Chapter 6
A triangular tangent-plane-continuous surface

6.1. Introduction

In CAD applications one is often concerned with the problem of generating smooth
surfaces being unions of triangular patches, e.g., car bodies. For most purposes, at
least tangent-plane continuity is required between adjacent patches. Commonly, the
given data are points and associated outward normal vectors (or pairs of tangent
vectors) to be interpolated in three-dimensional space. A triangulation of the data

points must be known as well.

Triangular methods for the function setting, where points in the plane and
associated function and derivative values are given, are discussed in [Barnhill et
al.’73], [Barnhill & Farin ’81], and [Farin '86]. The more general problem of inter-
polating arbitrary points in three-dimensional space with prescribed tangent planes
has been considered later, e.g., in [Farin '83]. In [Nielson '87] and [Hamann et al.’90]
a tangent-plane-continuous surfaces are constructed based on a so-called side-vertex

method, originally introduced for bivariate functions (see [Nielson ’79]).

Other methods are described in [Herron ’85] and [Piper ’87]. In [Hagen ’89]
tangent planes as well as principal curvatures at the data points are interpolated

yielding a G? surface. A completely different approach is chosen in [Sederberg
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'85] and [Dahmen ’89], where surface patches are implicitly defined by trivariate
functions.

The surface scheme developed here is based on the side-vertex technique and
on degree elevated conics as the underlying curve scheme, since the given data may
imply curves with and without inflection points. The conic scheme is modified in
order to allow more general curves. Ball’s generalized conics can be used as an
alternative (see [Ball *74,’75,’77] and [Boehm ’82]).

In principle, the problem is to interpolate points x; € IR® with given outward
(unit) normal vectors n;. A two-dimensional triangulation 7 defining the vertices in
{v1,va,v3} forming triangles must be known for the data points. Patch boundary
curves are first constructed along the edges of each triangle, then, a radial projector
is used to blend from a vertex v; to the opposite boundary curve along edge e;,
1 = 1,2,3. The curves used for this blending process are degree elevated conics,
being modified such that both convex and rational cubic curves with an inflection
point can be generated.

Boundary curves are generated first. Then, three patch building blocks are
obtained by calculating degree elevated conics, emanating from a triangle vertex
and ending at a point on the opposite boundary curve. Finally, the patch building
blocks are blended together in a convex combination defining the complete patch.

The (intrinsic) domain for each patch is the set of triples (u1, ua, ug) of barycen-
tric coordinates for which Z?ﬂ u; =1, u; > 0,1 =1,2,3. Each point on a patch is

the image of a triple (u1, ug, us).
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Definition 6.1. The convex combination
s (u) =) wiu) s;(u) (6.1.)
i=1
interpolating the triangle vertices vy, vo, and vz and associated outward (unit)
normal vectors nj, ns, and nz, where u = (u1,us, usg) represents the barycentric
coordinates of a point in the triangle and Z?=1 wi(u) =1, w;(u) > 0, is called a six
parameter patch.

Each building block s;(u) of the patch interpolates the positional data along
all three triangle edges and the normal data along the opposite edge e;. The final
patch s(u) interpolates the positional and normal data prescribed along all three
edges. A particular set of weight functions w; is needed to solve the interpolation
problem.

Theorem 6.1. The weight functions

B(21,1,1)—ei(‘1)
Blony (W) + By o, (W) + By 1 g (W)

w; (u) = i=1,2,3, (6.2.)

where e; = (1,0,0), e2 = (0,1,0), and e3 = (0,0, 1), and B? i+j+k=2 are

(4,5,k)°
the Bernstein polynomials of degree two defined as
2 2 i o d ok
B(i,jak) (11) - 7! J‘ k! Uy uy uUs, (63)

have the properties

Q) éwi(u) _

(11) w; (ek) = 5i,k7 i, k€ {1,2,3}, and
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(iii)  Da (wi(e;)) = 0, 4€{1,2,3},

where edge ey is characterized by barycentric coordinates (0,us,us), edge ex by
(u1,0,us3), and edge eg by (u1,us,0), i is the Kronecker delta, and Dq is a direc-
tional derivative in any direction d, where d is expressed in barycentric coordinates
(dv,d2, d3), S0, d; = 0.

Proof. See [Nielson ’79].

Definition 6.2. The single patch building blocks s;(u), i = 1,2, 3, are called
compatible if each interpolates all three boundary curves of the triangular patch

s(u) and the normals edge e;, formalized

(iv)  silc] (ej) = c (&), i=1,2,3, j€{1,2,3} and

(v) n[si[c]] (e;) = nc] (e;), i=1,2,3.

A boundary curve c, the patch building blocks s;, and the normal n are viewed
as operators. The notation “[ |” means “restricted to.” Using the properties (i),
(ii), and (iii) from Theorem 6.1. and (iv) and (v) from Definition 6.2., the following
interpolation theorem holds.

Theorem 6.2. The conver combination

s (u) = Z w;(u) s;(u) (6.4.)

=1

interpolates all three boundary curves and the patch normals on the boundary.

Proof. a) Positional interpolation:

3
It is s;[c] (ej) =c (e5), i1 =1,2,3, j€{1,2,3}, and ) w;(e;) = 1. Therefore,
i=1
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s[c] (ej) =c (e;) holds.

b) Normal interpolation:

To show interpolation of the boundary normals one calculates two non-parallel
tangent vectors for a point on a boundary curve, calculates the cross product and
shows that it coincides with the prescribed patch normal at that point. Let the
directions in which tangent vectors are computed be d; = (-1,1,0),ds = (0, —1,1),
and dg = (1,0,—1). Dg, is the vector valued derivative operator determining
tangent vectors in direction d;. Using the product rule and taking the properties

(ii) and (iv) into account (Theorem 6.1., Definition 6.2.), one obtains
Dg;,slc] (e:)

— wn(es) Dasle] () + Da,wi(e:) sale] (es)
+ws(e;) Da,s2(c] (e;) + Dqa,wa(e;) sa2(c] (e;)
+ws(e;) Da,ss3(c] (e;) + Da,ws(e;) s3lc] (e;)

= Da,sile] (e0) + (&) (Da, (wi(es) +wales) +ws(es))

— Da,sile] (e:)-

Considering the result from a), the tangent vector along a boundary curve is given

by

Dd1+(i mod 3) Si[c] (el) = Dd1+(i mod 3)S[C] (e’i)7
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© = 1,2,3. Choosing two arbitrary directions d; and di4(; mod 3), ¢ = 1,2,3, the

patch normal along a boundary is determined by the cross product
nc] (e;) = n[s;[c]] (e;)
= Da;silc] (ei) X D, (; moa 5 Sil€] (€:)) = Da,slc] (€:) X Ddy, ; moa o 8lc] (€i)
= ns[c]] (e),

proving normal interpolation along the boundaries.

q.e.d.

The concept of barycentric coordinates for a triangle is shown in Figure 6.1.

Fig. 6.1. Concept of barycentric coordinates for a triangle.

6.2. The conic curve scheme

A planar curve scheme is needed for the interpolation of two points by € IR® and
bs € IR? and two associated outward unit normal vectors, ny € IR® and ns € IR3.
A plane containing unit tangent vectors for the end points of the curve must be

defined.
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tangent through

b tangent through

normal of P

Fig. 6.2. Conic in Bézier representation.

Referring to Figures 6.2. and 6.3., the construction proceeds as follows:

(i)

Define a plane P through by and bg containing the desired curve. This plane
is specified by the requirement that the vector %(no +n3) lies in it (special care
necessary for the case ngp = —nj3).

Construct the intersection of the conic plane P and the tangent plane Py at by
and of P and the tangent plane P; at bz. Each of the straight lines obtained
defines the tangent of the desired curve at by and bg, respectively. The cross
product between the normal of P and the two given normal vectors at the end
points of the curve define unit tangent vectors for the end points, denoted by

to and ts.
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(iii) The resulting conic is written as a degree elevated rational Bézier curve of

degree three,
3

> w;i by B}(t)

c(t) = =2 : (6.5.)
> wi Bi(t)

=0

where ¢t € [0,1], wo = w3 =1, w; = ws = w, and

B3 (t) = <3> (1—t)3% ¢, §=0..3. (6.6.)

7

Referring to Figure 6.3., the interior Bézier points, b; and bo, lie on a line

parallel to the line through by and bs. Using the law of sines one obtains

sin
l()’l - N /8 L0’3. (67)
sin 7y

Degree elevation requires the following ratio to hold (see [Farin '90]):

Lo,
— = 2w. 6.8.
log — Loy (6.8,
Therefore,
2w sinpf

Ly, = Ly 3. 6.9.
0,1 1+2w sinvy 0.3 (6:9)

Thus, one gets
b; = by +L0’1t0. (610)

The same construction is carried out for bs.

Theorem 6.3. Choosing the weight w = wy = wo as

w = sin% = cosw (6.11.)
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determines a finite value Lo 1 for~y approaching zero (parallel tangents at end points)
and defines a circular arc for the case a = f.

Proof. Obviously, the scheme yields circular arcs for an isosceles triangle as Bézier
polygon (see [Boehm et al.’84]).
The choice for w also guarantees a finite value for Lg 1, since

2 sin 1 i
5 sinf I

lim Loy = 1i
Yo ot Y56 1+2 sin 7 sin~y 0.3
1 sinp
= lim —2_ Loz = L in 3. 6.12.
713}) 1+2% ~ 0,3 0,3 sinf ( )
q.e.d.

In order to avoid consistency problems between patches and to reduce input
information all weights associated with interior Bézier points should be chosen au-
tomatically as proposed in Theorem 6.3. Of course, they can also be specified by
the user, considering the consistency constraints. Figure 6.3. illustrates the degree

elevation process for conics.

Fig. 6.3. Degree elevation for a conic in Bézier representation.
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6.3. Computing the patch building blocks
The computation of a point s;(u), 2 = 1,2, 3, for given parameter values u1, us, and
ug is based on generating two separate curves. The first curve is associated with
the edge e; of the domain triangle interpolating the vertices associated with this
edge and the computed tangent vectors at those vertices.

This curve is evaluated to obtain a point on the boundary along edge e;. The
second curve constructed is the result of blending from the vertex v; to the point
on the curve along e;, thus interpolating the vertex v;, the point on the curve along
ei, and the two tangent vectors prescribed for these two points. This curve finally
determines a point on this building block.

The planar conic scheme is used for the computation of points on a building
block s;(u) in the following way:

(i) Curve scheme for the boundary curves

Using the planar curve scheme based on degree elevated conics it is easy to

generate the three boundary curves c1 (t), ca(t), and c3(t). For the computation

of patch building block s1(u) at u = (u1, us, u3) one evaluates the curve c;(t)

for t = ug/(1 —wuy) € [0,1] along edge e;. The input for the conic scheme are

the vertices vo and vg, the normals ny and ng, and the parameter . This
results in a particular point on the patch boundary.

(ii) Surface scheme for a point on s;(u)
Having computed a point ¢;(t), i = 1,2, 3, on a boundary curve, the next step

is the estimation of the surface normal of the final patch at a particular point
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on c;(t). The surface normal n?(t) along c;(t) must be perpendicular to this

curve itself,

nj(t) - &(t) = 0, (6.13.)

nf(t) - nf(t) = v (1), (6.14.)

where n¢ (t) denotes the unit normal vector to the conic in its plane, n} (¢) is
determined. The value 7 (¢) is chosen according to the following interpretation:
At t =0,

n;(0) - nf(0) = v (0) (6.15.)

denotes the cosine of the angle formed by the surface normal nJ (0) and the
conic normal n¢(0). At ¢t = 1, v (1) has the analogous interpretation. If one

sets
v () = 1—=1)v(0)+¢~(1), (6.16.)

the cosine of the angle formed by n?(t) and n¢ (¢) varies linearly along the

edge.

This process guarantees that the surface normals are the same as the given
ones at the vertices and, moreover, that the surface normals along an edge are the
same for this triangular surface patch as well as for a neighbor patch sharing the

edge. Thus, tangent-plane continuity between adjacent patches is assured.
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Remark 6.1. The choice of the boundary surface normal considers the boundary

curve itself, a simple linear interpolation of the given normal vectors at the two
vertices is avoided.

The process of determining the surface normal along the boundary conic ¢, (t)

is illustrated in Figure 6.4.

Fig. 6.4. Generating patch normal along edge e;.

Using the idea of radial projectors, the blending from a vertex to the opposite
boundary curve is done next. This is described for the vertex v; and its associated
boundary curve ¢4 (). The generation of a point on a curve, emanating from v; and
ending at a point on c¢q(t), follows the same principle as the generation of a point

on the boundary conic ¢1(¢), t = ug/(1 —uq) € [0, 1].
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To obtain a point on the patch building block s;(u) at u = (uy, ug, ug) one has

to construct a curve c(¢), ¢ = (1 —wuy) € [0,1]. The input data for the curve scheme
are the vertices vi and cq(t), the normals n; and the constructed surface normal

n? (t) along edge e;. The computation of a point on s;(u) is shown in Figure 6.5.

Fig. 6.5. Evaluating first patch building block.

Repeating this process for the other two building blocks s3(u) and s3(u) finally
yields the point s(u) on the surface. The weights for the interior Bézier points of all
conics can be interpreted as tension parameters, allowing the generation of patches
approaching the triangle {vy, vq, v3} for small weights (w < 1).

So far, only convex data configurations have been considered, making it possible
to use conics. Generalized conics were introduced in [Ball '74,’75,’77] as rational

curves of degree three, including conics as a subset. The concept of generalized
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conics allows to model input data implying curves with and without an inflection
point. A criterion must be given that allows to decide, whether the presented conic
scheme can be used for a planar data configuration.
Definition 6.3. The line through the vertices v; and vy divides the plane into
two half-planes. The tangent vectors t; and t, associated with v; and vs define a
convex configuration if the tangent vectors are directed into opposite half-planes
and a non-convex configuration, otherwise.

If given data are convex the planar scheme for degree elevated conics can be
used as described above. In the case of a non-convex configuration, the two interior
Bézier points for the curve scheme must be constructed in a way that a rational
curve of degree three with an inflection point is obtained.

Assuming the tangent vectors t; and t, are directed into the same half-plane,
the prescribed tangents through v; and vy are reflected with respect to the axis
given by the line through v; and v,. Therefore, two pairs of tangents are obtained,
one pair per vertex. The degree elevation procedure is then carried out in both half-
planes. The interior Bézier points must be chosen in a way such that (b; — bgy) =
aity, a; > 0, and (bg — by) = asts, as > 0.

The four different data configurations possible are illustrated in Figure 6.6.

Two curves with and two without inflection points can be obtained.
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Fig. 6.6. Convex and non-convex data configurations defined
by end points and end tangents in a plane.

Thus, the concept of degree elevated conics allows us to handle both convex and
non-convex data. The continuity inside a single patch building block is guaranteed,
since the construction of the interior Bézier points is continuous with respect to the
involved angles.

Remark 6.2. If all data points x;, j # 4, are lying in the same half-space deter-
mined by the plane through x; with normal n;, and this is true for all ¢, a convex
surface is implied and “usual” conics can be used everywhere as curve scheme.

Remark 6.3. Choosing the weights automatically, as described in Theorem 6.3.,
yields circular arcs when the data configuration implies this. Choosing points and
normals from a unit sphere as input data produces a surface rather well approximat-

ing a sphere. However, the presented scheme does not have spherical precision. This
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is the result of the convex combination. Each single building block has spherical
precision, but each one generates a different point on the sphere.

Remark 6.4. Using degree elevated conics instead of parametric cubic curves
guarantees that one does not obtain inflection points or loops unless the prescribed
normals at the two end points of a curve imply an inflection point.

In Figure 6.7., three different surfaces are shown using increasing weights. The
four vertices of an equilateral tetrahedron inscribed in a unit sphere with the asso-
ciated normals of the sphere at these points are given as input. For the first surface
the weight w is chosen automatically (Theorem 6.3.). In this case, the maximal
distance of the resulting surface from the unit sphere is about 0.01. The other two

surfaces both have lower weights.

Fig. 6.7. Triangular surfaces obtained from spherical data
using increasing weights (from left to right).
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In Figure 6.8., the surface scheme has been applied to the reduced triangulation
approximating a human skull (about 6,000 triangles, see Figure 5.11.). All weights

w are chosen automatically (Theorem 6.3.).

Fig. 6.8. Triangular surface for reduced skull triangulation,
weights chosen automatically.



