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4.2. Curvature approximation for triangulated two-dimensional
surfaces
The graph of a bivariate function f(z,y), f in class C™, m > 2, mapping an open set
U C IR? into IR, can be interpreted as a regular parametric two-dimensional surface
in three-dimensional space using the parametrization z(u,v) = u, y(u,v) = v, and

z(u,v) = f(u,v),
x (u) = (u,v, f(u,v) )T, (u,v) € D C IR (4.12.)
For this particular surface, one easily derives the formulae
x, = (1,0,f.)F, x, = (0,1, f,)7,

Xyu = (0a07fuu)T; Xyv = (0707 fu'u)T; Xpv = (O7Oafvv)T7 and

U v “Jusr val T
n (u) = Xu XXy (=f J; )2. (4.13.)

[[xu X Xy | V1i+ o+ fo

The first and second fundamental coefficients are therefore given by
E = 1+fu2a F = fufo G = 1+.fv25
JAN R VIS TR (N R
V14 fu™+ fo V14 fu® + fo V14 fu™+ fo

(4.14.)

The Gauss-Weingarten map for this particular surface is given by

= 1,1 012 = 1 .fuu fu” 1+fu2 fufv -1
—-A = _<a2,1 az,z) Tl (fm, fw) ( futo 1+fu2> ,  (4.15.)

where | = 1+ f,° + f,2
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Theorem 4.1. Each regular parametric two-dimensional surface x(u) of class m,
m > 2, can locally be represented in the explicit form z = z(x,y) which is at least
C?. Choosing a surface point xo as origin of a local coordinate system and the z-
azis in the same direction as the surface normal ng at xo (thus choosing the tangent
plane at xo as the xy-plane), the Taylor series for z considering only the terms up

to degree 2 is given by

z (z,y) = 5 (c2,08” + 2c112y + co29°), (4.16.)

choosing any 2 unit vectors in the xy-plane determining a right-handed orthonormal
coordinate system. Rotating these 2 unit vectors appropriately yields the equation

of the so-called osculating paraboloid at xg,

z (z,y) = (c§,0x2 + 0372y2)

such that the two principal curvatures at xo coincide with the coefficients of this
paraboloid, k1 = c3 o and Ko = cf .
Proof. See [Strubecker ’58,’59] or [Struik ’61].

The principal curvature approximation method to be introduced is based on
bivariate polynomials. It is essential to prove a certain property of such functions be-
fore describing the approximation technique. Given an origin in the plane, the graph
of a bivariate polynomial f consisting of all the points in the set { ( z, y, [ (z,y) )T
| ¢,y € ]R} is independent of the choice of the orientation of the two unit vectors

determining an orthonormal coordinate system for the plane. This fact implies that
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the principal curvatures of the graph, a two-dimensional surface, are independent
of the two unit vectors as well.

Lemma 4.1. The equation

(—z sin®a + ysin a cos oz)k =" (4.17)

Z (=1)" (Z) (z cos’a + ysinacos )’

k=0
holds for all z, y, o € IR and 1 > 0.

Proof. It is easy to show that equation (4.17.) is valid for 7 = 0:

1=2".

The induction hypothesis is made that equation (4.17.) is true for i — 1. Thereby

one proves that

(—z sin®a + ysin a cos a)k

Z (-1)* (;) (z cos?a + y sina cos )"
= ((z cos’a + ysinacosa) — (—z sin’a + ysina cos a))

i—1 .
-1 i—1—
Z(—l)k (Z " ) (z cos’a + ysinacosa)’ ok (—x sin20z—l—ysimozcosa)’c
k=0

=z (cos’a +sina) 't = ¢ ' = 2t

q.e.d.

Lemma 4.2. The equation

iy ‘
Z (g) (zsin a cos o + y sin? )J_l (—xsinacosa+y cos2a)l =y’ (4.18.)
1=0

holds for all x, y, o € IR and j > 0.
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Proof. Equation (4.18.) holds for j = 0:
1=y".

Using the induction hypothesis that equation (4.18.) is true for j — 1, one proves

that

J J i—1 l
Z (l) (zsinacosa + ysin’a)’ " (—zsinacosa + y cos?a)
1=0

= ((zsinacosa + ysin’a) + (—zsinacos a + y cos’a))

7j—1 .

-1 o
Z (J ] ) (:csinacosa—}—ysinza)J ! l(—msinacosa+ycos2a)l
1=0

=y (sin®a + cos?a) Yy L=y it =7,

q.e.d.
Lemma 4.1. and Lemma 4.2. are needed to prove the following theorem.
Theorem 4.2. Let f be the bivariate polynomial
i+i<n
i,j>0

where a point in the plane has coordinates x and y with respect to a coordinate system
given by an origin o and two orthonormal basis vectors d, and ds; rotating d, and
dy around the origin o changes the representation of the bivariate polynomaial, but
not its graph.

Proof. Let d; and ds be two unit vectors determining a first orthonormal coordi-
nate system together with the origin o, and let d; and dy be a second pair of unit

vectors obtained by rotating d; and ds by an angle a around o. A point in the
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plane may have coordinates (x,y)T with respect to the first coordinate system and

(5)- (o ) (5) -

with respect to the second coordinate system. Assuming (4.19.) is the represen-

coordinates

tation of the polynomial f with respect to the first coordinate system, f can be

rewritten using the inverse map of (4.20.):

f(x=Tcosa—7ysina, y =Tsina+ Fcos )

= Z ¢ij (Tcosa—gsina)® (Tsina + 7cosa). (4.21.)

i+j<n
i,j>0

T

Evaluating f at the point (Z,%)T = (z cosa+ysina, —zsina+ycosa)l, consider-

ing the binomial theorem, Lemma 4.1., and Lemma 4.2., one derives the equations
f(Z=xzcosa+ysina, = —zsina+ ycosa)

= Z cij (cosa (zcosa+ysina) —sina (—zsina + ycos a))i
i+j<n
i,j>0

(sina (@ cosa + ysina) + cos o (—z sina + y cos a))j

= Z Cij ( Z (-1)* (Z) (cos a(z cos o + ysin oz))i_lc (sin a(—z sina + y cos a))k

i _
Z (?) (sina (zcosa + ysin a))]_l (cosa (—zsina + ycos a))l )
1=0
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)

= Z Cij ( (=1)* (;) (z cos?a + ysinacos @)’
i,7>0

(—z sin®a + y sin a cos a)k

o)

i .
Z (?) (zsinacosa + ysin2a)’ ' (—zsinacosa + y cos?a)’ )
1=0

= Z Cij 'yl = f (2,9)
i+j<n
i,j>0
proving the theorem.

q.e.d.
The curvature approximation method is based on a localization of a two-
dimensional triangulation. The local neighborhood around a point x; is its platelet.
Definition 4.9. Given a two-dimensional triangulation in two- or three-dimensional
space, the platelet P; associated with a point x; in the triangulation is the set of

all triangles (determined by the index-triples (ji,j2,/3) specifying their vertices)

sharing x; as a common vertex,
Pi = | J{ Grdads) | i=j1Vi=jaVi=js }. (4.22.)

The vertices constituting P; are referred to as platelet points.

In order to approximate the principal curvatures at a point x; in a two-
dimensional triangulation a bivariate polynomial is constructed for a certain neigh-
borhood around this point. Considering the facts that a two-dimensional surface can
locally be represented explicitly (Theorem 4.1.) and that the graph of a bivariate

polynomial is independent of the orientation of the two unit vectors determining an
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orthonormal coordinate system for the plane (Theorem 4.2.), the following sequence

of computations is proposed.

(i)
(i)

(iii)

(iv)

(vi)

(vii)

(viii)

Determine the platelet points associated with x;.

Compute the plane P passing through x; and

having n; (the normal at x;) as its normal.

Define an orthonormal coordinate system in P with

X; as its origin and two arbitrary unit vectors in P.

Compute the distances of all platelet points from the plane P.
Project all platelet points onto the plane, P and represent their
projections with respect to the local coordinate system in P.
Interpret the projections in P as abscissae values and the distan-
ces of the original platelet points from P as ordinate values.
Construct a bivariate polynomial f approximating these
ordinate values.

Compute the principal curvatures of f’s graph at x;.

All steps needing further explaining are discussed in greater detail. Let {yj =

(zj,v5,2))T | j = Onz} be the set of all platelet points associated with the point

x; such that yo = x;, and let n = (n*,n%,n*)T be the outward unit normal vector

at yo. The implicit equation for the plane P is then given by

n-(x—yo) = n°(x—z0) +nY(y —yo) +n*(z — 20)

= n"z+nYy+n°z— (n"xo + nYyo + n®2p)
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= Az+By+Cz+D = 0. (4.23.)

Depending on the outward unit normal vector n one chooses a vector a per-

pendicular to n (a-n = 0) among the possibilities

L (—(ny+nz),nw,n‘”)T, n® #£ 0,
a = niy (ny, —(n® —}-nz),ny)T, nY # 0,
niz (,nz7 nz7 _(nw + ny))T’ n® ?é 07

in order to obtain the first unit basis vector b,

by = — lal = +/(a-a).

.

The second unit basis vector by is defined as the cross product of n and b1,

b2 = Ilel.

The perpendicular signed distances d;, j = 0...n;, of all platelet points y; from
the plane P are

Azj+ By;j+Cz; + D
\/A2+B2+C2

d; = dist (y;,P) = = Az;+ By; +Cz; + D. (4.24.)
j j j j j

Projecting all platelet points y; onto P yields the points yf ,

yf = y; —d; n. (4.25.)

Considering yo as the origin and b; and by as the two unit basis vectors of a
local two-dimensional orthonormal coordinate system for the plane P, each point yf
in P can be expressed in terms of that coordinate system. Therefore, one computes

the difference vectors
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and expresses them as linear combinations of the two unit basis vectors b; and b

in P. Each difference vector d; can be represented in the form
d; = (dj-b1) b1+ (d; - bs) by, (4.26.)

defining the local coordinates u; and v; of the point yf in terms of the local coor-
dinate system:

(“javj)T = (dj'bladj'b2)T- (4.27.)

Interpreting the local coordinates u; and v; as abscissae values and the signed
distances d; as ordinate values (in direction of the normal n), a polynomial f(u,v) of
degree two (see Theorem 4.1.) is constructed approximating these ordinate values.

Forcing the polynomial f to satisfy f(0,0) = f,(0,0) = f,(0,0) = 0, the constraints

2 2 s
(Cz,o’uj' +20171’U1j’0j + Co,20; ) = dj 7 =1...n,,

(NN

.f (ujavj) =

remain. Written in matrix representation these constraints are

2 2
U1 2U1’U1 U1 C20 dl
: C1,1 =Uc=d = . (428)
2 2
Up,” 2Up,Vn, Un, Co,2 dn,

This overdetermined system of linear equations is solved using a least squares ap-

proach (see [Davis ’75]). The resulting normal equations are
U'Uc = UT d. (4.29.)

Provided the determinant of UTU does not vanish this 3 - 3—system of linear equa-

tions can immediately be solved using Cramer’s rule.
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Theorem 4.3. The principal curvatures k1 and Ko of the graph ( u, v, f(u,v) )T C

IR3, u,v € R, of the bivariate polynomial

(cz’ou2 + 2¢1,1uv + Co’g’l)Z) (4.30.)

N | =

f(u,v) =
at the point ( 0,0, £(0,0) )T are given by the two real roots of the quadratic equation

K2 — (62’0 + 0072) K+ c2,0C0,2 — 61,12 = 0. (4.31.)

Proof. According to Definition 4.7. and equation (4.15.), the principal curvatures

of f’s graph are the eigenvalues of the matrix

4= 1 <fuu fm,) (1+fu2 futo )‘1
l fuv fU’U fuf'u 1+f'v2 ’

where | = /1 + f,” + f,>. Evaluating —A for u = v = 0, one obtains the matrix

A = C2,0 C11 ’
C1,1 €Co,2
having the characteristic polynomial in (4.31.).

q.e.d.

Solving the normal equations (4.29.) and determining the roots of the charac-
teristic polynomial in (4.31.), one finally obtains the desired approximations for the
principal curvatures at the point x;.

The above construction is illustrated in Figure 4.2. Shown are the platelet

points around the point x;, the tangent plane P, its local orthonormal coordinate
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system (origin x; and basis vectors b; and by), and the projections of the platelet

points (yf) onto P.

Fig. 4.2. Construction of a bivariate polynomial for
platelet points in a two-dimensional triangulation.

The presented technique for principal curvature approximation is tested for
graphs of several bivariate functions. The exact principal curvatures x1°* and k9"
are compared with the approximated principal curvatures ;%P and k9%P; the

exact mean curvature H®* = % (k1% 4 K9®%) is compared with the average of

the approximated principal curvatures HP = % (K1%PP + K9%P) and the exact

Gaussian curvature K¢ = k1°" k9" with the product of the approximated principal

curvatures KPP — PP 5, PP,



73
All bivariate test functions f(x,y) are defined over [—1,1] x [—1, 1] and evalu-

ated on a 51 - 51—grid with equidistant spacing,

T b i)T .
(%3, 95) ( 1+25, 1+25 , i,j =0...50,

determining a finite set of three-dimensional points on their graphs,
T, . .
{( T Yjs f(@iy;) ) | 4, = O...SO}.

The triangulation of a function’s graph is obtained by splitting each quadrilateral

specified by its index quadruple

((,9),G+1,4),(+1,5+1),(6,5+1))
into the two triangles T;'; and T7; identified by their index triples,

Tzly = ((,4), (i+1,5), (i+1,7+1))  and Tf’j = ((4,4), (i+1, j+1), (¢, j+1) ).

The root-mean-square error (RMS error) is a common error measure and is

computed for each test example and curvature type. The RMS error is defined as

1 n—1

- D (S = [Py (4.32.)
i=0

where n is the total number of exact (or approximated) values f;** (f;**?). Here, n

equals 51-51, depending on the curvature type approximated f;°* can represent the

exact values for K%, Ko, H®® or K¢, and f;°P? can represent the approximated

values for k1%PP, ko®P HP or K?PP respectively. Table 4.1. summarizes the

test results for the approximation of the principal curvatures, the mean and the

Gaussian curvature.
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Tab. 4.1. RMS errors of curvature approximation for graphs of bivariate functions.

Function K1 Ko H K
1. Plane:

2 (x+y). 0 0 0 0
2. Cylinder:

V2 — 22 .000291 .000035 .000132 .000025
3. Sphere:

V4 = (22 + y?). .000159 .000046 .000080 .000080
4. Paraboloid:

A4 (2% +y?). .003073 .001342 .001358 .001684
5. Hyperboloid:

A (22 —9?). .002058 .002058 .001057 001767
6. Monkey saddle:

2 (23 — 3xy?). .004483 .004483 .001591 007247

7. Cubic polynomial:
15 (23 + 22%y — zy + 29?). .002258 .003598 .001665 .002242
8. Exponential function:

e~ 3@ +y%), 001757  .005546  .002722  .002602
9. Trigonometric function:
1 (cos(mz) + cos(my)). .002998 .002821 .001013 .003541

In the following figures, the four particular curvatures used in Table 4.1. are
mapped as textures onto the hyperboloid (function 5), the graph of the cubic poly-
nomial (function 7) and the graph of the trigonometric function (function 9). Pairs
of consecutive figures show the exact (upper figure) and the approximated curva-
tures (lower figure). The principal curvature s, is visualized in the upper-left, x5 in
the upper-right, the mean curvature H in the lower-left and the Gaussian curvature
K in the lower-right corner of each figure. Figures 4.3. and 4.4. show the exact and
approximated curvature values for function 5, Figures 4.5. and 4.6. for function 7,

and Figures 4.7. and 4.8. for function 9.
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Fig. 4.3. Exact curvatures k1%, k2%, H** and K®*
on the graph of f(z,y) = .4 (2 —y?), =,y € [-1,1].

Fig. 4.4. Approximated curvatures k,%PP, ko®P HP and KPP
on the graph of f(z,y) = .4 (2 —4?), =,y € [-1,1].
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Fig. 4.5. Exact curvatures x1°*, k2%, H®*, and K"
on the graph of f(z,y) = .15 (23 + 22%y — xy + 29?), z,y € [-1,1].

Fig. 4.6. Approximated curvatures k,%PP, ko®P HP and KPP
on the graph of f(z,y) = .15 (23 + 22%y — xy + 2¢?), z,y € [-1,1].
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Fig. 4.7. Exact curvatures k1%, k2%, H** and K®*
on the graph of f(z,y) = .1 (cos(wx) + cos(wy)), z,y € [—1,1].

Fig. 4.8. Approximated curvatures kPP, ko®P HP and KPP
on the graph of f(z,y) = .1 (cos(mv) + cos(ﬂy)), z,y € [—1,1].



