ and
fixed domain-orientation, but not conversely. The re-sorting of all rectangles takes
too long in this case. In Figures 2.5. and 2.6., a gas-concentration is shown using
different values for ¢ (see [Long et al. ’89]). Transparency definitely increases the
visual understanding of a trivariate function by providing the possibility to perceive

contours inside the function’s domain.

Fig. 2.5. Domain subdivision and transparency,
Ng =ny=n, =8, t=0.5.

16

Fig. 2.6. Domain subdivision and transparency,
Ng =Ny =n, =8, t=0.95.

2.3. Slicing methods
Slicing methods are based on intersecting the domain D of a trivariate function
with a hyperplane
P={x|(x—x%0)-n=0, x,x9 € IR}, n normal to P }

usually determining an area A bounded by a closed polygon. The trivariate function
to be rendered is then restricted to A, evaluated and rendered for A only.

It is supposed that D is [Zmin, Tmaz| X [Ymin, Ymaz] X [Zmins Zmaz], and the
hyperplanes used have normal vectors n; = (1,0,0)%, ny = (0,1,0), and n3 =

(0,0,1)T. Three mutually perpendicular planes P;,i = 1,2, 3, are defined such that

17

A; = PN D # (). The trivariate function is then evaluated on three (k; +1)(l; + 1)
rectilinear grids, one grid per area A;. These three areas can be visualized in two
different ways.
The first possibility to visualize the function on all three areas A; can be char-
acterized as follows:
e assign colors (color indices referring to a predefined color map)
to each point in each rectilinear grid,
e use Gouraud shading to color each rectangle given by the points
Xy Xbyg o X1y Xig g gp1y T =0.(ks — 1), s=0...(I; — 1),
1 =1,2,3, in each rectilinear grid and
e allow the user to interactively move any of the hyperplanes P;
in z—, y—, and z—direction, respectively.
Rotating the three hyperplanes in real-time and modifying the resolution parameters
k; and [; can be accomplished interactively as well. In Figures 2.7. and 2.8., the
same gas-concentration is visualized as in Figures 2.5. and 2.6. Depending on the

data to be rendered, one might prefer a color map using multiple colors or a single

color.

Fig. 2.7. Slicing method, coloring hyperplanes, multiple colors,
ki1 =11 =80, kg =13 =130, k3 = I3 = 20.

Fig. 2.8. Slicing method, coloring hyperplanes, single color,
ki1 =1, =80, ko =13 =130, k3 = I3 = 20.

18

19

The second possibility to visualize the function on all three areas A; is similar

to the standard procedure rendering a bivariate function. One generally evaluates a

bivariate function over a specified (rectangular) domain. The result is a set of two-

dimensional (domain-) points with associated function values. Points and function

values combined are then interpreted as a set X of three-dimensional points yielding
the graph of the bivariate function:

X = { (@i,y. fi ;)T |i=0.k, j=0..0}.
The points in X are usually mapped into [0, 1]3. The graph can either be a curve
network of piecewise linear curves or a shaded surface. In the first case, curves are

defined by the line segments

(@i, v, fi)T (iv1, Y5, fixr,)T, i=0..(k—1), j=0..1 and

(@i, 5, fi ;)T (@i, yjgn, fije)T, i=0..k, j=0...(I-1).
In the second case, a surface is defined by two sets, I; and I, of index triples, each
triple referring to three points in X,
I = { (Gy3), G+ 1,5), G+ 1,5 +1)) | i =0.(k— 1), j = 0..(L— 1) } and

I, = { (G, 3), i+ 1,5 +1),(i,5+1)) | i=0...(k—1), j=0..(0— 1) }
Each triangle determined by an index triple is shaded on the screen.

To utilize this rendering technique for a trivariate function, the function is
restricted to the three areas A;, 1 = 1,2, 3, again, evaluated on a rectilinear grid
for each A; and finally visualized as a set of three graphs, each graph either a

curve network or a shaded surface. It is convenient to choose P; = {x|a: =c €

[xminaxmaa:]}a P2 = {X‘y =cy € [yminaymam]} and P3 = {X‘Z =c3 € [Zminazmam]}-

20

The curve networks or shaded surfaces are then plotted over planes parallel

to the zy—, xz—, and yz—plane, respectively. Special care must be taken to avoid
intersections among the three graphs. To gain a better visual understanding of
the position and orientation of the three areas A; relative to each other and to the
trivariate function’s domain, the areas A; are represented as single-colored rectan-
gles in a box indicating the function’s domain. Figure 2.9. is an example for this
surface-based rendering technique using the same exponential function as in Figures

2.2. and 2.3.

Fig. 2.9. Slicing method, bivariate surfaces, Gouraud-shaded,
ki=ko=ks =l =1l3=13 = 30.

