Chapter 4
Curvature approximation for triangulated
surfaces and trivariate functions

4.1. Introduction and essential terms of differential geometry
Methods for exactly calculating and approximating curvatures are important in
geometric modeling for two reasons. In order to judge the quality of a surface
one commonly computes curvatures for points on the surface, renders the surface’s
curvature as a texture map onto the surface and can thereby detect regions with
undesired curvature behavior, such as surface regions locally changing from an ellip-
tic to a hyperbolic shape. On the other hand, surface schemes are being developed
requiring higher order geometric information as input, e.g., normal vectors and
normal curvatures.

Definitions and theorems from classical differential geometry are reviewed as
far as they are needed for the proceeding. In classical differential geometry a surface

is understood as a mapping from IR? to IR3,
x (u) = (z(u,v),y(u,0),2(u,0))" ¢ R, ueD C R (4.1)

The standard formulae are then used to derive techniques for approximating normal
curvatures when a two-dimensional triangulation of a finite point set with associated

outward unit normal vectors is given in three-dimensional space. Consequently,
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curvature estimates can be incorporated into existing surface generating schemes
allowing curvature input. The quality of the curvature approximation is tested for
triangulated surfaces obtained from a known parametric surface x(u).

The theory of two-dimensional surfaces can easily be extended to the case of
three-dimensional surfaces, e.g., graphs of trivariate functions approximating scalar

fields over a three-dimensional domain,
(7, fx))" = (zy.2f(zy2)) c R, xeD c R (4.2))

If the approximating function f(x) is known, normal curvatures for its graph can
be computed accurately, thus allowing to visualize the graph’s curvature behavior
using one of the rendering techniques for trivariate data sets introduced in chapter
2. Qualitative changes in f’s three-dimensional graph in four-dimensional space
can be observed, hence providing a quality measure for the chosen approximation
method.

Future trivariate scattered data approximation schemes might as well require
input such as normal curvatures when the approximation process is seen from a more
geometric point of view interpreting the result as a three-dimensional hypersurface.
An estimation method is presented for approximating normal curvatures at four-
dimensional points ( Ty Yis Zis [Ty Uiy 25) )T on a three-dimensional hypersurface in
order to generate a smooth graph obtained by solving the trivariate approximation
problem. Again, the quality of the curvature estimation technique is tested for

known trivariate functions. Possibly, multivariate approximation schemes for even
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higher dimensions (f(x1,...,z,), n > 4) will consider such geometric information
shortly.

Good introductions to differential geometry are [Brauner ’81], [do Carmo ’76],
[Lipschutz ’80], [Strubecker ’55,’58,’59], and [Struik ’61]. Differential geometry is
treated more analytically in [O’Neill ’69]. One of the most comprehensive works on
this subject is [Spivak ’70]. Some information can also be found in [Farin '88]. An
example for estimating curvatures from a discrete point set is [Calladine '86]. There,
a technique for approximating Gaussian curvature for points in a two-dimensional
triangulation in three-dimensional space is discussed. An example for a surface
scheme allowing curvature input is introduced in [Hagen & Pottmann '89]; a trian-
gular surface scheme is described considering positional, normal vector, and normal

curvature information.

Definition 4.1. A regular parametric two-dimensional surface of class C™
(m > 1) is the point set S in real three-dimensional space IR3 defined by the
mapping

(4.3.)

of an open set U C IR? into IR3 such that
(i) all partial derivatives of x, y, and z of order m or less
are continuous in U, and
(i) x4 X%y # (0,0,0)T for all (u,v) € U

(the subscripts u and v indicating partial differentiation with respect to u and v,
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respectively).
Since condition (ii) in Definition 4.1. implies the linear independence of the two
vectors x, and x, at any point on the regular surface, they determine the tangent
plane at every surface point.
Definition 4.2. The tangent plane at a point xo = x(ug) on a regular parametric
two-dimensional surface in three-dimensional space is defined as the set of all points

y in IR? satisfying the equation
y = Xo+ ax,(ug) + bx,(ug), a,b€ R. (4.4.)

Definition 4.3. The outward unit normal vector ny = n(up) of a regular

parametric surface at a point xq is given by

X X
nO — xu(uO) XU(UO) — XU XU 7 (4.5-)
[u(u0) X %y (wo) || [[u X x|
where || - || indicates the Euclidean norm.

Definition 4.4. Let x(u) be a regular parametric surface of class m, m > 2, and
c(t) = c(u(t),v(t)) be a (regular) curve of class 2 on the surface through the point
xp = x(up). The normal curvature vector to c(t) at x¢ is the projection of the

curvature vector k = t/||t||, t = ¢/||¢||, onto the unit surface normal vector ng,
kn = (k . ng) Ij. (46)

The proportionality factor k - ng is called the normal curvature, denoted by &,,.

Definition 4.5. The second degree polynomial

I (du,dv) = x,-%x, du® +2 x, - X, du dv + %, - X, dv®
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= E du®+2F du dv+ G dv?, (4.7.)

where du,dv € IR, is called the first fundamental form of a regular paramet-
ric surface x(u). The coefficients E, F, and G are called the first fundamental
coefficients.

Definition 4.6. Assuming that the regular parametric surface x(u) is at least of

order 2, the second degree polynomial
IT (du,dv) = —xy -1y du?® — (Xy -y + Xy - Ny) du dv — X, - 11, dv?
= Xyu N du®+2 Xyp 0 du dv+ Xy -n dv? = L du?+2M du dv+ N dv?, (4.8.)

where du,dv € IR, is called the second fundamental form of x(u). The coeffi-
cients L, M, and N are called the second fundamental coefficients.

Definition 4.7. The two (real) eigenvalues k1 and k9 of the matrix

-1
4 (a1 a2 _ L M E F
i) - v) (Fe) o ew
where
. _ MF-1G  _ LF-ME
YT EG-F2 Y T EG-F?
NF - MG MF — NFE

“r = RGoF 2 T EGoFe
of a regular surface of class of at least 2 at a point x( are called principal curva-
tures of the regular parametric surface at xo. The associated eigenvectors determine
the principal curvature directions. Therefore, the principal curvatures are the

(real) roots of the characteristic polynomial of — A, the quadratic polynomial

I<62 + (a171 + az’g) K+ 1,122 — 01,2021 (410)
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Remark 4.1. The equations for the matrix elements a; ; in equation (4.9.) are
known as the Gauss-Weingarten equations (or the Gauss-Weingarten map).
Remark 4.2. It is shown in [Spivak ’70] that the eigenvalues of the matrix —A in
equation (4.9.) are always real, and the associated eigenvectors are orthogonal to
each other.
Definition 4.8. The average H of the two principal curvatures k1 and k5 is called
the mean curvature, the product K is called the Gaussian curvature of the

regular parametric surface x(u) at xo,

H = (h?l-i-lfg), K = R1k2. (411)

Fig.4.1. Texture map of mean and Gaussian curvature onto a torus,

. . T
( (24 cosu)cosv, (2+ cosu)sinv,sinu )", u,v € [0,2n];
green/yellow representing negative values,
magenta/blue representing positive values.



