Chapter 5
Data reduction for triangulated surfaces

5.1. Existing schemes and necessary definitions

Data reduction schemes are essential for efficient data storage. Storing and process-
ing more data than necessary is both a waste of space and time. In the context of
digitizing curves and surfaces an efficient scheme does not generate more data points
than necessary to represent a particular geometric object within a prescribed tol-
erance. E.g., when using piecewise linear approximation storing lots of data points

in “flat” regions is rather unsophisticated.

Based on this observation a data reduction algorithm is developed. Given a
two-dimensional triangulation in three-dimensional space each triangle is weighted
according to the principal curvatures at its vertices. A triangle indicates a surface
region with low curvature, when the sum of the absolute curvatures at its vertices
is low. This measure is used as a weight to determine a triangle’s significance in

the triangulation.

The lower a triangle’s weight is the earlier it is removed. This paradigm is ap-
plied to derive an iterative algorithm removing the triangle with the lowest weight
(the lowest absolute curvatures) in each step. Thus, the triangulation is adaptively

modified, and the local density of triangles reflects the original surface’s curvature
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behavior. At the end, surface regions with low curvature are represented by rela-
tively larger triangles than highly curved regions.

The term “data-dependent triangulation” is commonly used when function
values at data points in the plane are considered for constructing a “good” triangu-
lation of the implied piecewise linear function. This concept is discussed in [Dyn et
al. ’90a] and [Dyn et al. ’90b]. Knot removal strategies for spline curves and tensor
product surfaces (in the function setting) are described in [Arge et al. '90], [Lyche
& Mgrken '87], and [Lyche & Mgrken '88]. Given scattered points in the plane and
associated function values an iterative knot removal algorithm is discussed in [Le
Méhauté & Lafranche ’89] based on the resulting spline.

The data reduction technique introduced here is similar to the method in [Le
Méhauté & Lafranche ’89] in the sense that an iterative reduction scheme is used.
However, the method deduced subsequently removes triangles instead of single data
points. Furthermore, it is not restricted to a two-dimensional triangulation ob-
tained as the graph of a bivariate function, but can be applied to more general
two-dimensional triangulations in three-dimensional space, e.g., triangulations of
parametric surfaces and of contours of trivariate functions.

The triangle removal algorithm allows the user to specify a percentage of the
original number of triangles determining the number of triangles to be removed.
Alternatively, it is possible to have the reduction process terminate automatically
when a certain error tolerance is exceeded. This, however, can only be done for

a triangulation obtained from a bivariate function’s graph. Such a triangulation
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allows to compute the error introduced during each reduction step, since both the
initial triangulation and the triangulation at a certain iteration step are piecewise
linear functions, and their difference can easily be measured in ordinate-direction.

In principle, the method can be extended to the reduction of three-dimensional
surface triangulations obtained as triangulations of three-dimensional graphs of
trivariate functions in four-dimensional space. A principal curvature approxima-
tion scheme for such hypersurfaces has already been introduced in chapter 4.3.
However, this extension is not investigated.

Before describing the iterative triangle removal algorithm, some necessary def-
initions are introduced.

Definition 5.1. Given a two-dimensional triangulation in two- or three-dimensional
space, the triangle platelet 7P; associated with a triangle T; (identified with the

index triple (vi,v},v%) specifying its vertices) in the triangulation is the set of all

triangles T; (identified with their index triples (v7,v},v})) sharing at least one of

T;’s vertices as a common vertex,

TP = U{Tj = (0,0, v]) | vf =v! Vol =0l Vol =], k=1,2,3}. (5.1.)

The triangle platelet 7TP; is the set of triangles in a two-dimensional triangu-

lation affected by the removal of the triangle 7;.
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Definition 5.2. The set of triangles
CP; = TP;\ {TZ} (5.2.)

is called the corona of the triangle platelet 7P;.
Definition 5.3. The corona CP; is continuous if for each pair of triangles 7j,,

T;,, € CP; triangles Ty,, ..., T} € CP; exist such that

m—1

m—1
/\ ( Ty, and Ty, are neighbors ); (5.3.)
i=1

otherwise, the corona is discontinuous.
Definition 5.4. The corona CP; is cyclic if it contains triangles T;,, T}, , and T},
such that

2

/\ (T, and Ty, moq 5 are neighbors ); (5.4.)

=0

otherwise, the corona is acyclic.
Figure 5.1. illustrates a triangle platelet 7°P; with a continuous and an discon-

tinuous corona and a cyclic corona.

Fig. 5.1. Triangle platelet with continuous and
discontinuous corona and cyclic corona.
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Definition 5.5. The corona CP; is closed if each triangle in CP; has exactly two
neighbors also elements of CP;; otherwise, the corona is called open.
Theorem 5.1. Denoting the elements of a continuous, acyclic corona CP; by
Ty, -, Th,,,_,, an order can be imposed on this set of triangles. If the corona CP;
is closed any triangle Ti; € CP; among T;’s neighbors can be chosen as the first
triangle T° of the ordered set CP?™. If CP; is open a triangle T;, € CP; not having
more than one neighbor in CP; is selected as the first triangle T® of CP™e. The set

CP?"e is generated by computing the sequence of sets

So = {T°},

Sk = Sp_1 U {T*} = {T°,...,T* 1 | T9 precedes T, j=0..k—2} U {T*},
k= l.m; — 1, (5.5.)

where T® € CP;, T* ¢ Sp_1, and T* is a neighbor of T*~'. The final ordered set
CP e equals Sy, 1.

Proof. Trivial.

Remark 5.1. If the set of triangles to be ordered is a closed corona then the last
triangle 7™~ precedes the first triangle T° as well.

Definition 5.6. Denoting the set of vertices in 7P; by {xi,, ...,xlNi} such that
ap = xy,, a1 = X;,, and ag = x;, are T;’s vertices (in counterclockwise order), the

set

B = {x, |j=3.N;} (5.6.)
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is called the boundary vertex set of the triangle platelet 7 P;.
Theorem 5.2. Given the ordered set of triangles CP?"™® of a continuous, acyclic
corona an order for the boundary vertex set B; is implied. If the first triangle
T € CP¢4 is a neighbor of T; the vertex of T not being a vertex of T; is chosen as
the first boundary vertex yo of the ordered set By, If the first triangle T® € C”P{”d
is not a neighbor of T; the vertex of T° neither being a vertex of T; nor of T' is
chosen as the first boundary vertex yo. The set B;”"d 1s generated by computing the

sequence of sets

80 = {yO}a
S = Sp_1 U {yj}, k=1.m; —1, (5.7.)

where y; is a verter of T*, y; is not a vertex of T;, andy; ¢ Sk—1. The final ordered
set B = {yo, ..., ¥n,; } equals Sp,, 1.
Proof. Trivial.

Definition 5.7. The polygon formed by the directed line segments

Yi¥Y(i+1) mod (ni+1), J = 0...N, (5.8.)

where N equals n; — 1 (open corona) or n; (closed corona), is called the platelet
boundary polygon of the triangle platelet 7P;.

In order to ensure that the orientation of the platelet boundary polygon has

the same orientation as the triangle T; given by the line segments aja;; ;1) mod 3;

7 =0,1,2, the next definition is needed.
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Definition 5.8. The (ordered) boundary vertex set B¢"® is ordered counter-
clockwise if the platelet boundary polygon satisfies the following condition: If y;
and ¥ (j41) mod (n;+1)s J = 0...IN, are the end points of a line segment of the platelet
boundary polygon and there are edges in 7P; connecting y; with the vertex ay,
k€ {0,1,2}, and y(j4+1) mod (n;+1) With a different vertex a;, I € {0,1,2}, then it is
k=0andl=1,ork=1andl=2,0or k=2and [ =0.

If the condition stated in Definition 5.8. is violated by the order imposed on a
boundary vertex set B¢"? the order is simply reversed. The first boundary vertex
becomes the last, and the last boundary vertex becomes the first. In the following, it
is assumed that both T;’s vertices and the vertices of the platelet boundary polygon
are oriented counterclockwise.

Figure 5.2. illustrates different triangle platelets with platelet boundary poly-

gons in counterclockwise order. Arrows on edges indicate the orientation.
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Fig. 5.2. Triangle platelet with continuous, acyclic
corona and boundary vertex set.

Based on a half-plane test a criterion is introduced to decide, whether a triangle
T; in a triangulation can be removed or not. This test requires the following steps.
(i) Determine the plane equation of the plane P given by T;.
(i)  Define an orthonormal coordinate system in P with T;’s
centroid as origin and two arbitrary unit vectors in P.
(ili) Compute the distances of all points in the ordered boundary
vertex set B¢ from P.
(iv)  Project all points in B;”"d onto P, and express the projected

points with respect to the local coordinate system in P.
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(v) Compute all line equations L; in P determined by the projected
directed line segments of the platelet boundary polygon.
(vi)  Test, whether the centroid of T; lies in the region obtained as
the intersection of all half-planes L; > 0.
Some steps are now discussed in detail. The outward unit normal vector of the

plane P is given by

d1 X dg
n = n%nYn)t = ——=_ 5.9.
( " Kl (59
where d; = a; — ag and ds = a3 — ag are defined by T;’s vertices.
The plane equation for P is
n-(x—c) = Az+By+Cz+D = 0, (5.10.)
where ¢ = (zg, Y0, 20)% = %Z?:o a; is T;’s centroid.
The unit basis vectors for the plane P can be chosen as
d;
b1 = and bg = nx bl. (511)
[Id ||

As in chapter 4.2., the signed distances d;, j = 0...n;, of the platelet boundary

points y; = (z;,y;,2;)T are
dj = Az;+ By; +Cz; + D. (5.12.)
Projecting the platelet boundary points onto P yields the points yf , Where

y; = y;—d;n. (5.13.)
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Expressing the points yf in P with respect to the two-dimensional coordinate

system given by its origin ¢ and the two basis vectors b; and bs, one obtains
d; = (d;-b1) b1+ (d; - bs) by, (5.14.)

where d; = yf — ¢, j = 0...n;. Therefore, the local coordinates (u;,v;)” of a point

yf with respect to the planar coordinate system are given by
T T
(’U,j, ’Uj) = (dj . bl, dj . bz) . (515)

Projected onto P, the points yf form an oriented polygon as well. The line
equations of the single segments are expressed using the local planar coordinate

system. The implicit line equation for the line L;(u,v) is given by
Lj (u,v) = — Awvj (u—u;) + Auj (v—uv;) = 0, (5.16.)

where Auj = U(j11) mod (ni+1) — %5 and Avj = V(j41) mod (n;+1) — Vj, J = 0...N.

Now, the criterion is given to decide, whether the triangle T; can be removed.
If the centroid ¢ (with local coordinates (0,0)T) is on the “left,” “positive” side of
all lines L; the triangle can be removed.

Definition 5.9. The solution set of the N + 1 linear inequalities
L; (u,v) = — Avj (u—u;) + Au; (v—uv;) > 0, (5.17.)

7 = 0...N, is called the feasible region of the triangle platelet 7P; in the plane P.
Theorem 5.3. The centroid c of a triangle T; is in the feasible region defined by

the inequalities in (5.17.) if the inequalities

uj Av; — v; Auj > 0, (5.18.)
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7 =0...N, hold for all j.
Proof. Assuming that the intersection of all half-planes defined by (5.17.) is not
empty and inserting the local coordinates (0,0)7 of the centroid ¢ into (5.17.) proves
the theorem.
q.e.d.
Remark 5.2. A triangle T; can only be removed if it is surrounded by a continuous,
acyclic corona, and its centroid passes the planar half-plane test.
In Figure 5.3., the half-plane test applied to the centroid of a triangle T; passing

the test is shown.

Fig. 5.3. Boundary vertex set and its projection onto
plane P; triangle T; passing the half-plane test.



