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5.2. Triangle reduction for triangulated two-dimensional surfaces

In order to determine the significance (weight) of a triangle in a two-dimensional
triangulation, the principal curvatures at its vertices and its interior angles are
considered. In this context, neither mean nor Gaussian curvature serve well as
measures for a triangle’s significance. The mean curvature at the point (0,0,0)T on
the hyperboloid (z,y, 2% — yz)T, x,y € IR, is zero, and the Gaussian curvature at
points in a plane and on a cylinder are both zero. Therefore, absolute curvature is

used as an appropriate curvature measure.

Definition 5.10. The sum A of the absolute values of the principal curvatures
and k9 at a point x¢ on the regular parametric surface x(u) is called the absolute

curvature,

A = |K)1‘ + ‘K)g‘. (519)

Since the overall goal is to establish an order in increasing significance on
the finite set of triangles constituting a two-dimensional triangulation in three-
dimensional space, each triangle is weighted by the three absolute curvatures at its
vertices. The triangle with minimal absolute curvature is least significant, while the
triangle with maximal absolute curvature is most significant. Later, the triangles

are iteratively removed from the triangulation according to this order.

Lemma 5.1. Denoting the interior angles of a triangle by o, ag, and ag, the range
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of the function

3
f (a1, a9,3) = Zcosaj (5.20.)
j=1

is the interval [1, 3].

Proof. Since Z?zl aj = m, it is sufficient to analyze the bivariate function
g (a1,a3) = cosay + cosay + cos (7r — (a1 + oz2))

on the domain D = { (a1, a2) | a1, 02 >0, oy + s < }.

One easily proves that g equals one on D’s boundary:
g (07042) = 14 cosag + cos (7r — az) = 1,

g (@1,0) = cosa; +1+4cos (m—ay) = 1, and
g (a1, m—ay) = cosay+cos (m—ay)+1 = 1.

A critical point must satisfy the equations

—885 (al,az) = —Sina1+sin(7r—(a1+a2)) =0 and
1

dg ) .

By (a1, 0) = —sma2+s1n(7r—(a1+a2)) = 0.

Therefore, sin a; = sinay is a necessary condition which holds for a; = as and

g =T — O1.

The first case, a; = ag, defines the univariate function

h (1) = 2 cosay + cos (m — 2ay)
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having critical points at oy = 0 and a1 = %, since h'(0) = h'(%) = 0. Considering

us
3

only a; = % results in the function value f(3, 5, 5) = %
The second case, ay = ™ — a1, defines part of D’s boundary, where f equals

one.

Definition 5.11. The angle weight o; of a triangle T; is given by

o, =0 (T;) = 2 ( (Zcosaj ) —1) € [0,1], (5.21.)

where o, j = 1,2, 3, are T;’s interior angles.
Remark 5.3. The weight function in equation (5.21.) assigns maximum weight to

an equilateral triangle and small weights to “long,”

skinny” triangles.
Definition 5.12. The curvature weight p; of a triangle T; is given by the sum

of the absolute curvatures at its vertices,

Pi = P (Tz) = ZAJ', (5.22.)

where A;, j = 1,2, 3, are the absolute curvatures at T;’s vertices.

Definition 5.13. The weight w; of a triangle T; is given by
W; = w (Tz) = 0; P;- (523)

The different steps concerning the removal of a single triangle T; are discussed
next. Assuming that the triangle platelet 7P; satisfies all the conditions stated

in chapter 5.1., the triangle T; is removed from the triangulation by replacing its
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vertices by one new point p whose construction must be described. This new point
is connected to each point in 7P;’s boundary vertex set, thus determining the new
edges in the triangulation.

It is worth mentioning that this method of replacing a triangle does not affect
the genus of the triangulation (precisely, the genus of the triangulated surface).
Definition 5.14. Given a two-dimensional triangulation 7, where each triangle

has exactly three neighbors, the value
X =t—e+w, (5.24.)

where ¢ is the number of triangles, e the number of edges, and v the number of ver-
tices in 7, is called the Euler-Poincaré characteristic of the implied C°, piecewise

linear surface. The topological genus is the value
X
1— = 5.25.
! (5.25.

Remark 5.4. Considering a triangulation including triangles not having exactly
three neighbors, equation (5.24.) must be modified. In this case, x is defined as
t—e+wv+1 (“open triangulation”).

Theorem 5.4. Replacing a triangle T; whose corona CP; is continuous and acyclic
by a point p, and constructing new edges by connecting the new point with each
point in the boundary vertex set Bg’rd, preserves the Fuler-Poincaré characteristic.
Proof. Replacing T; by a point obviously reduces the number of vertices by two.

Let k denote the number of edges (locally) being removed from the triangulation.
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Then, the number of triangles is reduced by (k —2). Considering these numbers and

inserting them into equation (5.24.) yields
x = (t-(k=2)—(e—k)+(v—-2) = t—e+u,

proving that the Euler-Poincaré characteristic remains the same.
q.e.d.

In principle, there are two possibilities for the construction of the new point p
replacing the triangle T;. One possibility is to construct a bivariate function f(u,v)
using an appropriate coordinate system for the points determining 7;’s triangle
platelet and to evaluate f at (0,0)T. The other possibility is to compute an implicit
function f(z,y, z) = 0, considering the same set of data points and to generate the
new point by intersecting a line with the implicitly defined surface.

The first possibility is described next. The construction follows the same prin-
ciple as the half-plane test (see chapter 5.1.), and the nomenclature from there is
used. Depending on the corona CPZf”"d, different choices for the origin c¢ in the plane
P are made.

e If the corona C’Pio”i is closed then the centroid of Tj; is chosen.

e [f T; has three neighbors, but its corona is open, then the common

vertex of T; and the first and last triangle in CP¢™ is chosen.

e If T; has two neighbors, and the first and last triangle in CP{™4

are both (are both not) neighbors of T; then the mid-point of

T;’s edge not shared by another triangle is chosen.
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e If T; has two neighbors, and the first (the last) triangle in CP{™¢
is a neighbor of T;, and the last (the first) triangle in CP¢"™® is
not a neighbor of T;, then the vertex only shared by T; and the
first (the last) triangle in CP{™ is chosen.

e If T; has a vertex not shared by another triangle then that

vertex is chosen.

The different choices for the origin ¢ are shown in Figure 5.4.

Fig. 5.4. Different choices for origin depending on triangle platelet.

Denoting the set of vertices in T;’s triangle platelet by {x1, ..., Xy, }, their asso-
ciated two-dimensional coordinates in the plane P by (u;,v;)T, and their distances

from P by d;, j = 1...n;, again, a polynomial of degree two is constructed consider-
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ing the constraints

[ (ug,v5) = Z cigk uit v = d; Jj=1l.n; (5.26.)
i+kI;:>§2
i,k>0

In matrix representation these constraints are

C2,0
w2 wvy w12 v 1 €1,1 dy
:g =Uc=d=| : |.(527)
Un,2  Up,Up, Un, Up,> Up, 1 Co’1 dn,
Co:0
Solving the normal equations
UTUec =UTd (5.28.)

finally determines a local approximation in a function setting, provided that the
determinant of UTU does not vanish.

The new point p by which the triangle T; is replaced is the point
p = c+ f(0,0) n, (5.29.)

where n is T;’s outward unit normal vector (ordinate direction of f).
The second possibility to determine the new point p is the construction of a

quadric f(x,y,z) = 0 obtained by considering the constraints

— % k I _ L
[ (x5,95,2) = E Cikl Tj y; zj = 0, j=1...n,,
ithI<2
ik, 150

and the additional linear constraint

f (17171) = E Cik,l = 1, (530)
itktI<2
i,k >0
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where (z;,y;,2;)7 € {x1,....,%pn,} and (1,1, )T ¢ {x1,...,xp, }, and {x1,...,xp,} is
the set of vertices in the triangle platelet 7 P;.

These conditions can be rewritten as

$12 T1Y1 Al 1 €2,0,0 0
.’1722 T2Y2 cee 29 1 C1,1,0 0

: : : =Xc=y=|:]. (53L)
xni2 L, Yn; <.e Zpy 1 €0,0,1 0

1 1 e 1 1 €0,0,0 1

Solving the normal equations
XT'Xe=XxTy (5.32.)

finally determines a quadric surface locally approximating the vertices in the triangle
platelet 7P;.

Remark 5.5. The additional constraint f(1,1,1) =1 is added, since the equation
f(xz,y,z) = 0 can be multiplied by any scalar still describing the same surface.
Also, the condition f(1,1,1) = 1 defines an orientation of the quadric surface, its
“outside” and “inside.” However, this does not affect the absolute curvature at any
point on the quadric.

Remark 5.6. If a triangle platelet does not provide enough vertices to uniquely
determine the coefficients for a quadric (at least nine vertices) an appropriate subset
of implicit surfaces is chosen, e.g.,

f (a:,y,z) = Z Cik,l ',I;i yk Zl7

i+k+I1<2
0<i,k,i<1

requiring less vertices.
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The new point p is computed by intersecting the quadric surface with the line
x(t) = ¢+ tn, t € IR, where c is constructed as in the bivariate function setting,
and n is T;’s outward unit normal vector. Inserting the linear expressions for the

single components z(t), y(¢), and z(t) into the equation

F@®,y@),200) = Y cw (@0) @0)* (=®)' =0

i+k+1<2
i,k, 150

yields the quadratic equation
t2 ( €2,0,0 (n””)2 +Cl,1’0 n’”ny-i-cl,o,l ’n,w’n,z-l-Co,z,o (ny)2 +Co,1’1 ’n,ynz-f‘Co’o’g (TI,Z)2 )
+t ( 2 (2,00 c"n" +co2,0 YnY +cpp2 ¢°n°)
+ c11,0 (E"nY +9n®) + 101 ("n® +En”) +co1,1 (Y + *nY)
+ C1,0,0 n® + €0,1,0 nY + €0,0,1 n? )
+ ( C2,0,0 (Ca:)2 + C1,1,0 c*cY + C1,0,1 c*cf + C1,0,0 c* + €0,2,0 (Cy)2

+ co,1,1 ¢Yc® +co,1,0 €Y +co0,2 (cz)2 +co,0,1 ¢+ €0.0,0 ) = 0, (5.33.)
where ¢ = (¢®, ¥, c*)T and n = (n®,n¥,n*)T.

Denoting the two (real) solutions of this equation by ¢; and t;, the point in
{c+tn|i=1,2} having minimal distance to the plane P spanned by T; is
selected as the new point p. Should the discriminant of the quadratic equation
become negative, ¢ is chosen as the point p.

Having computed p by either the bivariate setting or by the implicit, trivariate

approach, a first local re-triangulation of the boundary vertex set and p is obtained

by connecting each vertex in B¢"¢ with p.
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Figure 5.5. illustrates the removal of a triangle T; with different triangle
platelets and the re-triangulation of the remaining platelet boundary vertex set

and the new point p.

Fig. 5.5. Removal of triangle T; and re-triangulation of
boundary vertex set and new point.

Regardless of the method used for determining the new vertex p, the absolute
curvature must be computed for it, since the newly constructed triangles need to
be weighted and appropriately inserted into the overall order of all triangles.

Assuming the new point p has been constructed by the bivariate function
approach, the following theorem holds.

Theorem 5.5. The principal curvatures k1 and Ko of the graph ( u, v, f(u,v) )T -
R?, u,v € IR, of the bivariate polynomial

[ (u,v) = Z cig ug’ v (5.34.)

i+k<2
i, k>0
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at the point ( 0,0, f(0,0) )T are given by the two real roots of the quadratic equation

det 2 ¢ (14 coa?) —c1,101,000,1 — K —2 ¢y c1,0c0,1 +c1,1 (1 + c1,0%)
c11 (1+¢o1%) — 2 coac1,0001 —c1101,00,1 +2 co2 (L+c10%) — K
= 0. (5.35.)

Proof. According to Definition 4.7. and equation (4.15.) the principal curvatures

of f’s graph are the eigenvalues of the matrix

A= L <fuu fm,> <1+fu2 fulo )‘1
ll fuv f’UU fufv 1+f1}2 ’

where I; = 1+ fu2 + f,>. Evaluating —A for u = v = 0, one obtains the matrix

1
2

1 (2cp0 c11 1+ec10° c1,000,1

7 2 )
I c1,1 2c¢oz2 c1,0c0,1  1+co

where [; = \/ 1+ ¢1,0% + 0,12, having the characteristic equation (5.35.).

g.e.d.

The two roots of equation (5.35.), k1 and kg, determine the absolute curvature
at the point p and therefore the curvature weights for all triangles sharing p as a
common vertex.

Choosing the other possibility for computing p, intersecting a quadric with a
line, a formula is needed for calculating the principal curvatures for an arbitrary
point on a quadric. It is well known in differential geometry how to compute the
principal curvatures on an implicitly defined surface f(z,y,z) = 0.

Theorem 5.6. Given the implicitly defined surface

S ={xeR|fx)=0},
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where f is some polynomial with a non-vanishing gradient <7 f for all points in S, and
defining the surface outward normal vector at the surface point xo = (z0, Yo, zo)T €

S as

( VI (%o, Yo, 20) )T

N | =

the tangent space at xq is spanned by the two vectors by and by, where by is any

unit vector perpendicular to n and by is the normalized cross product of n and by,

byn =0, b1 by =1, and by = 2XPL (5.36.)
[In % by ]
Introducing the vector valued differential operator Dq as
Dg f =3 fayd® + fyyd? + fyd? , (5.37.)
X0 faczdm + fyzdy + fzzdz X0

where d = (d®,d¥,d*)T is a directional vector and fu, ..., f., denote the second

order partial derivatives of f, the mean and Gaussian curvature at Xo are

n - (Dy, fxby + by xD
H = — ( blf 2 . 1 b2f) and
2 [n | .
n D x D
- (Dy, f . b.f) , (5.38.)
In .
where ||n|| = /n-n. The principal curvatures, k1 and ko, are related to the mean

and Gaussian curvature by

K)]_/z = H + \/Hz—K. (539)

Proof. See [O’Neill '69], chapter 5.



114

These formulae can easily be applied to a quadric, thus determining the abso-
lute curvature at the new point p.

As already mentioned above, a natural way to triangulate the platelet boundary

vertex set BY"¢ and the additional, new point p is to construct edges from p to each

vertex in B¢, thus defining the (local) re-triangulation A,

Ni = {1 = o)tk lpsvymoawi11) | k= 3..m }, (5.40.)

where m equals either N; —1 (open corona) or N; (closed corona), and {x;q, ..., Xy }
is the set of vertices in 7P; (see Definition 5.6.). This means that the new point p
“inherits” the index of the first vertex, lg, of the removed triangle, 7T;, and vertices
with indices /; and /s no longer exist.

In order to obtain a (local) re-triangulation consisting of triangles with high
angle weights, an iterative, Lawson-like algorithm is applied to the set of newly
constructed triangles in the set N;, therefore iteratively modifying the triangulation
N; (see [Lawson *77]). The idea is to swap diagonals of quadrilaterals, edges shared
by two neighbors in A;. Nevertheless, diagonals are swapped only if the region
obtained by projecting a quadrilateral onto the plane P determined by the removed
triangle Tj; is convex.

Definition 5.15. The quadrilateral formed by the line segments ab, bec, cd,

da, a, b, ¢, d € IR, has a convex projection with respect to a plane P

if the quadrilateral in P, formed by the line segments aP’b?, bPcP, cPdr, dPaP,

where af’, bP, ¢, and d¥ are the orthogonal projections of a, b, ¢, and d onto P,
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describes the polygonal boundary of a convex region in P.

Quadrilaterals formed by neighbor triangles in N; satisfying this condition are
swapped as long as this results in an increase of the minimum of the angle weights
in the set of new triangles. This strategy finally terminates, since there is only a
limited number of possible triangulations and one of them maximizes the minimum
angle weight in N;.

Figure 5.6. shows the effect of swapping diagonals in a local re-triangulation,

demonstrating the improvement of angle weights.

Fig. 5.6. Increasing angle weights of triangles in local re-triangulation
(original and improved re-triangulation).

Having computed the weights of all triangles in the set A; they are inserted
into the overall order of all triangles. Simplified, the triangle reduction algorithm

can be summarized as follows.
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Algorithm 5.1. Triangle reduction by iterative triangle remowval

Input:  table 7 of Ny triangles (including neighborhood information),
table V of vertices (including principal curvatures), and a
percentage p € [0, 100].

Output: reduced table T of triangles and reduced table V of vertices.

compute weights for each triangle in 7T

while number of triangles is greater than {55 No

(

among all triangles having a continuous, acyclic corona and passing the
half-plane test determine the triangle 7; with minimal weight win;

remove triangle T; from triangulation (using either a bivariate or a
trivariate, implicit least squares approximation);

compute a first (local) re-triangulation;

compute the curvature weights for all new triangles;

improve the (local) re-triangulation by
maximizing the minimum angle weight;

compute weights for new triangles;

Remark 5.7. If two triangles T; and T} exist both having minimum weight wp,in
any of the two can be removed first. Removing either one of them first does not
affect the final result as long as the triangle platelets 7P; and 7P; have an empty
intersection.

Remark 5.8. Considering triangles not surrounded by a closed corona as boundary
triangles of a triangulation, it is possible to force the algorithm not to remove such
triangles. This, however, leads to reduced triangulations keeping a high density of
vertices on the boundary. This problem, of course, does not arise in the case of
reducing triangulations of closed surfaces.

Remark 5.9. In each iteration step triangles obtained by the local re-triangulation

procedure are marked as “new” triangles which can not be removed at once in the
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next iteration step. Only if no triangle among the “old” ones can be removed, all
new triangles can be considered for removal.

Remark 5.10. The termination criterion in the above algorithm (using a certain
percentage of the original number of triangles) can be modified in the case of a
triangulation obtained from the graph of a bivariate function. Then, the RMS
error can be computed interpreting original and an intermediate triangulation as
piecewise linear functions. As soon as the RMS error exceeds a certain tolerance e,
the algorithm stops.

Remark 5.11. It is possible that the reduction algorithm can not find any triangle
having a continuous, acyclic corona and passing the half-plane test.

In the following examples, a triangle is always replaced by a point using the
bivariate function approach for computing a new point p. Each of the next three
figures shows an original (upper-left) and three reduced triangulations for a reduc-
tion in the number of triangles by 50% (upper-right), 80% (lower-left), and 90%
(lower-right). The initial triangulations for Figures 5.7., 5.8., and 5.9. are obtained
by evaluating particular bivariate functions on [—1, 1] x [—1, 1] using a domain grid

with equidistant spacing determining points on their graphs.
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Fig. 5.7. Triangle reduction of 50%, 80%, and 90%
for the graph of f(z,y) = .4 (2% +y?), =,y € [-1,1].

Fig. 5.8. Triangle reduction of 50%, 80%, and 90%
for the graph of f(z,y) = .15 (2% + 222y — xy + 29?), =,y € [-1,1].
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Fig. 5.9. Triangle reduction of 50%, 80%, and 90%
for the graph of f(z,y) = .1 (cos(rz) + cos(my)), =,y € [-1,1].

Figure 5.10. shows the reduction algorithm applied to a torus and Figure 5.11.
shows the original triangular approximation to a human skull (left, about 60,000
triangles obtained by computing a triangular approximation of a particular contour
level of a CAT scan data set) and the result after a reduction by 90% (right). All

triangles are flat-shaded.



Fig. 5.10. Triangle reduction of 50%, 80%, and 90% for the torus
. : T
( (24 cosu) cosv, (2+ cosu)sinv,sinu )", u,v € [0, 2n].

Fig. 5.11. Triangle reduction of 90% for a piecewise
triangular approximation of a human skull.

120
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The triangle reduction strategy is tested for graphs of the same bivariate func-
tions as used in chapter 4.2., Table 4.1. Again, all test functions f(z,y) are defined

over [—1,1] x [—1, 1] and evaluated on a 51 - 51—grid with equidistant spacing,

T b i)T o
(%3, 95) ( 1+25, 1+25 , i,j =0...50,

determining points on their graphs,
T, . .
{( zi, Y5, (@i, y5) ) | 1,7 = O...50}.

A graph’s original triangulation is obtained by splitting each quadrilateral specified

by its index quadruple
(Gd), i+ 1,5), i+ 1,5+ 1), (5,5 +1) )
into the two triangles Ti{j and Tfj identified by their index triples,
T = ((i,9), (i+1,4), (i+1,5+1))  and  T7% = ((i,4), (i+1,5+1), (i,j+1) ).

The initial triangulation is now reduced using the new technique. Determining
a piecewise linear function, original and reduced triangulation are compared at the

given knots, (z;,¥;), ¢,7 = 0...50. Therefore, the root-mean-square error is

1 1 50 50 X \
51 51 o> (flwiys) — fleiyi) (5.41.)
7=0 =0

where f denotes the piecewise linear function implied by the reduced triangulation.
In the next table, original and reduced triangulation are compared for differ-

ent reduction rates, i.e., the original number of triangles is reduced by 50%, 80%,
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and 90%. Newly constructed triangles can not be removed from an intermediate
triangulation in the next iteration step, unless there is no other choice. During the
reduction process it is ensured that the final reduced triangulation still covers the

whole domain [-1,1] x [—1,1].

Tab. 5.1. RMS errors of triangle reduction for graphs of bivariate functions.

Function 50% 80% 90%
1. Plane:

2 (z+y). 0 0 0
2. Cylinder:

V2 — x2. .000485 .000999 .002105
3. Sphere:

V4 — (22 +9?). .000445 .001234 .002288
4. Paraboloid:

A (22 +9?). .000610 .001591 .003619
5. Hyperboloid:

A (2?2 —y?). .000248 .000794 .002009
6. Monkey saddle:

2 (x3 — 3xy?). .000355 .000843 .001853
7. Cubic polynomial:

15 (23 + 222y — a2y + 292). .000381 .001029 .002160
8. Exponential function:

e~z +y"), .000336 .000916 002075

9. Trigonometric function:
1 (cos(rz) + cos(my)). .000359 .001088 .002054




