
OMash: Enabling Secure Web Mashups via Object
Abstractions

Steven Crites
University of California, Davis
crites@cs.ucdavis.edu

Francis Hsu
University of California, Davis

fhsu@cs.ucdavis.edu

Hao Chen
University of California, Davis
hchen@cs.ucdavis.edu

ABSTRACT
The current security model used by web browsers, the Same Ori-

gin Policy (SOP), does not support secure cross-domain communi-
cation desired by web mashup developers. The developers have to
choose betweenno trust, where no communication is allowed, and
full trust, where third-party content runs with the full privilege of
the integrator. Furthermore, the SOP has its own set of security
vulnerabilities and pitfalls, includingCross-Site Request Forgery,
DNS rebinding and dynamic pharming. To overcome the unfor-
tunate tradeoff between security and functionality forced upon to-
day’s mashup developers, we propose OMash, a simple abstraction
that treats web pages as objects and allows objects to communi-
cate only via their declared public interfaces. Since OMash does
not rely on the SOP for controlling DOM access or cross-domain
data exchange, it does not suffer from the SOP’s vulnerabilities. We
show that OMash satisfies the trust relationships desired by mashup
authors and may be configured to be backward compatible with the
SOP. We implemented a prototype of OMash using Mozilla Firefox
2.0 and demonstrated several proof-of-concept applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Languages, Security.

Keywords
Web, browser, mashup, same origin policy, communication, pro-

tection, security model, object abstraction.

1. INTRODUCTION
Web browsers are an integral part of everyday computing, with

their uses ranging from accessing simple web pages to accessing
web applications such as online retail, banking, webmail, wikis,
blogs, and discussion boards. The rise of AJAX (Asynchronous
JavaScriptandXML) style web applications has given the web dy-
namic, interactive content such as Google Maps [2]. In the case

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

of Google Maps, Google has supplied a public API [3] so that
web developers can use Google’s service to create hybrid websites,
such as HousingMaps [4] which takes data from Craigslist [1] and
presents it using Google Maps. This type of hybrid web application
is known as amashup: a website that combines content from one
or more websites.

Even before the rise of AJAX and mashups, at any given time a
web browser likely contained pages from different domains, whether
they were loaded in different browser windows, tabs, or even frames
within another page. As such, security is extremely important:
without security it would be possible for a script from one web
page to steal or modify critical information from another page. The
solution, first presented in Netscape Navigator 2.0, is known as the
Same Origin Policy (SOP) [24]. It is now the de facto security
model used by web browsers.

1.1 Problems with Same Origin Policy
The Same Origin Policy “prevents document or script loaded

from one origin from getting or setting properties of a document
from a different origin” [24]. Furthermore, “[T]wo pages are con-
sidered to have the same origin if the protocol, port (if given), and
host are the same for both pages.” A “page” refers to a browser
window, <frame>, or <iframe> (as well as<object>), as each
can contain a document. Note that a script’s origin is considered
to be the origin of the document that contains it rather than where
the script is hosted. This has important security implications, as a
malicious third-party script will run in the context of the site that
included it via a<script src="url_of_script"> tag.

Under this policy, a Domain Name System (DNS) domain is a
principal, much like a user or group is a principal in a multi-user
operating system. While this suffices for mutually distrusting web
pages, it is insufficient for creating web applications with content
from different domains: the only two trust relationships available
between principals areno trust, where third-party content is iso-
lated within a different window or frame, andfull trust, where the
third-party content is included as a library via a<script> tag (this
is the case with Google Maps) and thus has full access to the page
that included it. Faced with this coarse-grained security model, de-
velopers are often forced to make a tradeoff between security and
functionality.

In addition, the SOP suffers from various vulnerabilities due to
either its design limitations or its reliance on insecure services. For
example, it relies on the security of the Domain Name System, and
so where DNS deployment is insecure adynamic pharming attack
could subvert the SOP [20], and aDNS rebinding attack could leak
information [18]. Furthermore, even though the SOP prevents cer-
tain undesirable cross-domain communication, it is unable to pre-
vent Cross-Site Request Forgery (CSRF) attacks.

MashupOS: To offer a more fine-grained access control model for
mashup applications, MashupOS proposes abstractions for express-
ing various trust relationships between subjects [26]. Our work
is inspired by MashupOS, but we intend to resolve two problems
with MashupOS. First, MashupOS requires different abstractions
for expressing different types of trust relationships. It proposes
<ServiceInstance> andCommRequest for access-controlled con-
tent, and<Sandbox> and<OpenSandbox> for unauthorized con-
tent. By contrast, we propose a single abstraction for expressing all
trust relationships. Second, MashupOS still relies on the SOP for
controlling Document Object Model (DOM) accesses, which has
various vulnerabilities as mentioned. By contrast, our abstraction
does not rely on the SOP for controlling DOM accesses or cross-
domain data exchange, and therefore avoids SOP’s vulnerabilities.
While our model resolves these two problems with MashupOS, our
model can express all the trust relationships described by Mashu-
pOS (Section 3.1).

1.2 OMash
We propose OMash, a new abstraction and access control model

for writing secure yet flexible mashup applications. We draw an
analogue to objects in object-oriented programming languages —
such as Java — where an object represents a principal and objects
can communicate with each other only via public methods. Our
model treats each web page as a principal. By default, all the con-
tents of a web page are private to the page; in other words, private
content is accessible only within the same page. To enable inter-
page communication, a page may declare a public interface, which
all pages can access.

A web page’s private data includes all of the content on the page,
such as DOM objects and JavaScript objects and functions. In addi-
tion, it should also include authentication tokens, such as cookies,
acquired by the page; in other words, only content on that page can
access the authentication tokens, and the tokens will be sent out
only for HTTP connections originating from that page. This mech-
anism reliably defeats CSRF attacks, since a malicious page cannot
access or send authentication tokens held by another page.

OMash does not rely on the SOP. In fact, we advocate abolish-
ing the SOP for controlling DOM accesses and cross-domain data
exchange, since it is inflexible, prone to abuse (CSRF attacks), and
vulnerable to DNS attacks. OMash, analogous to the Java object
model, is simple and likely familiar to programmers. We will show
that our simple model can express all the trust relationships dis-
cussed in MashupOS (Section 3.1) and can be configured to be
backward compatible with the SOP (Section 3.3).

We implemented a prototype of our model using Mozilla Fire-
fox 2.0. We did not need to modify the JavaScript engine. To
implement the public interface, we only need to set a few pref-
erences for Mozilla’s Configurable Security Policies (CAPS) sys-
tem. To privatize authentication tokens, we used Firefox 2’s Ses-
sion store API. A web page wishing to use our security model to
provide a public interface can simply define a JavaScript function
getPublicInterface that returns the page’s public interface. We
will show examples in Sections 3 and 4.

2. THE SAME ORIGIN POLICY
The Same Origin Policy is applied to protect three browser re-

sources: documents, cookies, and access to remote services. To
protect documents, sites from one origin cannot access documents
from another origin via the Document Object Model. To protect
cookies, sites can only set their own cookies and cookies are only
sent to their originating site in HTTP requests. Remote services can
be accessed via theXMLHttpRequest (XHR) object, which allows

a script to issue an asynchronous HTTP request to a remote server.
The SOP only permits XHR to issue requests to the origin of the
containing document.

One exception to the SOP permits a script to set its domain to a
suffix of the current domain, and use that newer, shorter domain for
future SOP checks. For example, a script in a document originating
from foo.a.com can perform the assignmentdocument.domain
= "a.com". Thus, its origin is nowa.com. Note that a site cannot
setdocument.domain to a top-level domain (TLD) such as.com.

2.1 Problems

2.1.1 DOM Access
The SOP enforces a single unchangeable security policy on every

site. While in many cases this is fine, sincea.com likely does not
want its DOM accessible from a page fromb.com also running
in the browser,a.com has no say in the matter; it cannot specify
what resources other sites are allowed to access and let the browser
enforce this policy.

This coarse-grained policy may result in undesired accesses. For
example, documents athttp://a.com/foo andhttp://a.com/bar
are allowed to access each other, even when this is not desired.
Another problem is determining the “public suffix” — previously
known as the effective top-level domain (TLD) — for a given URL.
While a TLD is the last dot-portion of the name (like.com and
.org), many domains are effectively TLDs, such as.co.uk. This
cannot be inferred programmatically, and instead must be deter-
mined via a list [13]. Getting this wrong could allow for a same
origin violation on sites that set theirdocument.domain to .co.uk
or allow a site to get or set a cookie for the entire.co.uk domain.

Another problem with the SOP is that it relies on the security of
the Domain Name System - a system that was not designed with
security in mind. Karlof et al. demonstrated that when an attacker
controls the domain name mapping it is possible to subvert the SOP
using an attack technique calleddynamic pharming [20]. Using this
attack, it is possible to bypass all authentication schemes by first
mapping the target domain to an attacker’s web page that contains
malicious JavaScript and (for example) an<iframe>. The attacker
then re-maps the target domain to the actual server and loads the
real web page in the<iframe> where authentication takes place as
normal. This results in the attacker having full access to the user’s
session in the<iframe>, as the origin of the two pages appears to
be the same from the viewpoint of the SOP. In the presence of SSL,
the attack relies on the user accepting the attacker’s self-signed cer-
tificate in the first stage, but as Karlof et al. discuss it is likely that
the user will do so.

2.1.2 Authentication Credentials
One reason thatXMLHttpRequest is restricted to communicat-

ing only with its originating page is because of the handling of
authentication credentials in HTTP. When a request is made, cook-
ies matching the destination domain are added to the request, as
well as any other form of HTTP Authentication (e.g. Basic, Di-
gest, NTLM) information for the domain. This is done regardless
of what page caused the browser to initiate this request. Thus, the
web browser can become a confused deputy [16], and this type of
attack is known as Cross-Site Request Forgery (CSRF). CSRF does
not rely onXMLHttpRequest to work, and can be performed in a
variety of ways, e.g. enticing a user to click a URL, using an
tag, using a<script> tag, etc. However, in these cases the attacker
can only cause a request that carries the user’s credentials to be ini-
tiated and is unable to view the response (except possibly for the
<script> tag approach if the targeted URL returns a script). If

XMLHttpRequest was not subject to the same-origin check, view-
ing the response would be possible, and would allow an attacker
to both read and write data on a site for which the user possesses
authentication credentials.

Another reason for restrictingXMLHttpRequest is that, even in
the absence of authentication credentials, it could still be used to
read information from an organization’s internal web site that sits
behind a firewall and then communicate this information back out.
This could occur if the internal web site has no authentication mech-
anism because it relies on the firewall to keep outsiders from ac-
cessing it, and assumes that no process inside the firewall can leak
this information back out. However, this leaking of internal infor-
mation is already possible using an attack technique calledDNS
rebinding [18], which makes up a portion of thedynamic pharming
attack mentioned above. As described by Jackson et al., an attacker
controlled website (e.g.attacker.com) can change its DNS map-
ping in order to read these unprotected internal documents.

2.2 Trust Levels
Wang et al. in MashupOS [26] enumerate all the possible trust

levels available between integrators and providers in a mashup.
These levels are summarized in Table 1. They identify four types of
content that should be supported: (1)isolated content that should
be isolated from other domains, (2)access-controlled content that
should be isolated but allows for mediated access via, e.g. mes-
sage passing, (3) (and (5))open content that any domain can ac-
cess and integrate into itself1, and (4)unauthorized content that
has no privileges of any domain. Isolated content is already pos-
sible via <frame> elements when each document comes from a
different domain, and open content (3 and 5) is possible via the
<script> tag. Note that, due to the coarse-grained nature of the
SOP, access-controlled content and unauthorized content currently
have no existing abstractions. This leaves mashup developers with
the choice of eitherno trust using isolated content orfull trust us-
ing open content; note that, in order to use an open script library
such as Google Maps, the integrator is forced to trust the provider
as the provider’s library has full access to the domain of the page
that includes it.

3. DESIGN
OMash can provide mashup developers with the ability to allow

safe, controlled communication and interaction between web sites,
and allow for the various trust models they desire.

3.1 Mediate DOM Access
We treat each web page as an object that declares public and

private data and methods. A web page can only access its own
content and the public content of another page. By content, we
mean DOM objects (document, etc.) and JavaScript objects and
functions. Thus, we no longer use the Same Origin Policy for de-
termining whether or not an access on another page is allowed. A
web page in the browser can thus be thought of as analogous to an
OOP language object that has a well-defined public interface.

To achieve this, each page declares a JavaScript function named
getPublicInterface. The name itself is unimportant — all that
matters is that it be a valid JavaScript identifier name and that its use
be standardized. Any page can access thegetPublicInterface
function of any other page but cannot modify it; a page can set

1Although in the case of (3), the provider may not wish the inte-
grator to directly access some of its private content, even though
it wishes to provide some public access methods; for example, an
e-mail widget.

var privateVar;

function getPublicInterface()
{

function Interface()
{
this.getHeight = function ()
{
return document.body.clientHeight;

}
this.setVar = function (value)
{

privateVar = value;
}
this.anotherMethod = function (...)
{
...

}
...

}

return new Interface();
}

(a) inner.html , the provider, declares its public interface.

<iframe id="inner" src="inner.html">
...
// Broken into two steps for clarity
var win =

document.getElementById("inner").contentWindow;
var innerInterface = win.getPublicInterface();
var innerHeight = innerInterface.getHeight();
innerInterface.setVar(10);
...
innerInterface.anotherMethod(...);
...

(b) outer.html, the integrator, calls the public interface declared
in Figure 1(a)

Figure 1: Provider and integrator communicate via the public
interface.

only its own getPublicInterface function. Unless content is
made accessible via the object returned bygetPublicInterface,
it cannot be accessed by another page.

An example of its usage is as follows: let a pageouter.html
contain an<iframe> containinginner.html with anid of inner.
The script ininner.html declares its public interface in Figure 1(a),
and the script inouter.html calls this public interface in Fig-
ure 1(b). Note that the functionsgetHeight() andsetVar() in
Figure 1(a) are closures. A closure is “an expression (typically
a function) that can have free variables together with an environ-
ment that binds those variables (that ‘closes’ the expression).” [10].
Using closures, pages can safely get and set information on other
pages in a controlled manner, as closures allow for the creation of
private members [11]. It might be preferable to only allow basic
types likestring and number to be passed around (performing
checking via thetypeof operator) for safety reasons.

By using thegetPublicInterface function, a page’s creator
can specify what they want other pages to be able to access. Using
this approach, the mashup developer can model a variety of trust

P trustsI to ac-
cessP’s content

I trustsP to access
I’s resources

Content type Existing abstraction Run-as Principal

1 No No Isolated <frame> Provider
2 No No Access-controlled None Provider
3 No Yes Open <script> (bad practice) Integrator
4 Yes No Unauthorized None None
5 Yes Yes Open <script> Integrator

Table 1: The Trust Model on the Web for a provider P and an integrator I as defined in MashupOS

relationships. We will show how to model each of the trust rela-
tionships listed in Table 1 as proposed by MashupOS:

• Isolated content: Declare nogetPublicInterface function
(or have it return nothing). The page cannot be accessed by
other pages unless it chooses to hand out, for example, call-
backs for other pages to use.

• Access-controlled content: Provide methods for the returned
interface that only allow access to a site’s content based on
the caller’s credentials. For example, the provider could re-
turn data only if presented with a valid username and pass-
word that it verifies with an asynchronous communication
with its originating server. In MashupOS, access-controlled
content is provided by the<ServiceInstance> abstraction.

• Open content: In the case that the integrator trusts the provider,
the provider can be placed in a separate page with an appro-
priate interface, and the integrator can expose whatever inter-
face to it that it sees fit. However, in the case that the provider
does not trust the integrator despite the reverse being true, the
provider can demand that it be run from a page on its source
domain that provides an interface to access its functionality.

• Unauthorized content: As defined in MashupOS (and pro-
vided by the<Sandbox> and<OpenSandbox> abstractions),
unauthorized content should run without the privileges of ei-
ther the integrator or the provider, and matches the trust re-
lationship where the provider trusts the integrator but the in-
tegrator does not trust the provider (e.g. the provider has a
script library for open use). As with the above case of open
content, the integrator can isolate the provided content within
another page on their site, or the provider can provide a page
on their site. However, in the former case, this does not ad-
dress the requirement that this type of content run with the
privileges of neither the integrator nor the provider. Even if,
for example, a script library was isolated (in terms of DOM
access) inside another page on the integrator’s web site, it
would still be able to access the resources of the domain run-
ning it, i.e. cookies and the remote store. Since it would
be able to perform actions with the authority of the domain
running it, allowing the library this authority would allow it
to steal the site’s authentication credentials or issue its own
requests with them2. To allow for this kind of trust relation-
ship, we need to change the way authentication information
is handled by the browser as discussed in the next section.

2Another concern is that the library could alter the page’s interface,
although this could be mitigated by enforcing a “set-once” property
on getPublicInterface and defining it before including the un-
trusted script.

3.2 Mediate Authentication Credentials
To allow unauthorized content to run as neither the integrator nor

the provider and to combat CSRF, we continue our model of view-
ing a web page as an object with public and private data. We thus
propose that authentication credentials, be it HTTP authentication
or cookies, be considered part of a page’s private data.

However, this raises an important concern: how can pages trans-
fer this information to another page on the same site? This is an
important consideration because when, for example, after the user
clicks a link, the page ceases to exist. If the link leads to another
page on the site, the user would still want to remain logged in. Cur-
rently, this works because, in the case of cookies, authentication
information is sent fora.com regardless of the request originator.

Therefore, our proposal for handling authentication information
is as follows: When authentication information (HTTP or a cookie)
comes in, the browser associates this information with the page
that receives it, pageP. This authentication information is passed
on to other pages that are loaded via an action onP (for example,
clicking a link), but only if the new page’s domain matches that of
the cookie (i.e. cookies fora.com are only sent toa.com). This is
somewhat analogous to aforked process inheriting its parent’s file
descriptors.

While this is a natural change for HTTP authentication, it be-
comes trickier when dealing with cookies; the only cookies we
want to treat this way are those that are used for authentication.
Cookies that simply store preferences may be safely shared among
pages as is currently possible.

Thus, we propose an extra attribute for cookies used for authenti-
cation namedAuthentication. Cookies that are marked with this
attribute will thus be handled using the above policy. This works
well for session cookies, as they are associated with a page when
they are set. For persistent cookies (which normally should not be
used for authentication), they can be associated with the first user-
opened page. We also envision a browser setting being used to treat
all or certain cookies as authentication cookies, even if they do not
contain theAuthentication attribute.

One interesting and useful consequence of this change is that it
is now possible to log into two different accounts on the same web-
site at the same time. For example, if a user has two email accounts
Alice and Bob at a website, the user can log in as Alice in one win-
dow and as Bob in another window of the same browser. As a more
important consequence of this change, we can lift the same-origin
restriction onXMLHttpRequest, as malicious sites can no longer
leverage CSRF to steal or modify data using XHR.3 By lifting this

3If an organization relies on its firewall to protect data on its inter-
nal websites that have no access control, the same-origin restriction
on XMLHttpRequest can prevent malicious web pages running on
internal computers from stealing information on internal websites
and then sending them to the external network. By contrast, our
proposed access restriction on authentication information cannot
prevent this attack. However, we argue that an internal website

restriction, we can accomplish safe cross-domain data exchange as
the proposed JSONRequest [12, 17] does (which passes messages
in the JavaScript Object Notation (JSON) [5] format and which
does not send any HTTP authentication or cookies). In contrast
to JSONRequest, our approach works with existing web authenti-
cation mechanisms and requires no server modification.

3.3 Backward Compatibility with the Same Ori-
gin Policy

An important consideration with our proposal is how to deal
with legacy web applications that rely on the SOP. While our ap-
proach should not affect applications that use only single frames
or incorporate frames from different domains that cannot interact
in either the SOP or our model (by default, at least), applications
that use multiple frames pose a problem. From a functionality
standpoint, the solution is simple: return any functions in the tar-
get frame needed by other frames in the application via the target
frame’sgetPublicInterface function.4 From a security stand-
point, however, the solution can be more complicated.

Since in our model any page can access the public interface
of another page, a security-conscious application will need to en-
sure that the public interface provides services only to authorized
callers. If the application wishes to use the Same Origin Policy for
access control, it should ensure that the caller is from the same do-
main. The solution is straightforward: An application designer can,
as part of the process of generating a user’s page, embed a secret
key that is shared among the pages generated for that user. Figure 2
presents a code example of this. Figure 2(a) shows the code of the
provider, whose functionfoo authenticates the caller by checking
the secret provided by the caller against the secret embedded in
the provider. Figure 2(b) shows the code of the integrator, which
passes the shared secret as a parameter to the call to the provider
for authentication.

4. USAGE EXAMPLES
Section 3 showed the basic usage ofgetPublicInterface. In

this section we will show how it can be used to construct more
interesting applications.

Unauthorized content.
Figure 3 shows an example of Unauthorized Content. Here, we

isolate an untrusted script library (in this example, Google’s map
service [3]).

Access-controlled content.
Figure 4 shows an example of Access-controlled Content. The

integratora.com authenticates itself to the resourceb.com using a
username and password, which the resource then verifies.

Service Integration.
It would also be possible to create services in which sibling re-

sources communicate with each other, and the integrator merely
connects them by passing callbacks. Figure 5 shows an example
where the integrator connects resources from two sites,b.com and
c.com. While this is simple enough for the case where the data
being passed between services is innocuous, if the data passing be-
tween the sibling resources is sensitive, they must be able to protect

should enforce its own access control to protect its valuable data
rather than relying on the firewall for protection.
4This may get slightly more complicated if the application employs
poor information hiding in terms of software engineering, but it
should still be feasible.

// Secret for this user generated by the server
var secret = 12345;

// In the old application, would have just
// declared this here
// function foo() { ... }
function getPublicInterface()
{

function Interface()
{
this.foo = function (providedSecret)
{
if (providedSecret != secret)
{
return;

}
// else perform requested action

}
}
return new Interface();

}

(a) inner.html . The functionfoo authenticates the caller by
checking the parameterprovidedSecret against the embedded
global variablesecret.

// Secret for this user generated by the server
var secret = 12345;
<iframe id="target" src="inner.html">
..
var targetWindow =

document.getElementById("target").contentWindow;
var targetInterface =

targetWindow.getPublicInterface();
..
function targetFoo()
{

// In the old application, would have just done
// targetWindow.foo();
targetInterface.foo(secret);

}

(b) outer.html. It authenticates by providing the argumentsecret
in the call to the provider.

Figure 2: Backward compatibility with the same origin policy

themselves from a malicious integrator performing a man-in-the-
middle attack. For such applications, they can draw on the body
of knowledge already available to combat such problems; in this
case, a client side mutual authentication library would be needed
that operates in the same spirit as TLS/SSL. It should be noted,
however, that the private keys for this process would still need to
reside on the server, and thus the client code would in turn need to
communicate data back to its origin server, likely over SSL as well.

5. IMPLEMENTATION
We implemented OMash as an extension to Mozilla Firefox ver-

sion 2.0. Our current implementation also requires a small change
(changes to a handful of arguments to functions) to work.

5.1 Mediating DOM Access
To allow the cross-domain access to thegetPublicInterface

function getPublicInterface()
{
function Interface()
{
this.setMapCenter =
function (latitude, longitude)
{
if (!map)
{

return;
}
map.setCenter(

new GLatLng(latitude, longitude), 13);
}

}
return new Interface();

}

(a) map.html, which provides a map service.

<iframe id="map" src="map.html">
...
var mapWindow =

document.getElementById("map").contentWindow;
var mapInterface = mapWindow.getPublicInterface();
...
// Called on a button click, for example
function changeMapCenter()
{
// Values in a textbox
var latitude =

document.getElementById("latitude").value;
var longitude =

document.getElementById("longitude").value;

mapInterface.setMapCenter(latitude, longitude);
}

(b) outer.html, which uses the service provided by the code in
Figure 3(a)

Figure 3: Unauthorized content example

function, we used Mozilla’s Configurable Security Policies (CAPS)
system [25].

Although we implemented this using an extension, what it amounts
to is setting the two preferences in Table 2.

Preference Name Value

capability.policy.default.Window.
getPublicInterface.get

"allAccess"

capability.policy.default.Window.
getPublicInterface.set

"sameOrigin"

Table 2: Setting preferences in Mozilla’s CAPS to allow cross-
domain access to thegetPublicInterface function

Note that the other possible setting for one of these preferences
is "noAccess", meaning that no page can access this property, not
even the originating page. There is no built-in policy that restricts
access only to the same document. Thus, our current implementa-
tion does not remove the Same Origin Policy, but instead makes an

function getPublicInterface() {
function Interface()
{
this.authenticate = function (username, password)
{
// Verify username and password, e.g. via an
// XMLHttpRequest to the server.
...
// Assuming authentication succeeds, give the
// caller a token to present for each operation.
// This is analogous to a file descriptor
// (although this kind of token should be
// cryptographically random to prevent guessing).
rememberToken(token);
return token;

}

this.doSomething = function (token, ...)
{
// check if the presented token is valid
if (!verifyToken(token))
{
return;

}
// else do something
...

}
}
return new Interface();

}

(a) http://b.com/resource.html, which authenticates the caller us-
ing a username and password.

<iframe id="resource"
src="http://b.com/resource.html">

...
var resourceWindow =

document.getElementById("resource").contentWindow;
var resourceInterface =

resourceWindow.getPublicInterface();
...
var token;
...
function authenticateToResource()
{

token =
resourceInterface.authenticate(username, password);

}

function doSomethingToResource()
{

resourceInterface.doSomething(token, ...);
}

(b) http://a.com/integrator.html , which calls the code in Fig-
ure 4(a)

Figure 4: Access-controlled content example: Integrator
a.com authenticates itself to the resourceb.com

exception to it. An ideal implementation would only allow a doc-
ument to access its own contents and thegetPublicInterface

function getPublicInterface()
{
function Interface()
{
this.registerC = function (referenceToC)
{
var cInterface =

referenceToC.getPublicInterface();
// Verify C really is who it claims to be by
// calling its methods to get information,
// e.g. certificates
...

}
}
return new Interface();

}

(a) http://b.com/resourceB.html, provider for resource B. (re-
source C is similarly declared)

<iframe id="b" src="http://b.com/resourceB.html">
<iframe id="c" src="http://c.com/resourceC.html">
...
var bWindow =

document.getElementById("b").contentWindow;
var bInterface =

resourceWindow.getPublicInterface();
var cWindow =

document.getElementById("c").contentWindow;
...

function hookUpBWithC()
{
bInterface.registerC(cWindow);

}

(b) http://a.com/integrator.html , the integrator that connects re-
sources B and C

Figure 5: Sibling resources example: Integrator connects
b.com with c.com

function of other pages. We reserve modifying Firefox’s security
manager in such a way for future work.

5.2 Mediating Authentication Credentials
Cross-domainXMLHttpRequest can be allowed by setting the

preference in Table 3.

Preference Name Value

capability.policy.default.
XMLHttpRequest.open

"allAccess"

Table 3: Setting preference in Mozilla’s CAPS to allow cross-
domain XMLHttpRequest

Setting some other preferences is also required to allow the re-
sponse to be read without security violations. [22]

To make HTTP authentication and authentication cookies (cook-
ies with our proposedAuthentication attribute) private data, we
associate these items with the browser tab that contains the page
using Firefox 2’s Session store API [7]. When such information is

set by a site, it is placed in the data store for the tab that received the
information. Since Firefox makes it possible to view and modify
HTTP headers it is possible to capture such information. However,
since it is possible for a web site to set a cookie in a script (i.e. by
settingdocument.cookie), we had to make a small change to the
source code in order to capture all cookie-related events. To allow
for multiple independent sessions to exist at once, we also augment
the stored authentication information with a unique identifier cor-
responding to the tab that received the information, as well as the
location of the source window in the window hierarchy (to allow for
nested<iframe>s). Thus, a user is able to log into the same site
more than once in a different tab or window and the authentication
information will be kept separately.

For each outbound request that would send authentication in-
formation under the current browser policy (i.e. with no regard
for who initiates the request), we only send the information if it is
found in the data store of the tab that initiated the request. This data
is copied to new tabs and windows created as the result of actions
on the current page, such as a link click. The data for the tab is
discarded if the new page does not match the domain of the stored
authentication.

6. POTENTIAL COMPLICATIONS
Since our model does not rely on the Same Origin Policy, it

might cause the following complications for websites using our
model.

6.1 Named Windows and Frames
Eachwindow object has a propertyname that can be used as a

target for links, form submissions, and for opening a new win-
dow. This name can be introduced via an explicit assignment to
window.name, via window.open("url", "name"), or by setting
thename attribute when creating a<frame>, or <iframe>. An ex-
ample of its use is when a user clicks on the link<a href="aURL"
target="someName">text the URL aURL will load in the
window namedsomeName, or in a new window if no window with
that name currently exists. In the case of links and form sub-
missions, this has the potential to navigate an existing window
to the given URL, disrupting the user’s browsing experience. If
cross-domain communication is taking place via fragment identi-
fiers [9], this could disrupt their communication. Still, these are
relatively minor problems. However, a script can gain a refer-
ence to an open window with namewindowName via var win =
window.open("", "windowName") (if no window with that name
exists, an empty window will be created). In our testing, we found
that Opera did not consider frame names when searching for a
matching window name, only top-level window names, while In-
ternet Explorer and Mozilla Firefox considered both. In current
browsers, the Same Origin Policy determines whether or not ac-
cess to elements inside this window (e.g.win.document) is al-
lowed. In our proposal, access is permitted via the public interface
of the page. Assuming the page’s interface is tailored to the se-
curity level of its content, being accessible in this manner should
not be a problem; simply allow access based on valid credentials.
However, it is possible for the application developer to introduce a
named<frame> or <iframe> that a malicious website could obtain
a reference to in order to disrupt the user’s browsing experience.
<frame>s and<iframe>s are often constructed with thename

attribute set, to facilitate easy access via thewindow.frames prop-
erty, e.g. window.frames["frameName"]. A named frame can
also be accessed viawindow.frameName andwindow.frames[x]
(where x is the index corresponding to the frame, e.g. 0, 1, etc.).
However, dropping thename attribute for the aforementioned rea-

sons and instead usingwindow.frames[x] can be awkward in the
presence of multiple frames. As an alternative, use the frame’sid
attribute in the same manner as in Section 3:

var innerWindow =
document.getElementById("frameID").contentWindow;

var innerInterface =
innerWindow.getPublicInterface();

6.2 Sibling Frames
As described by Jackson and Wang in Subspace [19], Firefox

(along with Safari, Internet Explorer 7, and some configurations of
Internet Explorer 6) allows the frame structure of a page to be nav-
igated regardless of the domains involved (Opera restricts access to
frames). Thus, a sibling frame with the name attribute set tobar
can reference its sibling frame with namefoo as discussed in the
previous section viaparent.frames["foo"] or parent.foo or
parent[x]. If the sibling framefoo has agetPublicInterface
function, bar can call it. Again, for the same reasons discussed
in the previous section, this should not be a problem given care-
ful design of the public interface of the page. However, in the
event the developer wants to simply ensure the frames cannot reach
each other, this is not currently possible, at least to our knowledge.
For instance, in Firefoxframes = null; will work, but frames
can be restored viadelete frames;, even if the caller is child
frame5. Thus, even without thename attributes set, sibling frames
are still reachable viaframes[x]. However, it turns out that it
is possible to make Firefox restrict access to theframes attribute
from another domain by setting"capability.policy.default.
Window.frames.get" to "sameOrigin" (but setting".set" to
"sameOrigin" has no apparent effect).

6.3 Inheritance of Authentication Credentials
Since OMash considers authentication credentials as part of a

page’s private data, web authentication under OMash exhibits dif-
ferent semantics than under the Same Origin Policy. Under the
Same Origin Policy, all pages from the same origin share authen-
tication credentials. OMash tries to simulate these semantics by
passing authentication credentials associated with a pageP to other
pages that are loaded via an action onP (e.g., clicking a link). We
are currently working on techniques that can simulate these seman-
tics when the user clicks the “Back” button or selects a bookmark.

7. RELATED WORK
SMash [21] proposes a model where different trust domains can

create isolated components of content and code, and interact via
publish and subscribe messages. It isolates components using the
iframe tag, and URL fragment identifiers allow the frames to es-
tablish communication links. The implementation as part of Ope-
nAjax [6] provides a JavaScript library and API to run on unmod-
ified browsers. SMash addresses earlier problems of using frag-
ment identifiers caused by browsers allowing complete navigation
of other frames, even of different origins. It extends the fragment
messaging protocol with a shared secret to ensure link integrity and
prevents frame-phishing with a combination of event handlers and
messages during frame unloads. However, the messaging protocol
in version 1.1 of OpenAjax was vulnerable to an attack discovered
by Barth et al. [8], allowing the attacker to impersonate messages
between components. Since our abstraction allows for direct func-
tion calls for code communication, we avoid use of the fragment
5Surprisingly,delete parent.frames; works even if their do-
mains are different; this is likely a bug.

identifier messaging, which was not designed for use in this man-
ner and lacks desirable security properties for secure messaging.

As mentioned in section 2.2, we talk in terms of MashupOS’s
names for the various trust levels that are possible in a mashup.
MashupOS proposes its own abstractions for the missing trust lev-
els: foraccess-controlled content, <ServiceInstance> and
CommRequest and forunauthorized content, <Sandbox> and
<OpenSandbox>. While their abstractions cover all the trust levels,
they still rely on the Same Origin Policy for enforcement, as well as
requiring browser writers and application developers to support and
use several different abstractions. Our approach can support allthe
different trust levels with a single simple yet flexible abstraction,
and do away with the Same Origin Policy and its problems at the
same time.

We also build on the technique described by Jackson and Wang
in Subspace [19] for allowing safe cross-subdomain communica-
tion (which is, from the point of view of the SOP, communica-
tion between different origins) by adopting their idea of passing
JavaScript closures between different pages.

A recent project by Google name Caja [14], also allows web ap-
plications of different trust domains to directly communicate with
JavaScript function calls and reference passing. With the realiza-
tion that a subset of JavaScript is an object-capability language, it
is possible to translate scripts to this enforced subset and to grant
these scripts only the privileges they require. It is therefore possi-
ble to isolate scripts from each other and from the global execution
environment (i.e. the browser window) to the degree needed. As it
is merely an enforced subset of JavaScript, Caja has the advantage
of requiring no changes to any web standards.

Even though our handling of authentication information could
allow the same-origin restriction onXMLHttpRequest to be lifted,
we believe that the proposed JSONRequest [12] is a good candidate
for safe cross-domain data exchange since JSONRequest does not
send any HTTP authentication or cookies. A prototype implemen-
tation exists as an extension for Mozilla Firefox [17]. JSON itself
enjoys widespread use as a data interchange format, and is being
used by, for example, Yahoo! [27] and Google [15].

Reis et al [23] propose a set of abstractions for a new browser
to allow web applications to run safely. They propose that proper
identification of the components that make up a web programs be
used to delineate boundaries rather than the Same Origin Policy.
We provide a mechanism, the shared secret key, by which different
components of a web application from the same origin or different
origins can authenticate each other from thegetPublicInterface
function.

8. CONCLUSION
We have presented OMash, a new security model based on ob-

ject abstractions to allow web pages from different domains to in-
teract in a safe, controlled manner. Our simple model, based on
the familiar notion of public interfaces, allows mashup integrators
to define various trust relationships between the integrators and
providers. OMash does not rely on the Same Origin Policy for
controlling DOM access or cross-domain data exchange and there-
fore avoids all its pitfalls and vulnerabilities. To support legacy web
applications, OMash can be configured to be backward compatible
with the Same Origin Policy. We have implemented a prototype
of OMash as an extension to Mozilla Firefox 2.06 and showcased
sample applications.

6We also had to modify three lines of Firefox source code.

Acknowledgments
This research is partially supported by NSF CNS award 0644450

and by an AFOSR MURI award. The authors wish to thank Helen
Wang, Liang Cai, Yuan Niu, and Matthew Van Gundy for their
helpful feedback.

9. REFERENCES
[1] Craigslist.http://www.craigslist.org/, 2008, (accessed

August 10, 2008).
[2] Google Maps.http://maps.google.com/, 2008, (accessed

August 10, 2008).
[3] Google Maps API.http://www.google.com/apis/maps/,

2008, (accessed August 10, 2008).
[4] HousingMaps.http://www.housingmaps.com/, 2008,

(accessed August 10, 2008).
[5] JSON.http://www.json.org/, 2008, (accessed August

10, 2008).
[6] OpenAjax Alliance.http://www.openajax.org/, 2008,

(accessed August 10, 2008).
[7] Session store API.http://developer.mozilla.org/en/

docs/Session_store_API, January 2008, (accessed
August 10, 2008).

[8] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. InUsenix Security Symposium,
2008.

[9] J. Burke. Cross Domain Frame Communication with
Fragment Identifiers.
http://tagneto.blogspot.com/2006/06/
cross-domain-frame-communication-with.html, June
2006, (accessed August 10, 2008).

[10] R. Cornford. Javascript Closures.http:
//www.jibbering.com/faq/faq_notes/closures.html,
March 2004, (accessed August 10, 2008).

[11] D. Crockford. Private Members in JavaScript.http:
//www.crockford.com/javascript/private.html,
2001, (accessed October 31, 2007).

[12] D. Crockford. JSONRequest.
http://www.json.org/JSONRequest.html, 2006,
(accessed August 10, 2008).

[13] M. Foundation. Public Suffix List: Learn more about the
Public Suffix List.http://publicsuffix.org/learn/,
2008, (accessed August 10, 2008).

[14] Google. google-caja.
http://code.google.com/p/google-caja/, 2008,
(accessed August 10, 2008).

[15] Google. Using JSON with Google Data APIs.
http://code.google.com/apis/gdata/json.html,
2008, (accessed August 10, 2008).

[16] N. Hardy. The Confused Deputy: (or why capabilities might
have been invented).SIGOPS Operating Systems Reviews,
22(4):36–38, 1988.

[17] C. Jackson. JSONRequest Extension for Firefox.
http://crypto.stanford.edu/jsonrequest/, 2007,
(accessed August 10, 2008).

[18] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting Browsers from DNS Rebinding Attacks. In
Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS 2007), pages 421–431, New
York, NY, USA, 2007. ACM.

[19] C. Jackson and H. J. Wang. Subspace: Secure Cross-Domain
Communication for Web Mashups. InProceedings of the

16th International World Wide Web Conference
(WWW2007), pages 611–620, New York, NY, USA, May
2007. ACM.

[20] C. Karlof, U. Shankar, J. Tygar, and D. Wagner. Dynamic
Pharming Attacks and Locked Same-origin Policies for Web
Browsers. InProceedings of the 14th ACM Conference on
Computer and Communications Security (CCS 2007), pages
58–71, New York, NY, USA, 2007. ACM.

[21] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and
S. Yoshihama. Smash: secure component model for
cross-domain mashups on unmodified browsers. InWWW
’08: Proceeding of the 17th international conference on
World Wide Web, pages 535–544, New York, NY, USA,
2008. ACM.

[22] Z. Leatherman. Cross Domain XHR with Firefox.
http://www.zachleat.com/web/2007/08/30/
cross-domain-xhr-with-firefox/, August 2007,
(accessed August 10, 2008).

[23] C. Reis, S. D. Gribble, and H. M. Levy. Architectural
principles for safe web programs. InSixth Workshop on Hot
Topics in Networks, 2007.

[24] J. Ruderman. The Same Origin Policy.
http://www.mozilla.org/projects/security/
components/same-origin.html, August 2001, (accessed
August 10, 2008).

[25] J. Ruderman. Configurable Security Policies (CAPS).
http://www.mozilla.org/projects/security/
components/ConfigPolicy.html, April 2006, (accessed
August 10, 2008).

[26] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and Communication Abstractions for Web Browsers in
MashupOS. InProceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP 2007), pages 1–16,
New York, NY, USA, October 2007. ACM.

[27] Yahoo! Using JSON with Yahoo! Web Services.
http://developer.yahoo.com/common/json.html,
2008, (accessed August 10, 2008).

