OMash: Enabling Secure Web Mashups via Object
Abstractions

Steven Crites
University of California, Davis
crites@cs.ucdavis.edu

ABSTRACT

The current security model used by web browsers, the Same Ori-
gin Policy (SOP), does not support secure cross-domain communi-

Francis Hsu
University of California, Davis
fhsu@cs.ucdavis.edu

Hao Chen
University of California, Davis
hchen@cs.ucdavis.edu

of Google Maps, Google has supplied a public API [3] so that
web developers can use Google’s service to create hybrid websites,
such as HousingMaps [4] which takes data from Craigslist [1] and

cation desired by web mashup developers. The developers have t@"€Sents itusing Google Maps. This type of hybrid web application

choose betweeno trust, where no communication is allowed, and
full trust, where third-party content runs with the full privilege of

the integrator. Furthermore, the SOP has its own set of security

vulnerabilities and pitfalls, includin@ross-Site Request Forgery,
DNS rebinding and dynamic pharming. To overcome the unfor-
tunate tradeoff between security and functionality forced upon to-

day’s mashup developers, we propose OMash, a simple abstractio
that treats web pages as objects and allows objects to communi-
cate only via their declared public interfaces. Since OMash does

not rely on the SOP for controlling DOM access or cross-domain

data exchange, it does not suffer from the SOP’s vulnerabilities. We

Is known as amashup: a website that combines content from one
or more websites.

Even before the rise of AJAX and mashups, at any given time a
web browser likely contained pages from different domains, whether
they were loaded in different browser windows, tabs, or even frames
within another page. As such, security is extremely important:

ry\/ithout security it would be possible for a script from one web

page to steal or modify critical information from another page. The
solution, first presented in Netscape Navigator 2.0, is known as the
Same Origin Policy (SOP) [24]. It is now the de facto security
model used by web browsers.

show that OMash satisfies the trust relationships desired by mashup
authors and may be configured to be backward compatible withthe 1 1 Problems with Same Origin Policy

SOP. We implemented a prototype of OMash using Mozilla Firefox
2.0 and demonstrated several proof-of-concept applications.

Categories and Subject Descriptors
D.4.6 [Operating System$: Security and Protection

General Terms
Design, Languages, Security.

Keywords

Web, browser, mashup, same origin policy, communication, pro-
tection, security model, object abstraction.

INTRODUCTION

Web browsers are an integral part of everyday computing, with

1.

their uses ranging from accessing simple web pages to accessin

web applications such as online retail, banking, webmail, wikis,
blogs, and discussion boards. The rise of AJAsynchronous
JavaScriptand XML) style web applications has given the web dy-

namic, interactive content such as Google Maps [2]. In the case

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS 08, October 27-31, 2008, Alexandria, Virginia, USA.

Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

The Same Origin Policy “prevents document or script loaded
from one origin from getting or setting properties of a document
from a different origin” [24]. Furthermore, “[T]wo pages are eon
sidered to have the same origin if the protocol, port (if given), and
host are the same for both pages.” A “page” refers to a browser
window, <frane>, or <i frane> (as well as<obj ect >), as each
can contain a document. Note that a script's origin is considered
to be the origin of the document that contains it rather than where
the script is hosted. This has important security implications, as a
malicious third-party script will run in the context of the site that
included it via a<script src="url _of _script">tag.

Under this policy, a Domain Name System (DNS) domain is a
principal, much like a user or group is a principal in a multi-user
operating system. While this suffices for mutually distrusting web
pages, it is insufficient for creating web applications with content
from different domains: the only two trust relationships available
between principals areo trust, where third-party content is iso-

Yated within a different window or frame, arfdll trust, where the

third-party content is included as a library viascr i pt > tag (this

is the case with Google Maps) and thus has full access to the page
that included it. Faced with this coarse-grained security model, de-

velopers are often forced to make a tradeoff between security and
functionality.

In addition, the SOP suffers from various vulnerabilities due to
either its design limitations or its reliance on insecure services. For
example, it relies on the security of the Domain Name System, and
so where DNS deployment is insecurédymamic pharming attack
could subvert the SOP [20], anddSrebinding attack could leak
information [18]. Furthermore, even though the SOP prevents cer-
tain undesirable cross-domain communication, it is unable to pre-
vent Cross-Site Request Forgery (CSRF) attacks.

MashupOS To offer a more fine-grained access control model for a script to issue an asynchronous HTTP request to a remote server.
mashup applications, MashupOS proposes abstractions for expressThe SOP only permits XHR to issue requests to the origin of the
ing various trust relationships between subjects [26]. Our work containing document.

is inspired by MashupOS, but we intend to resolve two problems One exception to the SOP permits a script to set its domain to a
with MashupOS. First, MashupOS requires different abstractions suffix of the current domain, and use that newer, shorter domain for
for expressing different types of trust relationships. It proposes future SOP checks. For example, a scriptin a document originating
<Servi cel nst ance>andConmRequest for access-controlled con- from f 00. a. comcan perform the assignmedocunent . domai n

tent, and<Sandbox> and <OpenSandbox> for unauthorized con- = "a.conf. Thus, its origin is nova. com Note that a site cannot
tent. By contrast, we propose a single abstraction for expressing all setdocunent . doni n to a top-level domain (TLD) such asom

trust relationships. Second, MashupOS still relies on the SOP for

controlling Document Object Model (DOM) accesses, which has 2.1 Problems

various vulnerabilities as mentioned. By contrast, our abstraction

does not rely on the SOP for controlling DOM accesses or cross- 2.1.1 DOM Access

dorr_lain data exchange, and therefore avoids S(_)P’s vulnerabilities. The SOP enforces a single unchangeable security policy on every
While our model resolves these two problems with MashupOS, our site. While in many cases this is fine, sirceomlikely does not

model can express all the trust relationships described by Mashu-ant its DOM accessible from a page frdmcomalso running

pOS (Section 3.1). in the browsera. comhas no say in the matter; it cannot specify

1.2 OMash what resoqrces_other sites are allowed to access and let the browser
) enforce this policy.

We propose OMash, a new abstraction and access control model g coarse-grained policy may result in undesired accesses. For
for writing secure yet flexible mashup applications. We draw an example, documents bttt p: // a. cont f oo andht t p: // a. conl bar
analogue to objects in object-oriented programming languages — 4re aliowed to access each other, even when this is not desired.
such as Java — where an object represents a principal and objects,giher problem is determining the “public suffix” — previously
can communicate with each other only via public methods. Our | ,own as the effective top-level domain (TLD) — for a given URL.
model treats each web page as a principal. By default, all the con-\yhile a TLD is the last dot-portion of the name (likeom and
tents of a web page are private to the page; in other words, private g), many domains are effectively TLDs, such.a®. uk. This
content is accessible only within the same page. To enable inter- ., nnot be inferred programmatically, and instead must be deter-
page communication, a page may declare a public interface, which yineq via a list [13]. Getting this wrong could allow for a same
all pages can access. origin violation on sites that set theipcunent . dommi n to. co. uk

A web page’s private data includes all of the content on the page, o 10w a site to get or set a cookie for the entite. uk domain.
such as DOM objects and JavaScript objects and functions. Inaddi- pother problem with the SOP is that it relies on the security of

tion, it should also include authentication tokens, such as cookies, iha Domain Name System - a system that was not designed with
acquired by the page; in other words, only content on that page cangecyrity in mind. Karlof et al. demonstrated that when an attacker
access the authentication tokens, and the tokens will be sent outcqnirols the domain name mapping it is possible to subvert the SOP
on!y for HTTP connections originating from that page. This mech- using an attack technique calleghamic pharming [20]. Using this
anism reliably defeats CSRF attacks, since a malicious page cannobyack, it is possible to bypass all authentication schemes by first
access or send authentication tokens held by another page. mapping the target domain to an attacker's web page that contains

_ OMash does not rer_on the SOP. In fact, we advocate ak_)olish- malicious JavaScript and (for example)<iri r ane>. The attacker
ing the SOP for controlling DOM accesses and cross-domain datahen, re-maps the target domain to the actual server and loads the

exchange, since it is inflexible, prone to abuse (CSRF attacks), f'i”dreal web page in thei f r ane> where authentication takes place as
vulnerable to DNS attacks. OMash, analogous to the Java object,oma. This results in the attacker having full access to the user's
model, is §|mple and likely familiar to programmers. We WI||.ShOV\.I session in thei f rane>, as the origin of the two pages appears to
that our_3|mple model can express all the trust relatlt_)nshlps dis- pe the same from the viewpoint of the SOP. In the presence of SSL,
cussed in MashupOS (Section 3.1) and can be configured to beyg attack relies on the user accepting the attacker’s self-signed cer-

backward compatible with the SOP (Section 3.3). . ftificate in the first stage, but as Karlof et al. discuss it is likely that
We implemented a prototype of our model using Mozilla Fire- o ser will do so.

fox 2.0. We did not need to modify the JavaScript engine. To
implement the public interface, we only need to set a few pref- 21 2 Authentication Credentials
erences for Mozilla’s Configurable Security Policies (CAPS) sys- One reason thatVLH t pRequest is restricted to communicat-
tem. To privatize authentication tokens, we used Firefox 2's Ses- . L St .)
ing only with its originating page is because of the handling of

smn_store APIS A web page W's.h'ng to use our securlt_y model_ to authentication credentials in HTTP. When a request is made, cook-
provide a public interface can simply define a JavaScript function .) o .
ies matching the destination domain are added to the request, as

get Publ i cl nt er f ace that returns the page’s public interface. We well as any other form of HTTP Authentication (e.g. Basic, Di-

will show examples in Sections 3 and 4. gest, NTLM) information for the domain. This is done regardless
of what page caused the browser to initiate this request. Thus, the
2. THE SAME ORIGIN POLICY web browser can become a confused deputy [16], and this type of
The Same Origin Policy is applied to protect three browser re- attack is known as Cross-Site Request Forgery (CSRF). CSRF does
sources: documents, cookies, and access to remote services. Toot rely onXM_Ht t pRequest to work, and can be performed in a
protect documents, sites from one origin cannot access documentsiariety of ways, e.g. enticing a user to click a URL, usingamg>
from another origin via the Document Object Model. To protect tag, using &scri pt > tag, etc. However, in these cases the attacker
cookies, sites can only set their own cookies and cookies are only can only cause a request that carries the user’s credentials to be ini-
sent to their originating site in HTTP requests. Remote services cantiated and is unable to view the response (except possibly for the
be accessed via t/LHt t pRequest (XHR) object, which allows <scri pt > tag approach if the targeted URL returns a script). If

XMLHt t pRequest was not subject to the same-origin check, view- var privateVar;
ing the response would be possible, and would allow an attacker
to both read and write data on a site for which the user possessesf unction get Publicl nterface()

authentication credentials. {
Another reason for restrictingVLH: t pRequest is that, even in function Interface()
the absence of authentication credentials, it could still be used to {
read information from an organization’s internal web site that sits this.getHeight = function ()
behind a firewall and then communicate this information back out. {
This could occur if the internal web site has no authentication mech- return docunent. body. client Hei ght;

anism because it relies on the firewall to keep outsiders from ac-
cessing it, and assumes that no process inside the firewall can leak this.setVar = function (val ue)

this information back out. However, this leaking of internal infor- {

mation is already possible using an attack technique c@&iK8 privateVar = val ue;

rebinding [18], which makes up a portion of thdynamic pharming }

attack mentioned above. As described by Jackson et al., an attacker this. anot her et hod = function (...)
controlled website (e.cat t acker . com) can change its DNS map- {

ping in order to read these unprotected internal documents.

2.2 Trust Levels :

Wang et al. in MashupOS [26] enumerate all the possible trust }
levels available between integrators and providers in a mashup.
These levels are summarized in Table 1. They identify four typesof ~ return new Interface();
content that should be supported: (49lated content that should }
be isolated from other domains, (@)cess-controlled content that
should be isolated but allows for mediated access via, e.g. mes-
sage passing, (3) (and (%pen content that any domain can ac-
cess and integrate into itsélf and (4)unauthorized content that
has no privileges of any domain. Isolated content is already pos-
sible via<franme> elements when each document comes from a
different domain, and open content (3 and 5) is possible via the
<scri pt > tag. Note that, due to the coarse-grained nature of the
SOP, access-controlled content and unauthorized content currently
have no existing abstractions. This leaves mashup developers with
the choice of eitheno trust using isolated content dull trust us-
ing open content; note that, in order to use an open script library | ﬁﬁerl nterf ace. anot her Met hod(. . .)
such as Google Maps, the integrator is forced to trust the provider '
as the provider’s library has full access to the domain of the page ~

that includes it. (b) outer.html, the integrator, calls the public interface declared
in Figure 1(a)

(a) inner.html, the provider, declares its public interface.

<iframe id="inner" src="inner.htm">

I/ Broken into two steps for clarity
var win =
document . get El ement Byl d("i nner"). cont ent W ndow,
var innerlnterface = win.getPubliclnterface();
var innerHeight = innerlnterface.getHeight();
i nnerlnterface. setVar(10);

3. DESIGN

OMash can provide mashup developers with the ability to allow
safe, controlled communication and interaction between web sites,
and allow for the various trust models they desire.

3.1 Mediate DOM Access only its ownget Publ i cl nterface function. Unless content is

. . ade accessible via the object returnedybtyPubl i cl nterf ace,
We treat each web page as an object that declares public aancannot be accessed by another page.

private data and met_hods. A web page can only access its own An example of its usage is as follows: let a pageer . ht ni

content and th(_a public content of another page. By c_ontent, W€ contain arxi f r ane> containingi nner . ht i with ani d of i nner.

mean DOM objectsdocument,, etc.) and JavaSc_rlpt ObJ?CtS and e scriptin nner. ht M declares its public interface in Figure 1(a),

func'glqns. Thus, we no longer use the Same Origin Rollcy for de- and the script inouter. html calls this public interface in Fig-

termining v_vhether or not an access on another page is allowed. Ao 1(b). Note that the functiorget Hei ght () andset Var () in

V(\)l%b plage in the l;r.ows?]r ce;n thus blel éh?.UQZt of t?l's a}nalofgous to aigure 1(a) are closures. A closure is “an expression (typically
TP ar;]guagehp JECtL at asda vlve ~detined public :‘nter ace. function) that can have free variables together with an environ-

0 achieve this, each page declares a JavaScript function Nameg, et that hinds those variables (that ‘closes’ the expression).” [10]

get Publ .' clhnt e_rkl;ace. ':'ze\] nan;e |_tse_l(1; N l_Jfr_llmportant ; ﬁ" t_hat Using closures, pages can safely get and set information on other
matters is that it be a valid JavaScript identifier name and that its use ,, o in 4 controlled manner, as closures allow for the creation of

?e stgnda;dized. hAny page t():an accessgmeg’.ubl.i.cl nterface private members [11]. It might be preferable to only allow basic
unction of any other page but cannot modify it; a page can set o jikest ring andnunber to be passed around (performing

1Although in the case of (3), the provider may not wish the inte- checklng via the ypeof (_)perator) for safety_ reasons. ,

grator to directly access some of its private content, even though ~BY Using theget Publi cl nterface function, a page's creator

it wishes to provide some public access methods; for example, ancan specify what they want other pages to be able to access. Using
e-mail widget. this approach, the mashup developer can model a variety of trust

Figure 1: Provider and integrator communicate via the public
interface.

P trustsl to ac- | | trustsP to access Content type Existing abstraction | Run-as Principal
cessP’s content| |'s resources

1 No No Isolated <frame> Provider

2 No No Access-controlled None Provider

3 No Yes Open <scri pt > (bad practice) Integrator

4 Yes No Unauthorized None None

5 Yes Yes Open <scri pt> Integrator

Table 1: The Trust Model on the Web for a provider P and an integrator | as defined in MashupOS

relationships. We will show how to model each of the trust rela- 3.2 Mediate Authentication Credentials

tionships listed in Table 1 as proposed by MashupOS: To allow unauthorized content to run as neither the integrator nor
the provider and to combat CSRF, we continue our model of view-
e |solated content: Declare nayet Publ i cl nt er f ace function ing a web page as an object with public and private data. We thus

(or have it return nothing). The page cannot be accessed by propose that authentication credentials, be it HTTP authentication

other pages unless it chooses to hand out, for example, call- or cookies, be considered part of a page’s private data.

backs for other pages to use. However, this raises an important concern: how can pages trans-
fer this information to another page on the same site? This is an

e Access-controlled content: Provide methods for the returned important consideration because when, for example, after the user
interface that only allow access to a site’s content based on clicks a link, the page ceases to exist. If the link leads to another
the caller's credentials. For example, the provider could re- Page on the site, the user would still want to remain logged in. Cur-
turn data On|y if presented with a valid username and pass- rently, this works because, in the case of COOkieS, authentication
word that it verifies with an asynchronous communication information is sent foe. comregardless of the request originator.
with its originating server. In MashupOS, access-controlled ~ Therefore, our proposal for handling authentication information
content is provided by theSer vi cel nst ance> abstraction. is as follows: When authentication information (HTTP or a cookie)

comes in, the browser associates this information with the page

that receives it, pagB. This authentication information is passed
on to other pages that are loaded via an actiof® ¢for example,
clicking a link), but only if the new page’s domain matches that of
the cookie (i.e. cookies far. comare only sent t@. con). This is
somewhat analogous td ar ked process inheriting its parent’s file
descriptors.

While this is a natural change for HTTP authentication, it be-
comes trickier when dealing with cookies; the only cookies we
want to treat this way are those that are used for authentication.
Cookies that simply store preferences may be safely shared among
pages as is currently possible.

Thus, we propose an extra attribute for cookies used for authenti-
cation namedwut hent i cati on. Cookies that are marked with this
attribute will thus be handled using the above policy. This works
well for session cookies, as they are associated with a page when
they are set. For persistent cookies (which normally should not be
used for authentication), they can be associated with the first user-
opened page. We also envision a browser setting being used to treat
all or certain cookies as authentication cookies, even if they do not
contain theAut hent i cati on attribute.

One interesting and useful consequence of this change is that it
is now possible to log into two different accounts on the same web-
site at the same time. For example, if a user has two email accounts
Alice and Bob at a website, the user can log in as Alice in one win-
dow and as Bob in another window of the same browser. As a more
important consequence of this change, we can lift the same-origin
restriction onXMLHt t pRequest , as malicious sites can no longer
leverage CSRF to steal or modify data using XRRy lifting this

e Open content: In the case that the integrator trusts the provider,
the provider can be placed in a separate page with an appro-
priate interface, and the integrator can expose whatever inter-
face to it that it sees fit. However, in the case that the provider
does not trust the integrator despite the reverse being true, the
provider can demand that it be run from a page on its source
domain that provides an interface to access its functionality.

e Unauthorized content: As defined in MashupOS (and pro-
vided by the<Sandhox> and<OpenSandbox> abstractions),
unauthorized content should run without the privileges of ei-
ther the integrator or the provider, and matches the trust re-
lationship where the provider trusts the integrator but the in-
tegrator does not trust the provider (e.g. the provider has a
script library for open use). As with the above case of open
content, the integrator can isolate the provided content within
another page on their site, or the provider can provide a page
on their site. However, in the former case, this does not ad-
dress the requirement that this type of content run with the
privileges of neither the integrator nor the provider. Even if,
for example, a script library was isolated (in terms of DOM
access) inside another page on the integrator's web site, it
would still be able to access the resources of the domain run-
ning it, i.e. cookies and the remote store. Since it would
be able to perform actions with the authority of the domain
running it, allowing the library this authority would allow it
to steal the site’s authentication credentials or issue its own
requests with thef To allow for this kind of trust relation-
ship, we need to change the way authentication information
is handled by the browser as discussed in the next section.

3|f an organization relies on its firewall to protect data on its inter-
nal websites that have no access control, the same-origin restriction
on XMLHt t pRequest can prevent malicious web pages running on
2Another concern is that the library could alter the page’s interface, internal computers from stealing information on internal websites
although this could be mitigated by enforcing a “set-once” property and then sending them to the external network. By contrast, our
onget Publ i cl nterface and defining it before including the un- proposed access restriction on authentication information cannot
trusted script. prevent this attack. However, we argue that an internal website

restriction, we can accomplish safe cross-domain data exchange as// Secret for this user generated by the server

the proposed JSONRequest [12, 17] does (which passes messagegar secret = 12345;

in the JavaScript Object Notation (JSON) [5] format and which

does not send any HTTP authentication or cookies). In contrast // In the ol d application, would have just

to JISONRequest, our approach works with existing web authenti- // declared this here

cation mechanisms and requires no server modification. [l function foo() { ... }

- . . function getPubliclnterface()

3.3 Backward Compatibility with the Same Ori-
gin Policy function Interface()

An important consideration with our proposal is how to deal {
with legacy web applications that rely on the SOP. While our ap-
proach should not affect applications that use only single frames
or incorporate frames from different domains that cannot interact if (providedSecret != secret)
in either the SOP or our model (by default, at least), applications {
that use multiple frames pose a problem. From a functionality
standpoint, the solution is simple: return any functions in the tar- }
get frame needed by other frames in the application via the target Il else performrequested action
frame’sget Publ i cl nt er f ace function? From a security stand- }
point, however, the solution can be more complicated. }

Since in our model any page can access the public interface return new Interface();
of another page, a security-conscious application will need to en- }
sure that the public interface provides services only to authorized (a) innerhtml
callers. If the ap_plication wishes to use the Sar_ne Origin Policy for checking the barametan ovi dedSecr et against the embedded
access control, it should ensure that the caller is from the same do-g|oha| variablesecr et .
main. The solution is straightforward: An application designer can, .
as part of the process of generating a user’s page, embed a secre{/ Secret for thi S, user generated by the server
key that is shared among the pages generated for that user. Figure ar secr _et _f 12345; s .
presents a code example of this. Figure 2(a) shows the code of the ™ frame id="target” src="inner.htm">
provider, whose functiofoo authenticates the caller by checking
the secret provided by the caller against the secret embedded in
the provider. Figure 2(b) shows the code of the integrator, which
passes the shared secret as a parameter to the call to the provide
for authentication.

this.foo = function (providedSecret)

return;

The functionf oo authenticates the caller by

var target Wndow =
docunent . get El ement Byl d("target"). cont ent W ndow,
yar targetl nterface
target Wndow. get Publ i cl nterface();

function targetFoo()
4. USAGE EXAMPLES
Section 3 showed the basic usageaef Publ i cl nterface. In
this section we will show how it can be used to construct more
interesting applications.

Il In the old application, would have just done
/1 target Wndow. foo();
targetinterface.foo(secret);

}

(b) outer.html. It authenticates by providing the argumeatr et
in the call to the provider.

Unauthorized content.

Figure 3 shows an example of Unauthorized Content. Here, we
isolate an untrusted script library (in this example, Google’s map
service [3]).

Figure 2: Backward compatibility with the same origin policy
Access-controlled content.

Figure 4 shows an example of Access-controlled Content. The
integratora. comauthenticates itself to the resoutcecomusing a
username and password, which the resource then verifies.

themselves from a malicious integrator performing a man-in-the-
middle attack. For such applications, they can draw on the body
of knowledge already available to combat such problems; in this
. . case, a client side mutual authentication library would be needed
Service Integration. S that operates in the same spirit as TLS/SSL. It should be noted,

It would also be possible to create services in which sibling re- however, that the private keys for this process would still need to
sources communicate with each other, and the integrator merelyreside on the server, and thus the client code would in turn need to

connects them by passing callbacks. Figure 5 shows an examplecommunicate data back to its origin server, likely over SSL as well.
where the integrator connects resources from two ditegmand

c.com While this is simple enough for the case where the data
being passed between services is innocuous, if the data passing be5- IMPLEMENTATION

tween the sibling resources is sensitive, they must be able to protect We implemented OMash as an extension to Mozilla Firefox ver-
sion 2.0. Our current implementation also requires a small change

should enforce its own access control to protect its valuable data

rather than relying on the firewall for protection.

4This may get slightly more complicated if the application employs
poor information hiding in terms of software engineering, but it
should still be feasible.

(changes to a handful of arguments to functions) to work.

5.1 Mediating DOM Access

To allow the cross-domain access to ge Publ i cl nterface

function getPubliclnterface()

{
function Interface()
{
this.setMapCenter =
function (latitude, |ongitude)
{
if (!'map)
{
return;
}
map. set Cent er (
new GLatLng(latitude, |ongitude), 13);
}
}
return new Interface();
}

(a) map.html, which provides a map service.
<iframe id="map" src="map.htm ">

var mapW ndow =
docunent . get El ement Byl d(" map") . cont ent W ndow;
var maplnterface = mapW ndow. get Publiclnterface();

/1 Called on a button click, for exanple
function changeMapCenter ()

Il Values in a texthox
var latitude =

docunent . get El ement Byl d("1 ati tude"). val ue;
var longitude =

docunent . get El ement Byl d("1 ongi t ude") . val ue;

mapl nterface. set MapCent er (| atitude, |ongitude);

}

(b) outer.html, which uses the service provided by the code in
Figure 3(a)

Figure 3: Unauthorized content example

function getPubliclnterface() {
function Interface()

{
this.authenticate = function (usernanme, password)
{
/'l Verify username and password, e.g. via an
/] XMLHttpRequest to the server.
/1 Assumi ng authentication succeeds, give the
Il caller a token to present for each operation.
/I This is analogous to a file descriptor
/1 (although this kind of token should be
/'l cryptographically randomto prevent guessing).
remenber Token(t oken);
return token;
}
thi s. doSonet hing = function (token, ...)
{
/'l check if the presented token is valid
if (!'verifyToken(token))
{
return;
}
/'l else do sonething
}
}
return new Interface();

}

(a) http://b.com/resource.html, which authenticates the caller us-
ing a username and password.

<iframe id="resource"
src="http://b.confresource. htm ">

var resourceW ndow =

docunent . get El ement Byl d("resource"). cont ent W ndow;
var resourcelnterface =

resour ceW ndow. get Publ i cl nterface();

var token;

function, we used Mozilla’'s Configurable Security Policies (CAPS) f tht i on aut henti cat eToResource()

system [25].

Although we implemented this using an extension, what itamounts t gpken =

to is setting the two preferences in Table 2.

| Preference Name | Value |
capability. policy.defaul t. Wndow. "al | Access"
get Publiclnterface. get
capabi l'ity. policy.defaul t. Wndow. "sameQrigin"
get Publiclnterface. set

Table 2: Setting preferences in Mozilla's CAPS to allow cross-
domain access to thget Publ i cl nt er f ace function

resour cel nterface. aut henticate(usernane, password);

}

function doSonet hi ngToResour ce()

{

resour cel nterface. doSoret hi ng(token, ...);

}

(b) http://a.com/integrator.html, which calls the code in Fig-
ure 4(a)

Figure 4: Access-controlled content example: Integrator

Note that the other possible setting for one of these preferences@: comauthenticates itself to the resourcés. com

is"noAccess", meaning that no page can access this property, not

even the originating page. There is no built-in policy that restricts

access only to the same document. Thus, our current implementa-exception to it. An ideal implementation would only allow a doc-
tion does not remove the Same Origin Policy, but instead makes anument to access its own contents and gkeePubl i cl nterface

function getPubliclnterface() set by a site, itis placed in the data store for the tab that received the

{ information. Since Firefox makes it possible to view and modify
function Interface() HTTP headers it is possible to capture such information. However,
{ since it is possible for a web site to set a cookie in a script (i.e. by
this.registerC = function (referenceToC) settingdocument . cooki €), we had to make a small change to the
{ source code in order to capture all cookie-related events. To allow
var clnterface = for multiple independent sessions to exist at once, we also augment
ref erenceToC. get Publ i cl nterface(); the stored authentication information with a unique identifier cor-
Il Verify Creally is who it clainms to be by responding to the tab that received the information, as well as the
/1 calling its nmethods to get information, location of the source window in the window hierarchy (to allow for

Il e.g. certificates nestecki f rane>s). Thus, a user is able to log into the same site
.. more than once in a different tab or window and the authentication
information will be kept separately.

} For each outbound request that would send authentication in-
} formation under the current browser policy (i.e. with no regard
return new Interface(); for who initiates the request), we only send the information if it is
} found in the data store of the tab that initiated the request. This data
) is copied to new tabs and windows created as the result of actions
(a) http://b.com/resourceB.html, provider for resource B. (re- on the current page, such as a link click. The data for the tab is
source C is similarly declared) discarded if the new page does not match the domain of the stored
authentication.

<iframe id="b" src="http://b.com resourceB. htm ">
<iframe id="c" src="http://c.conm resourceC htnl">

6. POTENTIAL COMPLICATIONS

var bW ndow = Since our model does not rely on the Same Origin Policy, it
docunent . get El ement Byl d("b"). cont ent W ndow; might cause the following complications for websites using our
var blnterface = model.
resour ceW ndow. get Publ i clnterface(); .
var cWndow = 6.1 Named Windows and Frames
document . get El ement Byl d("c"). cont ent W ndow; Eachwi ndow object has a propertyame that can be used as a

target for links, form submissions, and for opening a new win-
dow. This name can be introduced via an explicit assignment to

function hookUpBWt hC() wi ndow. nane, viaw ndow. open("url", "name"), or by setting
thenane attribute when creating < r ame>, or <i frame>. An ex-

bl nterface. registerC(cWndow); ample of its use is when a user clicks on the Kk hr ef =" aURL"

} tar get =" soneName" >t ext </ a> the URL aURL will load in the

window namedsoneNane, or in a new window if no window with
that name currently exists. In the case of links and form sub-
missions, this has the potential to navigate an existing window
to the given URL, disrupting the user’s browsing experience. If
cross-domain communication is taking place via fragment identi-
fiers [9], this could disrupt their communication. Still, these are
relatively minor problems. However, a script can gain a refer-
function of other pages. We reserve modifying Firefox’s security ence to an open window with naméndowNane via var win =

(b) http://a.com/integrator.html, the integrator that connects re-
sources Band C

Figure 5: Sibling resources example: Integrator connects
b. comwith c. com

manager in such a way for future work. wi ndow. open("", "w ndowNanme") (if no window with that name
L. . . . exists, an empty window will be created). In our testing, we found
5.2 Mediating Authentication Credentials that Opera did not consider frame names when searching for a
Cross-domairXM_Ht t pRequest can be allowed by setting the ~ matching window name, only top-level window names, while In-
preference in Table 3. ternet Explorer and Mozilla Firefox considered both. In current
browsers, the Same Origin Policy determines whether or not ac-
| Preference Name | Value | cess to elements inside this window (e\.n. docunent) is al-
capability.policy.default. "al I Access” lowed. In our proposgl, access is pe_rmitted viz_a the_ public interface
XMLHt t pRequest . open of the page. Assuming the page’s interface is tailored to the se-

curity level of its content, being accessible in this manner should
not be a problem; simply allow access based on valid credentials.
Table 3: Setting preference in Mozilla’s CAPS to allow cross- However, it is possible for the application developer to introduce a
domain XMLHt t pRequest namedkf r ame> or <i f r ame> that a malicious website could obtain

a reference to in order to disrupt the user’s browsing experience.

Setting some other preferences is also required to allow the re- <frane>s and<i frane>s are often constructed with tmame
sponse to be read without security violations. [22] attribute set, to facilitate easy access viawhedow. f r ames prop-

To make HTTP authentication and authentication cookies (cook- erty, e.g. wi ndow. f ranes["frameNane"]. A named frame can
ies with our proposedut hent i cat i on attribute) private data, we also be accessed wandow. f rameNanme andwi ndow. f r ames|[x]
associate these items with the browser tab that contains the pagdwhere x is the index corresponding to the frame, e.g. 0, 1, etc.).
using Firefox 2's Session store API [7]. When such information is However, dropping theane attribute for the aforementioned rea-

sons and instead usingndow. f rames[x] can be awkward in the identifier messaging, which was not designed for use in this man-
presence of multiple frames. As an alternative, use the frande’'s ner and lacks desirable security properties for secure messaging.

attribute in the same manner as in Section 3: As mentioned in section 2.2, we talk in terms of MashupOS'’s
)) names for the various trust levels that are possible in a mashup.
var inner Wndow = . MashupOS proposes its own abstractions for the missing trust lev-
document . get El ement Byl d("framel D") . cont ent W ndow; els: foraccess-controlled content, <Ser vi cel nst ance> and
) ComrRequest and forunauthorized content, <Sandbox> and
var | nner | nt erface = _ <OpenSandbox>. While their abstractions cover all the trust levels,
i nner W ndow. get Publ i cl nterface(); they still rely on the Same Origin Policy for enforcement, as well as
6.2 Sibling Frames requiring browser writers and application developers to support and

:) . use several different abstractions. Our approach can suppteall

As described by Jackson and Wang in Subspace [19], Firefox gifferent trust levels with a single simple yet flexible abstraction,
(along with Safari, Internet Explorer 7, and some configurations of 5,4 do away with the Same Origin Policy and its problems at the
Internet Explorer 6) allows the frame structure of a page to be nav- s3me time.
igated regardless of the domains involved (Opera restricts access t0 \we also build on the technique described by Jackson and Wang
frames). Thus, a sibling frame with the name attribute sebao in Subspace [19] for allowing safe cross-subdomain communica-
can reference its sibling frame with narheo as discussed inthe jg (which is, from the point of view of the SOP, communica-
previous section vigarent. frames["foo"] or parent.foo or tion between different origins) by adopting their idea of passing
parent [x] . If the sibling framef 0o has aget Publ i cl nterface JavaScript closures between different pages.
function, bqr can ca.II it. Again, for the same reasons Qiscussed A recent project by Google name Caja [14], also allows web ap-
in the previous section, this should not be a problem given care- pjications of different trust domains to directly communicate with
ful design of the public interface of the page. However, in the jayascript function calls and reference passing. With the realiza-
event the developer wants to simply ensure the frames cannotreachjon, that a subset of JavaScript is an object-capability language, it
each other, this is not currently possible, at least to our knowledge. js possible to translate scripts to this enforced subset and to grant
For instance, in Firefoxrames = null; will work, but f ranes these scripts only the privileges they require. It is therefore possi-
can be restored videl ete frames;, even if the caller is child pe 1o isolate scripts from each other and from the global execution
frame. Thus, even without theane attributes set, sibling frames environment (i.e. the browser window) to the degree needed. As it

are still reachable vidranes[x]. However, it turns out that it jg merely an enforced subset of JavaScript, Caja has the advantage
is possible to make Firefox restrict access tofthenes attribute of requiring no changes to any web standards.

from another domain by settifgapabi | i ty. policy. defaul t.
W ndow. f ranmes. get" to "sameQrigin" (but setting". set" to
"same(ri gi n" has no apparent effect).

Even though our handling of authentication information could
allow the same-origin restriction ofM_Ht t pRequest to be lifted,
we believe that the proposed JSONRequest [12] is a good candidate

6.3 Inheritance of Authentication Credentials for safe cross-domain data exchange since JSONRequest does not
' send any HTTP authentication or cookies. A prototype implemen-

Since OMash considers authentication credentials as part of ai4tion exists as an extension for Mozilla Firefox [17]. JSON itself

page’s private data, web authentication under OMash exhibits dif- enjoys widespread use as a data interchange format, and is being
ferent semantics than under the Same Origin Policy. Under the |,gaq by, for example, Yahoo! [27] and Google [15].

Same Origin Policy, all pages from the same origin share authen- Rais et al [23] propose a set of abstractions for a new browser
tication credentials. OMash tries to simulate these semantics by 5 410w web applications to run safely. They propose that proper
passing authentication credentials associated with aRégether identification of the components that make up a web programs be
pages that are loaded via an actionRo(e.qg., clicking a link). We used to delineate boundaries rather than the Same Origin Policy.
are currently worklng on techniques that can simulate these semanyye provide a mechanism, the shared secret key, by which different
tics when the user clicks the “Back” button or selects a bookmark. components of a web application from the same origin or different
origins can authenticate each other fromgbePubl i cl nt er f ace

7. RELATED WORK function.

SMash [21] proposes a model where different trust domains can
create isolated components of content and code, and interact via
publish and subscribe messages. It isolates components using thg CONCLUSION
i frane tag, and URL fragment identifiers allow the frames to es-
tablish communication links. The implementation as part of Ope-
nAjax [6] provides a JavaScript library and API to run on unmod-
ified browsers. SMash addresses earlier problems of using frag-
ment identifiers caused by browsers allowing complete navigation
of other frames, even of different origins. It extends the fragment
messaging protocol with a shared secret to ensure link integrity and
prevents frame-phishing with a combination of event handlers and
messages during frame unloads. However, the messaging protoco
in version 1.1 of OpenAjax was vulnerable to an attack discovered
by Barth et al. [8], allowing the attacker to impersonate messages
between components. Since our abstraction allows for direct func-
tion calls for code communication, we avoid use of the fragment

We have presented OMash, a new security model based on ob-
ject abstractions to allow web pages from different domains to in-
teract in a safe, controlled manner. Our simple model, based on
the familiar notion of public interfaces, allows mashup integrators
to define various trust relationships between the integrators and
providers. OMash does not rely on the Same Origin Policy for
controlling DOM access or cross-domain data exchange and there-
ore avoids all its pitfalls and vulnerabilities. To support legacy web
applications, OMash can be configured to be backward compatible
with the Same Origin Policy. We have implemented a prototype
of OMash as an extension to Mozilla Firefox 2 &nd showcased
sample applications.

5Surprisingly,del ete parent.frames; works even if their do-
mains are different; this is likely a bug. we also had to modify three lines of Firefox source code.

Acknowledgments

This research is partially supported by NSF CNS award 0644450
and by an AFOSR MURI award. The authors wish to thank Helen
Wang, Liang Cai, Yuan Niu, and Matthew Van Gundy for their
helpful feedback.

9. REFERENCES

[1] Craigslist.http://ww. crai gslist.org/, 2008, (accessed
August 10, 2008).

[2] Google Mapsht tp:// maps. googl e. con, 2008, (accessed
August 10, 2008).

[3] Google Maps APIhtt p: //www. googl e. conl api s/ maps/,
2008, (accessed August 10, 2008).

[4] HousingMapsht t p: / / www. housi ngnmaps. coni , 2008,
(accessed August 10, 2008).

[5] JSON.http://wwmv. j son. org/, 2008, (accessed August
10, 2008).

[6] OpenAjax Alliance htt p: // ww. openaj ax. or g/ , 2008,
(accessed August 10, 2008).

[7] Session store APhttp://devel oper.nozilla. org/ en/
docs/ Sessi on_st ore_API, January 2008, (accessed
August 10, 2008).

[8] A.Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. ldsenix Security Symposium,
2008.

[9] J. Burke. Cross Domain Frame Communication with
Fragment Identifiers.
http://tagneto. bl ogspot. conf 2006/ 06/
cross- domai n- f ranme- conmuni cation-w th. htnl, June
2006, (accessed August 10, 2008).

[10] R. Cornford. Javascript Closurés.t p:

[[www. j i bbering. conf faq/fag_notes/closures. htm,
March 2004, (accessed August 10, 2008).

[11] D. Crockford. Private Members in JavaScripitt p:

[[www. crockf ord. contjavascript/private. htn,
2001, (accessed October 31, 2007).

[12] D. Crockford. JSONRequest.
http://ww. j son. or g/ JSONRequest . ht i, 2006,
(accessed August 10, 2008).

[13] M. Foundation. Public Suffix List: Learn more about the
Public Suffix List.htt p: // publicsuffix.org/learn/,
2008, (accessed August 10, 2008).

[14] Google. google-caja.
http://code. googl e. com p/ googl e- caj a/, 2008,
(accessed August 10, 2008).

[15] Google. Using JSON with Google Data APlIs.
http://code. googl e. con api s/ gdat a/j son. htni,
2008, (accessed August 10, 2008).

[16] N. Hardy. The Confused Deputy: (or why capabilities might
have been inventedfl GOPS Operating Systems Reviews,
22(4):36-38, 1988.

[17] C. Jackson. JSONRequest Extension for Firefox.
http://crypto.stanford. edu/jsonrequest/, 2007,
(accessed August 10, 2008).

[18] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting Browsers from DNS Rebinding Attacks. In
Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS2007), pages 421-431, New
York, NY, USA, 2007. ACM.

16th International World W de Web Conference
(WMW2007), pages 611620, New York, NY, USA, May
2007. ACM.

[20] C. Karlof, U. Shankar, J. Tygar, and D. Wagner. Dynamic

Pharming Attacks and Locked Same-origin Policies for Web

Browsers. InProceedings of the 14th ACM Conference on
Computer and Communications Security (CCS 2007), pages
58-71, New York, NY, USA, 2007. ACM.

F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and

S. Yoshihama. Smash: secure component model for
cross-domain mashups on unmodified browser$\Waw
'08: Proceeding of the 17th international conference on
World Wide Web, pages 535-544, New York, NY, USA,
2008. ACM.

Z. Leatherman. Cross Domain XHR with Firefox.
http://ww. zachl eat . conml web/ 2007/ 08/ 30/

cross- donmai n- xhr-wi th-firefox/, August 2007,
(accessed August 10, 2008).

[23] C. Reis, S. D. Gribble, and H. M. Levy. Architectural
principles for safe web programs. Sixth Workshop on Hot
Topicsin Networks, 2007.

J. Ruderman. The Same Origin Policy.

http://ww. nozilla.org/projects/security/
conponent s/ sane- ori gi n. ht m , August 2001, (accessed
August 10, 2008).

J. Ruderman. Configurable Security Policies (CAPS).
http://wwm. nozilla.org/projects/security/
conponent s/ Confi gPol i cy. ht i, April 2006, (accessed
August 10, 2008).

H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and Communication Abstractions for Web Browsers in
MashupOS. IrProceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP 2007), pages 1-16,
New York, NY, USA, October 2007. ACM.

Yahoo! Using JSON with Yahoo! Web Services.
http://devel oper.yahoo. com conmmon/json. htni,
2008, (accessed August 10, 2008).

[21]

[22]

[24]

(25]

[26]

[27]

[19] C. Jackson and H. J. Wang. Subspace: Secure Cross-Domain

Communication for Web Mashups. Rroceedings of the

