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Figure 3.6. shows a piecewise triangular contour approximation for the function
f(x) = 1.2 ((z —10)? — (y — 10)® + (2 — 10)?) and the contour level f(x) = 60.
The trivariate function is evaluated on an equidistantly spaced rectilinear data grid

of 21-21-21 points in [0,20]3. All contour triangles are rendered using flat shading.

Fig. 3.6. Triangular approximation of contour level f(x,y,z) = 60
for f(z,y,2) = 1.2 ((z —10)? = (y — 10)2 + (2 — 10)?), =,y,z € [0,20].
Remark 3.13. At this stage of the triangulation process the quality of the triangu-
lation within a single cell is not taken into account. As soon as one has obtained the
whole set of triangles approximating the contour throughout all cells, smoothness

criteria can be used to improve the triangulation.
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3.3. Computing topological information for a piecewise triangular
trivariate contour approximation
From a computational point of view, a rectilinear trivariate data set is investigated
iteratively, cell by cell, to generate a contour approximation. Considering a single
cell three tables are established, the first table storing all the contour points with
their three-dimensional coordinates (ordered),
Y = { (i, % 7)) = (4, 24,95, 2) | i =0..ng — 1 },

a second table defining which vertices in the first table constitute line segments of

closed polygons on the cell’s faces (ordered),

E = {(jvj,v}) | j=0.nc—1},

1

Y;

and ’UJQ- being indices referring to Y, and a third table (derived from E) specifying
which line segments (ordered) form the edges of closed polygons on the cell’s faces,
P = {(p, eg,ezl,,...,ezp_l) | p=0..m—1},
e’;, k = 0...n, — 1, being indices referring to E.
The three tables Y, E, and P are for temporary use only. As soon as a trian-
gulation for all the closed contour polygons in the set P has been computed, the

contour points from the temporary table Y are copied into a permanent, global

vertex table V' (ordered),
V = { (?:,XiT) = (i,xi,yi,zi) | 1= 0...’1?,1, -1 }, (3.12.)

containing all contour points found throughout the whole data set. The triangles

constructed in a single cell’s interior are also added to a permanent, global table T
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defining the overall triangular contour approximation,
T={T,=(tv},viv}) [ t=0..n—1}. (3.13.)

Having computed the complete set 7 of all triangles approximating a certain
contour, it is essential to derive topological information still “hidden” in the tri-
angulation. Data reduction algorithms and surface generation schemes commonly
require neighborhood information. An algorithm is given that computes the neigh-
bors of each triangle considering the table 7 only. The contour approximation for
f(u) = « might be split into several non-connected parts, as mentioned before.
Therefore, it is also necessary to know to which part a particular triangle belongs
to if one wants to model the different contour parts separately.

Algorithm 3.1. determines the neighbors for each triangle, i.e., for a given
triangle T; the algorithm generates the indices of its maximal three neighbors in 7.

Algorithm 3.1. Neighborhood

Input:  table 7 of triangles T;, each given by its own index (referring
to T) and its three vertex indices (referring to V).

Output: number of neighbor triangles and their indices (referring to 7))
for each triangle T; in 7.

fori=0ton; —1
( ent:=0; /* number of neighbors */
J:=0;
while 7 < n; and ent < 3
(if 4i# j and T; and T} are neighbors
then
( ent:=cnt+1;
cnt — th neighbor of T; := j;

J=3+1

number of neighbors of T; := cnt;

)
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This algorithm is of order O(n;?) with respect to the total number of triangles.
Its performance can be improved by storing the index-triple (¢, j, k) of the left-front-
lower corner of the cell C; for each triangle T; when T; lies in Cj’s interior. Thus,
the search for the neighbors of a particular triangle inside a cell C; can be restricted
to the cell Cj itself and its six neighbor cells, C;_1 j x, Cit1,5,k) Cij—1,k> Ci j+1ks
Ci.jk—1, and C; j k1. Hence, order O(n;) can be achieved.

Two triangles in 7 belong to the same part of the contour approximation if
there is a path from one triangle to the other one such that all triangles constituting
this path determine pairs of neighbor triangles (Definition 3.9.). To effectively
compute the part (index) a particular triangle belongs to, the following algorithm
is used:

At the beginning all triangles share the not-yet-assigned part index —1. The
first triangle Ty in 7 is assigned to the first part with index 0. For all the other
triangles T, one checks among its neighbors, whether at least one of them has
already been assigned to some part. If none of the neighbors has been assigned yet,
a new part (index) is introduced for triangle T; if at least one among its neighbors
already belongs to a certain part, the minimal part (index) among all T}’s assigned
neighbors is selected as T;’s part (index). If the neighbors of T; which are assigned
to a part do not all agree with this minimal part (index), all triangles in 7T assigned
to such a different part (index) must now also be assigned to the selected minimal

part (index).
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Algorithm 3.2. Part of contour

Input:  table 7 of triangles T} (including the neighborhood information).
Output: part index for each triangle which determines the part
of the contour approximation it belongs to.

/* initially all triangles have a not-yet-assigned part index —1 */
p:=0; /*first valid part index */
fort=0ton;—1
( determine minimal part index min among
all the part indices of T}’s neighbors;
if min = —1
then
( part index for triangle T} := p;
p:=p-+1; /* another part of contour introduced */

else
( part index for triangle T; := min;
if there is 1 [are 2| valid part index p [indices p, p] # min
among T}’s neighbors
then B
( part index for all triangles assigned to p [p, p| := min;
/* connecting triangle has been found */
p:=p—1[2]; /* reduce number of parts appropriately */

The case in brackets (“[ |”) in algorithm 3.2. indicates the situation when a
triangle has three neighbors with valid part indices (# —1) which are all different
from each other. At the end, each triangle is assigned to a certain part of the
triangular contour approximation. Obviously, algorithm 3.2. is of order O(n;).

The principal of selecting a part (index) for a triangle is shown in Figure 3.7.
The minimal part (index) among T5’s neighbors is 1. Therefore, T5 as well as all

triangles belonging to part 2 are assigned to part 1.
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not
assigned

Fig. 3.7. Assigning the part index to a triangle in a contour triangulation.

Remark 3.14. It might be worth considering some methods for improving the
triangulation of the contour approximation at this point. Knowing the neighbors for
each triangle in 7, the “max — min” or “min — maz” angle criteria could be used
to iteratively eliminate triangles with small angles ([Cline & Renka ’84], [Lawson
"77]). Common algorithms swap diagonals of quadrilaterals (given by two neighbor
triangles) in order to enhance the angle configuration.

Considering the fact that the triangulation to be improved is not a planar
triangulation, different optimization criteria might be appropriate. An algorithm
to increase the smoothness of a two-dimensional triangulation in three-dimensional

space is described in [Choi et al. ’88]. There, the (local) quality measure of a trian-
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gulation is the angle between normal vectors of neighbor triangles. The objective

is to minimize these angles by swapping diagonals of quadrilaterals.

3.4. Gradient approximation for rectilinear data

It is not the purpose of this chapter to discuss or derive new ways for gradi-
ent/normal approximation in full detail. Rather, the principal problem is stated,
and general solutions are reviewed in a more survey fashion. Gradient/normal in-
formation is necessary for curvature approximation, data reduction, and surface
generation, discussed in the following chapters. The quality of these subsequent
modeling steps is very much dependent on the quality of the gradient/normal esti-
mation.

In order to construct trivariate functions approximating trivariate data sets
given in either rectilinear or scattered form or to generate smooth surfaces fitting
the different parts of a given two-dimensional contour triangulation of some trivari-
ate function, gradients and normals must be estimated if positional information is
available only. In the case of normal vector approximation, outward unit normal
vectors are estimated defining oriented tangent planes for all contour points in the
contour triangulation.

General information about the construction of bivariate/trivariate functions
approximating scattered data can be found in [Alfeld ’89], [Barnhill '85], [Foley
'87], [Franke & Nielson '91], [Hoschek & Lasser '89], [Nielson & Franke 83|, and

[Worsey & Farin ’87]. In [Stead ’'84] different schemes are compared for estimating
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gradients. A local operator generating normal vector estimates for rectilinear a data
set in an “optimal” sense is described in [Zucker & Hummel '81].

With respect to the strategy pursued here, it is of greater interest to approxi-
mate normal vectors since it is a two-dimensional contour triangulation which will
be modelled later on. One can choose among two possibilities how to obtain normal
vector estimates. The first possibility consists of constructing a trivariate function
locally approximating the rectilinear/scattered data, hence also defining gradients
at the points in a contour triangulation. The second possibility rather derives nor-
mal vector estimates from a contour triangulation directly.

If the first possibility is chosen, it is important to realize that the gradients at
contour points also determine normal vectors:

Theorem 3.7. Let f : IR*—IR be a C* function and <7 f (xo) be non-vanishing. Let
xo be a point in C¢(a) and v any tangent vector to C¢(a) at xo; then <7 f(x0) is

normal to the contour Cr(a) at Xo,

V/f(xo) v = 0. (3.14.)

Proof. Let c(t) C Cf(a) be a curve on the contour such that c¢(0) = x¢ and

¢(0) = v; considering the fact that f(c(t)) = «, and using the chain rule yields

0= g£f(c(t)],o = Vf(x0) €(0) = v f(x0) v.
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Definition 3.14. Let f : IR*—IR be a C' function and v/ f(x¢) be non-vanishing.

The outward unit normal vector to C¢(a) at x¢ is the vector

ny = (vf(xo) / ||V F(xo)l| )" (3.15.)

where ||(z,y,2)|| = \/(z2 + y2 + 22). The oriented tangent plane at x, is given

by the set of all points x = (z,y, 2)T € IR? satisfying the equation

V£ (x0) (= z0,y — y0,2 — 20)" = 0. (3.16.)

Choosing the alternative of constructing an approximating function in a neigh-
borhood around a contour point, one must be aware to keep the original rectilin-
ear/scattered trivariate data set.

A method for normal estimation which has proven to yield rather good results
is discussed in [Zucker & Hummel '81]. Summing up the approach, Zucker reduces
normal estimation to a minimization problem. The expression minimized is

| f(x) = Eap,e(x) [I-
Here, f(x) is a known trivariate function defined over the unit ball B (B = {x|2? +

y?+ 22 < 1}) and E{,p 3 (x) is the function

41, ifaz+by+cz>0;
Elap.c} (x) = { —1, otherwise.

The coefficients a, b, and ¢ are the unknowns defining an oriented plane through
the origin with normal vector n = (a, b, ¢)” used as the normal estimate. The norm

is the Lo-norm,
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£ = ) [ [ [ F2(x) dodydz.

The result is then applied to the discrete case, given a rectilinear data set with
equal, equidistant spacing in all three spatial directions, A = Az; = Ay; = Az,
all 4, 7, k. A simple, local operator is derived in order to optimally approximate the
outward normal vector at a grid point x; fixed as the origin of a local coordinate
system for the discrete minimization problem.

Theorem 3.8. Considering solely the 27 neighbor data (X;tr j+s k+t, fitr j+sk+t),
r,s,t € {—1,0,1}, nearest to (x;*, fi) in an equally, equidistantly spaced rectilinear
data set, a normal vector n; = (nxi, ny;,nz)’ at x; is optimally approzimated by

nay = E T Citrjtsk+t Jitrjt+sktts
re{—1,1}, s,te{—1,0,1}

ny; = E S Citr,jt+s,k+t Jitrjtsk+ts
Se{—l,l}, Tate{_17071}
nz = E t Citrjtskrt fitrjtshtts (3.17.)

te{-1,1}, r,se{—1,0,1}
where Ciyr jis k+t = 7m, subject to minimizing || f(x) — E{q,c}(x) || in this
particular discrete case.
Proof. See [Zucker & Hummel ’81], pages 326 and 329-331.
Normalizing n; yields the desired outward unit normal vector at the point x;.
The principle for computing the z-coordinate of n; is sketched in Figure 3.8. The

involved function values and their weights for the normal vector approximation at

a grid point x; are shown using Zucker’s “3 -3 -3” operator.
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Fig. 3.8. The 18 function values and their weights needed for approximating
the x—coordinate for a normal using Zucker’s operator.
The normal vector for a contour point x; € V' (formula (3.12.)) on an edge of
a cell C; is approximated by linear interpolation of the estimated normal vectors
at the rectilinear grid points defining that edge, a normal vector in Cj’s interior is
approximated by trilinear interpolation of the eight normal vectors estimated for
the cell’s corner points. For the case that a contour point x; is along the cell edge

ab one chooses the outward normal vector n; at this point to be

||x; — al
—(1—t ¢ . p= XAl 3.18.
( )n‘x=a +in|, _, b — al ( )

an = an ‘X:Xi

where ¢ € [0,1] and ||(x,y, 2)T|| is the Euclidean norm. In the case that x; is in the
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interior of the cell C; one chooses

n=n =3 3" n, Bl(w)B(v)Bl(w),

t=0 s=0r=0

N R R
u = 7|$Z Axl y v = 7|y7‘ AXI |’ w = 7|Zz Axl s (319)

where n, = Ny, jtsk+t, 75t € {0,1}, are the eight outward normal vector es-
timates at C}’s corner points, where an equally, equidistantly spaced rectilinear
point set is assumed, A = Az; = Ay; = Az, all 4,5, k, x; = (74,4, 2)7 is the
contour point, x; = (x&,x{,x?)7 is the left-front-lower corner point of the cell Cj,
Bi(t)= (1 -t t€]0,1],1=0,1, are the Bernstein polynomials of degree one
and u,v,w € [0,1].

Normalizing the estimates n; finally determines the set of (ordered) outward

unit normal vectors at each contour point,
N = { (,n;7) = (i,nzs,ny;,nz) | |mg]| =1, i =0..n, — 1 }. (3.20.)

Figure 3.9. is obtained from the same data set as the one used for Figure 2.1.
CAT scan density measurements are given as an equally, equidistantly spaced recti-
linear data set of 68 - 64 - 64 points with associated density values f; € [0,255]. The
contour level approximated is f(x) = 12.5. The triangular approximation consists
of almost 30, 000 contour points and 60, 000 triangles. Outward unit normal vectors
for each contour point are estimated using Zucker’s approach and required for this

Gouraud-shaded rendering of the contour approximation.
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Fig. 3.9. Human skull obtained from a rectilinear CAT scan data set,

68 - 64 - 64 points, f; jx € [0,255], approximation for f(z,y,z) = 12.5.
Remark 3.15. The problem of estimating normal vectors for points in a two-
dimensional triangulation in three-dimensional space using the triangulation alone
has hardly been investigated. A possible good solution to the problem might be the
following approach.

It is well known in differential geometry that a surface in three-dimensional
space can locally be approximated by the graph of a differentiable bivariate func-
tion. In the case of a two-dimensional triangulation in three-dimensional space, one
usually considers the points y; € V, j = 1...m, (equation (3.12.)) determining an

edge with a particular point x; = yo € V in the triangulation as a localization of
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the triangulation,
Y = { X; = Yo } U { y; | Xiy; is an edge in the triangulation, j =1..m }

By introducing a local, right-handed coordinate system S, defined by x; as
origin and three mutually perpendicular unit vectors d;, d,, and n, a plane P is
defined by the origin and the first two unit vectors. The points in ¥ can now be
projected into the plane P and their distances d;, j = 0...m, from P be calculated.
Assuming that all projected points in P are different, a bivariate function, e.g.,
a second degree polynomial, can be constructed using the least squares method to

approximate the m+1 function values f; = d;, j = 0...m, considering the constraints

>. 2 — = Tr= st __ ) .
f(xj’yj) - E Crisit L5 Y; 25 = dj, 7 =0...m,
r+s+t<2, r,s,t>0

where T and ¥ are the coordinates of a projected point in P with respect to the two-
dimensional coordinates system defined by x; (origin) and the unit vectors d; and
dy, and d; is interpreted as the function value of f at the corresponding projected
point in the direction of n.

Assuming that the linear system of equations for the least squares solution
does not imply a vanishing determinant, the unknown coefficients ¢, s ; determine

a residual vector r which can be measured using the Ls-norm,

Il = (X (F@.3,)-d;)"

J:

This expression really depends on the choice of the orientation of the system

S. Changing the orientation of n (determining the f-axis) appropriately, might lead
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to a minimization of || r ||. Choosing the normal of the graph of f at x; based on
such an “optimally oriented” coordinate system S presumably is a good estimation
for a normal vector n;. The direction for the normal vector is still ambiguous (n;
or —n;).

Remark 3.16. It is also worth considering a contour approximation for a finite
data set GG in either scattered or rectilinear form obtained by computing the length

of the gradient estimates for each point in an original trivariate data set,
G = { (xiT,gi) = (xiT, | f(x)|]) | xi € IR®, g; € R, i =0...n }

This is a common approach in computer vision for edge detection. Boundaries of
objects in an image (brightness or density functions) are characterized by large

gradients.



