LIST OF FIGURES

Figure		Page
1.1.	Axial and saggital slice of human head (CAT).	2
2.1.	Skull rendered using Levoy's algorithm for CAT-scan data	7
2.2.	Domain subdivision method for exponential function, $q_x = q_y = q_z = 5$, $\alpha_x = \alpha_y = \alpha_z = 1$	12
2.3.	Domain subdivision method for exponential function, $q_x = q_y = q_z = 8$, $\alpha_x = \alpha_y = \alpha_z = 2$	12
2.4.	Domain subdivision method for trigonometric function, unit ball, $q_u = q_v = q_w = 5$, $\alpha_u = \alpha_v = \alpha_w = 2$	13
2.5.	Domain subdivision and transparency, $n_x = n_y = n_z = 8, \ t = 0.5.$	15
2.6.	Domain subdivision and transparency, $n_x = n_y = n_z = 8, t = 0.95.$	16
2.7.	Slicing method, coloring hyperplanes, multiple colors, $k_1 = l_1 = 80, \ k_2 = l_2 = 130, \ k_3 = l_3 = 20.$	18
2.8.	Slicing method, coloring hyperplanes, single color, $k_1 = l_1 = 80, \ k_2 = l_2 = 130, \ k_3 = l_3 = 20.$	18
2.9.	Slicing method, bivariate surfaces, Gouraud shaded, $k_1 = k_2 = k_3 = l_1 = l_2 = l_3 = 30.$	20
3.1.	Contour triangulation, contour divided into two parts	27
3.2.	Discontinuous piecewise planar contour approximation	29
3.3.	Trilinear cell interpolant restricted to a cell face, solution for the ambiguous case.	35
3.4.	Cells containing contour polygons of length six, eight, nine, and twelve.	37

Figure		Page
3.5.	Exact and piecewise linearly approximated contour in a cell, $f(x,y,z) = 2(1-x)(1-y)(1-z) + 1.6x(1-y)(1-z) + 1.4(1-x)y(1-z) + 1.4(1-x)(1-y)z + .4x(1-y)z + 2(1-x)yz + 2xyz = 1.5, x, y, z \in [0,1].$	40
3.6.	Triangular approximation of contour level $f(x, y, z) = 60$ for $f(x, y, z) = 1.2 ((x - 10)^2 - (y - 10)^2 + (z - 10)^2),$ $x, y, z \in [0, 20].$	41
3.7.	Assigning the part index to a triangle in a contour triangulation.	46
3.8.	The 18 function values and their weights needed for approximating the x -coordinate for a normal using Zucker's operator.	51
3.9.	Human skull obtained from a rectilinear CAT-scan data set, $68 \cdot 64 \cdot 64$ points, $f_{i,j,k} \in [0,255]$, approximation for $f(x,y,z) = 12.5$.	53
4.1.	Texture map of mean and Gaussian curvature onto a torus, $ \left(\begin{array}{cc} (2+\cos u)\cos v, (2+\cos u)\sin v, \sin u \end{array} \right)^T, \ u,v \in [0,2\pi]; \\ \text{green/yellow representing negative values,} \\ \text{magenta/blue representing positive values.} \end{array} $	61
4.2.	Construction of a bivariate polynomial for platelet points in a two-dimensional triangulation	72
4.3.	Exact curvatures κ_1^{ex} , κ_2^{ex} , H^{ex} , and K^{ex} on the graph of $f(x,y) = .4 (x^2 - y^2)$, $x,y \in [-1,1]$	75
4.4.	Approximated curvatures κ_1^{app} , κ_2^{app} , H^{app} , and K^{app} on the graph of $f(x,y)=.4$ (x^2-y^2) , $x,y\in[-1,1]$	75
4.5.	Exact curvatures κ_1^{ex} , κ_2^{ex} , H^{ex} , and K^{ex} on the graph of $f(x,y) = .15 (x^3 + 2x^2y - xy + 2y^2), \ x,y \in [-1,1].$	76
4.6.	Approximated curvatures κ_1^{app} , κ_2^{app} , H^{app} , and K^{app} on the graph of $f(x,y) = .15 (x^3 + 2x^2y - xy + 2y^2)$, $x,y \in [-1,1]$.	76
4.7.	Exact curvatures κ_1^{ex} , κ_2^{ex} , H^{ex} , and K^{ex} on the graph of $f(x,y) = .1 \left(\cos(\pi x) + \cos(\pi y)\right)$, $x,y \in [-1,1]$	77

Figure		Page
4.8.	Approximated curvatures κ_1^{app} , κ_2^{app} , H^{app} , and K^{app} on the graph of $f(x,y) = .1 \left(\cos(\pi x) + \cos(\pi y)\right)$, $x,y \in [-1,1]$.	77
4.9.	Mean and Gaussian curvature of the graph of $f(x,y,z)=.4 \left(x^2+y^2+z^2\right), x,y,z \in [-1,1]. \qquad$	80
4.10.	Exact and approximated mean and Gaussian curvatures of the graph of $f(x,y,z)=.4$ $(x^2-y^2-z^2),~x,y,z\in[-1,1].$	89
4.11.	Exact and approximated mean and Gaussian curvatures of the graph of $f(x, y, z) = .15 (x^3 + 2x^2y - xz^2 + 2y^2), x, y, z \in [-1, 1].$	90
4.12.	Exact and approximated mean and Gaussian curvatures of the graph of $f(x, y, z) = .1(\cos(\pi x) + \cos(\pi y) + \cos(\pi z)),$ $x, y, z \in [-1, 1].$	90
5.1.	Triangle platelet with continuous and discontinuous corona and cyclic corona.	94
5.2.	Triangle platelet with continuous, acyclic corona and boundary vertex set.	98
5.3.	Boundary vertex set and its projection onto plane P ; triangle T_i passing the half-plane test	101
5.4.	Different choices for origin depending on triangle platelet	107
5.5.	Removal of triangle T_i and re-triangulation of boundary vertex set and new point	111
5.6.	Increasing angle weights of triangles in local re-triangulation (original and improved re-triangulation).	115
5.7.	Triangle reduction of 50%, 80%, and 90% for the graph of $f(x,y) = .4 \ (x^2 + y^2), \ x,y, \in [-1,1].$	118
5.8.	Triangle reduction of 50%, 80%, and 90% for the graph of $f(x,y) = .15 (x^3 + 2x^2y - xy + 2y^2), x, y, \in [-1,1].$	118

Figure		Page
5.9.	Triangle reduction of 50%, 80%, and 90% for the graph of $f(x,y) = .1 \left(\cos(\pi x) + \cos(\pi y)\right), \ x,y,\in[-1,1].$	119
5.10.	Triangle reduction of 50%, 80%, and 90% for the torus $ (2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)^T, $ $ u, v \in [0, 2\pi]. $	120
5.11.	Triangle reduction of 90% for a piecewise triangular approximation of a human skull.	120
6.1.	Concept of barycentric coordinates for a triangle	128
6.2.	Conic in Bézier representation.	129
6.3.	Degree elevation for a conic in Bézier representation	131
6.4.	Generating patch normal along edge e_1	134
6.5.	Evaluating first patch building block.	135
6.6.	Convex and non-convex data configurations defined by end-points and end-tangents in a plane	137
6.7.	Triangular surfaces obtained from spherical data using increasing weights (from left to right).	138
6.8.	Triangular surface for reduced skull triangulation, weights chosen automatically.	139