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4.3. Curvature approximation for triangulated three-dimensional
graphs of trivariate functions
The graph of a trivariate function f(z,y, z), f in class C™, m > 2, mapping an open
set U C IR3 into IR can be interpreted as a regular parametric three-dimensional
surface in four-dimensional space (see Definition 4.1.) using the parametrization

z(u,v,w) = u, y(u,v,w) = v, z(u,v,w) =w, and W(u,v,w) = f(u,v,w),
x (u) = (u,v,w, f(u,v,w) )T, (u,v,w) € D C IR (4.33.)
For this particular hypersurface, one easily derives the formulae
x, = (1,0,0,f)%,  x, = (0,1,0,f,)%, xu» = (0,0,1, fu,)%,

Xyu = (0’070’fuu)T7 Xuv — (O,O,O,fUU)T, Xyw = (anaoafuw)Ta

Xov = (070;07 f'uv)T7 Xow = (O,O,O,fvw)T, Xww = (anaoa fww)Ta and

cross product (Xy, Xy, Xw) (= fus—fos —fuw, 1)T
|| cross product (Xu,Xy,Xy) || V1t F2+ F.2+ fo?

n(u) = (4.34.)

(for the n-dimensional cross product see [Weld ’90]).
Definition 4.10. The three-dimensional tangent space at a point xg = x(ug) on
a regular parametric three-dimensional surface in four-dimensional space is defined

as the set of all points y in IR* satisfying the equation

Yy = X+ axy(ug) + bxy(ug) + cxy(wp), a,b,c€ R. (4.35.)
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The Gauss-Weingarten map for this special graph interpreted as a three-dimensional

hypersurface in four-dimensional space is given by
a11 Aai2 ai1,3
—A = — a1 G22 a23
a31 agzz2 0ass3

1 fuu fuv fuw 1+fu2 fufv fufw
= T fuv fvv fvw fufv 1+ fv2 fvfw 3 (436)
fuw fvw fww fufw fvfw 1+fw2

where | = /14 fu.2 + fo2 + fu’.

-1

Definition 4.11. The three (real) eigenvalues ki, ka2, and k3 of the matrix —A
from equation (4.36.) are called the principal curvatures of the three-dimensional
graph of the trivariate function f(x,y, z). Therefore, the principal curvatures are

the (real) roots of the characteristic polynomial of —A, the cubic polynomial
3 2
k°+(a1,1+a2,2+a3 3) K2+ (a1,102,2+0a1,103 3402, 203 3—01 2021 — 01,3031 —02,303,2) K

+(a1,162,2a3 3+ a1,202 3031 + 1,302,103 2 — G1,102,343 2 — (1,202,103,.3 — A1,302,203,1)-
(4.37.)
The average H of the principal curvatures is called the mean curvature, the

product K is called the Gaussian curvature,
1
H = g (K)l + Ko + Hg), K = R1RkoK3. (438)

Figure 4.9. shows the mean (left) and the Gaussian curvature (right) in three
planes intersecting the three-dimensional domain of a trivariate function using the
visualization technique described in chapter 2.3. (slicing). Curvature changes in f’s
graph can clearly be recognized, giving rise to the use of these particular curvature

measures as indicators for the smoothness of trivariate functions.
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Fig. 4.9. Mean and Gaussian curvature of the graph of
flz,y,z) =4 (m2 +y%+ 22), x,y,z € [—1,1].

The properties of three-dimensional surfaces stated in the following theorems
are needed for the curvature approximation method to be deduced subsequently.
Theorem 4.4. Fach regular parametric three-dimensional surface x(u) of class m,
m > 2, can locally be represented in the explicit form W = W (z,y, z), where W is
an at least C? function. Choosing a surface point xo as origin of a local coordinate
system and the W-axis in the same direction as the surface normal ng at xq, the

Taylor series for W considering only the terms up to degree 2 is given by

W (z,y,2) = (02,0,03?2 + 2¢1,1,02Y + 2¢1,0,172 + Co,z,o?/2 + 2¢0,1,192 + 00,0,222)7

N | =

(4.39.)
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choosing any 3 unit vectors in the ryz-tangent space determining a right-handed
orthonormal coordinate system. Changing the orientation of these 3 unit vectors

appropriately yields the equation of the so-called osculating paraboloid at xq,

W (z,y,2) = (03,0,09'72 + 03,2,03/2 + 08,0,222)

N

such that the three principal curvatures at xog coincide with the coefficients of this
paraboloid, K1 = ¢35 g g, K2 = Cj 9.9, aNd K3 = C{ g o-

Proof. See [Strubecker ’'58,’59] or [Spivak ’70].

Theorem 4.5. Let f be the trivariate polynomial

f (.’L',y,Z) = Z Ci,j.k xi yj Zk, (440)

i+it+k<n
4.3,k>0

where a point in space has coordinates x, y, and z with respect to a coordinate system
given by an origin o and three orthonormal basis vectors d1, ds2, and ds; changing
the orientation of the orthonormal basis vectors changes the representation of the
trivariate polynomial, but not its graph.
Proof. Analogous to the proof of Theorem 4.2.

As for the two-dimensional case, the principal curvature approximation tech-
nique requires a localization of a three-dimensional triangulation.
Definition 4.12. Given a three-dimensional triangulation (also referred to as a
tetrahedrization) in three- or four-dimensional space, the platelet P; associated
with a point x; in the triangulation is the set of all tetrahedra (determined by the

index-quadruples (j1, j2,j3, j4) specifying their vertices) sharing x; as a common
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vertex,
Pi = U {1 dasdsida) [ i=51Vi=jaVi=jsVi=ja}. (4.41.)

The vertices constituting P; are referred to as platelet points.
The sequence of computations for principal curvature approximation in the
two-dimensional case, described in chapter 4.2., can easily be extended to the three-

dimensional case. The following steps must be executed.

(i) Determine the platelet points associated with x;.

(ii)  Compute the tangent space P passing through x;
and having n; (the normal at x;) as its normal.

(ili) Define an orthonormal coordinate system in P with
x; as its origin and three arbitrary unit vectors in P.

(iv) Compute the distances of all platelet points from the tangent
space P.

(v) Project all platelet points onto the tangent space P, and represent
their projections with respect to the local coordinate system in P.

(vi)  Interpret the projections in P as abscissae values and the distan-
ces of the original platelet points from P as ordinate values.

(vii) Construct a trivariate polynomial f approximating these
ordinate values.

(viii) Compute the principal curvatures of f’s graph at x;.
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Some steps are now explained in more detail. Let { vi = (zj,y5,25,W; )
| 7 =0...n; } be the set of all platelet points associated with the point x; such that
")

Yo = X;, and let n = (n%,n¥,n*, n")T be the outward unit normal vector at yo.

The implicit equation for the tangent space P is given by
n-(x—yo) = n%(x—z0) +nY(y —yo) +n*(z — 20) + nV (W — Wp)
= n®z+nYy+niz+ VW - (n®zo +nYyo +n’zp + nWWO)
= Ar+By+Cz+DW +E = 0. (4.42.)

Clearly, the four vectors

n = (_fua_f'ua_fw’]-)T
VI+ 2+ 2+ fu®

a; = (1,0,0,007, ay; = (0,1,0,0)7, and as = (0,0,1,0)7

are linearly independent and therefore form a basis for R*. Obviously, a1, as, and
as are not necessarily perpendicular to the normal n. Using Gram-Schmidt orthog-
onalization yields an orthonormal basis for IR* consisting of the basis vectors n, by,

by, and bg, where by, by, and bz are computed as

b
b; = (a;-n) n, b; = a; — by, by =
|[by]]
by
by = (az-n)n+(az-b1) by, by = az—by, by = Toall and
2
b3
b3 = (ag-n)n+(83'b1) b1+(a3'b2) b23 b3 = a3_]:)33 b3 = ||b ||’
3
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The perpendicular signed distances d;, j = 0...n;, of all platelet points y; from

the tangent space P are

Az;+ By; +Cz; + DW; + E

dj:diSt(yjaP): VA2 L B2+ C2+ D?

= ij-l-Byj—i-C'zj +DWj +F.

(4.43.)

Projecting all platelet points y; onto P yields the points yf , where
yf = y; —d; n. (4.44.)

Again, yq is seen as the origin, and b;, by, and bz are regarded as the three
unit basis vectors of a local three-dimensional orthonormal coordinate system for
the tangent space P. Each point yf in P is expressed in terms of that coordinate

system. Computing the difference vectors d; as

and expressing them as linear combinations of the basis vectors by, bs, and bg in

P, one obtains a new representation for d;,
d; = (dj-b1) b1+ (d; - by) by + (d; - bs) bs, (4.45.)

defining the local coordinates u;, v;, and w; of the point yf in terms of the local

coordinate system:
T T
(Uj, V4, wj) = (dj . bl, dj . b2, dj . bg) . (4.46.)

The local coordinates u;, v;, and w; define the abscissae values and the signed

distances d; the ordinate values (in direction of the normal n) for a polynomial
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f(u,v,w) of degree two (see Theorem 4.4.) which is constructed by approximating
these ordinate values. Forcing f to satisfy the conditions f(0,0,0) = f,(0,0,0) =

f»(0,0,0) = f,(0,0,0) = 0 the constraints
[ (uj,v5,w5) =

2 2 2
(Cz,o,ouj F 261,1,00505 + 2€1,0,11;W; + C0,2,005” + 2€0,1,105Wj + C0,0,2Wj ) = dj,

DO | =

j = l..n;, remain. In matrix representation, these constraints are

C2,0,0
’U,12 2’1,1,1’01 2U1’U)1 ’1)12 2’1)1’11)1 ’11)12 €1,1,0
. . C1,0,1
: : : : : C0.2.0
2 2 2 4
Up, " 2Up,Vn;, 2Up, Wy, Up,~ 20p,W,, Wy,
Co,1,1
C0,0,2
dy
=Uc=4d = : . (4.47.)
dp,

Using the least squares approach, the resulting normal equations are
U'Uc = UT d. (4.48.)

This 6-6—system of linear equations can easily be solved using Gaussian elimination
provided the determinant of UTU does not vanish.

A theorem in multi-dimensional differential geometry ensures that the three
principal curvatures at a point on the graph of a trivariate function are always real.
Theorem 4.6. The principal curvatures k1, Ko, and k3 at any point on the graph

T o .
( u, v, w, f(u,v,w) ) C R* u,v,w € R, of a trivariate function f of class m,
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m > 2, are real and are the eigenvalues of the Gauss-Weingarten map associated
with its graph at a particular point.
Proof. See [Spivak 70] or [Weld ’90].
Theorem 4.7. The three principal curvatures k1, k2, and k3 of the graph ( u, v, W,

fu,v,w) )T C IR* u,v,w € IR, of the trivariate polynomial

2 2 2
(Cz,o’ou + 261’1’011,’0 + 261,0,1’(1,’11) + Co,2,0V + 260,1,1’011) + Co,0,2W )

| =

f (u,v,w) =
(4.49.)

at the point ( 0,0,0, £(0,0,0) )T are given by the three real roots of the cubic equation

3 2
— K +  (c2,0,0+ €020+ Co,02) K

2 2 2
— (€2,0,0€0,2,0 + €2,0,0€0,0,2 + €0,2,0€0,0,2 — C1,1,0° — €1,0,1° — C0,1,1") K

2 2 2
+ (€2,0,0€0,2,0€0,0,2+2€1,1,0¢1,0,1€0,1,1 — €2,0,0€0,1,1~ — C0,2,0€1,0,1° — €0,0,2€1,1,0-) = 0.
(4.50.)
Proof. According to Definition 4.11. and equation (4.36.) the principal curvatures

of f’s graph are the eigenvalues of the matrix

-1

—-A = fm; fvv fvw fufv 1+fv2 fvfw )

1 fuu fUU f’ll/w 1+fu2 fufU fufw
"\ fuw fow fow fofw  fofw 1+ fu?

where | = \/1 + fu? + fo? + fu>. Evaluating —A for v = v = w = 0 one obtains

the symmetric matrix

€2,0,0 €Ci1,1,0 C1,0,1
—-A = €1,1,0 Co,2,0 Co,1,1 |
C1,0,1 Co,1,1 €0,0,2
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having the characteristic polynomial in (4.50.).
q.e.d.

The roots of the characteristic polynomial in (4.50.) finally determine the
approximations for the principal curvatures at the point x;.

Remark 4.3. It is well known in linear algebra that the eigenvalues of a symmetric
matrix are all real (see [Lang '66]). Considering this fact, it is obvious that the three
roots of the cubic characteristic polynomial appearing in Theorem 4.7. must also
be real since the matrix —A is symmetric.

Remark 4.4. The first root of the cubic polynomial in equation (4.50.) is computed
using Newton’s method. The other two roots are calculated after factorization of
the cubic polynomial.

The principal curvature approximation technique is examined for graphs of
six trivariate functions. The exact mean curvature H¢* = % (K1 + K% + K3°7)
is compared with the average of the approximated principal curvatures HP =
% (K1%PP + K9P 4 k3°PP) and the exact Gaussian curvature K¢ = k1*C k9% 13"
with the product of the approximated principal curvatures KPP = kPP PP k3PP,

All trivariate test functions f(z,y, z) are defined over [—1,1] x [—1,1] x [-1,1]

and are evaluated on a 26 - 26 - 26—grid with equidistant spacing,

S A .

J k )T = 0..95
— 1 = U...
12.5° 12.5° 125 /) ° 'y ’

($i7yjazk)T = <_1+

determining the set of four-dimensional points on their graphs,

T, . .
{( $i7yjazkaf($i7yja Zk:) ) | %7, k= 025}
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The triangulation (tetrahedrization) for a function’s graph is determined by splitting

each domain cell C; (see Definition 3.12.) specified by its eight indices in the tuple

( (4,5,k), G+1,5,k), G+1,5+1,k), (i,5+1,k),

(G,5,k+1), G+1,5,k+1), i+1,j+1,k+1), (i,j+1,k+1))

into the six tetrahedra T}, | = 1...6, mentioned in chapter 3.2. (splitting a cuboid
into six tetrahedra).
Table 4.2. summarizes the test results for the approximation of the mean and

the Gaussian curvature.

Tab. 4.2. RMS errors of curvature approximation for graphs of trivariate functions.

Function H K
1. Linear polynomial:

2(x+y+2). 0 0
2. Quadratic polynomial ¢;:

A (22 +y? + 22). .002950 .002597
3. Quadratic polynomial gs:

A (22 —y? = 22). 001115 002216
4. Cubic polynomial:

15 (23 + 222y — x22 + 292). 002545 .001207
5. Exponential function:

e~z @+ 427 006349 002802

6. Trigonometric function:
1 (cos(mz) + cos(my) + cos(mz)). .003269 .009065
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Curvature of a trivariate function’s graph is rendered by slicing the function’s
domain with planes and representing the magnitude of the curvature by different
colors (see slicing methods, chapter 2.3.). Exact and approximated curvatures are
shown for the functions 3, 4, and 6. In each figure, the exact mean and Gaussian
curvatures are shown at the top, the corresponding approximated curvatures at the
bottom. Figure 4.10. shows the exact and the approximated mean and Gaussian
curvatures for the graph of function 3, Figure 4.11. for the graph of function 4, and

Figure 4.12. for function 6.

Fig. 4.10. Exact and approximated mean and Gaussian curvatures
of the graph of f(z,y,2) = .4 (2 — y% — 2?), z,y,2z € [-1,1].



Fig. 4.11. Exact and approximated mean and Gaussian curvatures
of the graph of f(z,y,z) = .15 (23 + 22%y — 222 + 29?), z,y,z € [-1,1].

Fig. 4.12. Exact and approximated mean and Gaussian curvatures
of the graph of f(z,y,2) = .1 (cos(wz) + cos(my) + cos(72)), z,y,z € [-1,1].
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