Secure File System Services for Web 2.0 Applications

Francis Hsu

Hao Chen

Department of Computer Science
University of California, Davis
Davis, CA, USA 95616
{fhsu,hchen}@cs.ucdavis.edu

ABSTRACT

operating system. Last, it provides better security anghpyi pro-

We present a design for a file system that provides a secure filetection for users. Since the file system manages user ddteervu

storage service for Web 2.0 applications. Currently, eadb W
application stores its own user data. This not only burdées t
applications with storing, managing, and securing usea tat
also deprives users from controlling their own data. Witberg
proposals of secure client-side cross-domain communpitatiech-
anisms, we can provide an independent file system serviceeto W
applications. This service returns the control over use bdack to
the users, where users can share or restrict access to kegiagi
they wish, and relieves web application servers from théreotual

or regulatory obligation of safeguarding user data.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services, Data
sharing; D.4.6 $ecurity and Protectior]: Access controls

General Terms
Design, Security

Keywords

web application, mashup, file system

1. INTRODUCTION

A typical host-based computing environment consists of ger-o
ating system, a file system, and applications. Even thougieso
of them may overlap (e.g., an operating system may contain a |
cal file system, an application may reside on a file systengy th
are independent entities and can be provided by differemdmes.
Particularly, application vendors do not provide file sysseand
vice versa. The separation of file systems from applicatfmos
vides several benefits. First, it simplifies applicationedlepment.
Developers can focus on the application logic; they neednaot-
age data from multiple users and the related access cossues.
Second, it facilitates sharing data between applicati@isce the
file system manages all the data, all applications shareatme s
interface for accessing data, under the access contraypafithe

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCSW’'09November 13 2009, Chicago, lllinois, USA.

Copyright 2009 ACM 978-1-60558-784-4/09/11 ...$10.00

abilities in an application cannot compromise user datarvthe
user is not running the application.

In Web 2.0, web applications are hosted on web servers anid run
browsers. Compared to traditional host-based applicatitrese
applications provide several advantages to the users:ney not
be installed on the client computer; they can run on any harelw
and software platform that has a compatible browser. Asualtres
we witness that the number and popularity of these applicati
quickly increase.

However, current web applications have also lost sevenrzrad
tages of host-based applications. One big difference legtwest-
based and web-based applications is that web applicati@ngem
the storage of data into the applications themselves. A msest
go though the web application to get to his data.

This decision could result from three factors. First, welpliap
cations running on a web server gain performance benefits fro
keeping the file system nearby, since all of the user’s regdes
operations travel over the network back to the web servec- Se
ond, web applications also benefit from designing their gateage
component to optimally serve the requirements of web aatitio.
Third, since the Same Origin Policy on browsers preventsszro
domain communications, it is difficult for client-side coiem one
web site to access stored user data on another web site.

As a result of hosting the application and user data storage o
the same web site, current web applications lose severaffiten
of host-based applications. First, they obligate theitihgsweb
servers to provide data storage for all users of that agjitaThis
increases the cost to the web sites, and requires each usaveo

a separate account and storage at each web site. Secon#teit ma
sharing data among different web applications difficulhcgieach
web application provides its own data storage, it likely Ad®me-
grown data access API that is incompatible with other apfibos.
Another issue is access control. Each data store likelythamin
access control policy and user accounts. Sharing data amahg
tiple web applications data stores like these can be coatplic
Finally, users lose control of their data. User data is scattacross
all the web sites that host web applications. The user hagtster
separately with each of these web siteshe confidentiality and
integrity of user data are at the mercy of the security andebign

of the web sites.

1Single sign-on systems partially alleviate this burden.

We argue that we should separate user data storage from the we
application. The three previously mentioned obstaclesitap-
proach are disappearing. First, some web applications egmb
ning to rely on third-parties for data storage. With cloudneo
puting, those web applications no longer have their date s&
siding on same web server serving that web application.edast
the web application communicates with another entity oy

the services for data storage and retrieval. These webcapipls
lose the flexibility of a customized local storage system amucbt
rely on the API of the storage provider. The web applications
however, make this exchange for the scalability benefits ftioe
storage provider. Second, some web applications can rideut
of a web server. Thick-client AJAX versions of traditionasitop
application like mail clients and word processors can ruinipa

in the browser on the client machine. Therefore, the adgentd
hosting the file system on the web server, such as performance
is diminishing. Third, recently researchers have propesedha-
nisms, such as MashupOS [19] and OMash [4], for enablinglie
side cross-domain communications. Their motivation isrtabde
secure Web mashups, where an integrator creates contents fr
multiple providers. These techniques would also enable staftr-
age services independent of web applications.

We wish to place a storage web application at the same levkkas
web application providing other services. We propose arsefile
system service for web applications. Like existing clountage
systems, the service provides a file system at the servemeARla

to web applications at the client. We, however, make theyitesn
directly accessible to the user via his browser. We provigeuser
access to his data on the storage service, without the filaher
web applications. We can view the file system service and the
web application as two providers in a Web mashup in the browse
After the browser loads the mashup integrator, web apphicand
file system service, the integrator introduces and conribetseb
application to the file system service. Separating the fitesy
service from web applications have many advantages forweth
applications and users:

e Benefits to web applications: First, Web applications need
not provide the file system service and its related admagistr
tive tasks, such as user registration and access contr@. Th
reduces the complexity and cost of developing and servicing
web applications. Second, since web applications invoke
the file system service via an API, it offloads the complex-
ity of implementing the file system to the file system ser-
vice. Third, since the web application may work with any
file system service that implements the expected API, the
user may freely choose a file system service that best suits
his/her needs. For example, some web applications wish
to be able to run in the offline mode. Direct browser sup-
port for structured client-side file system or browser plug-
ins, such as Google Gears, allows the application to cache
data locally with the browser, but requires the individuabw
applications to support them. Using our proposed file system
service, the user can simply connect the web application to
a file system service with local backend file system without
requiring any modification to the web application.

application servers, and the application developers need t
provide functionality to free the data to be shared. By sepa-
rating the application provider from the file system provide
users can gain the flexibility of interchanging file systerd an
application providers for their data. This also improves th
user’s ability to keep his data private. He can enforce acces
control at any time, independent of the application. Applic
tions have access to the user’s data only when needed. This
narrows the window of vulnerability. Application provider
that may have weaker security can not accidentally reveal a
user’s information during a breach.

2. OVERVIEW
2.1 Web Applications

From a user’s perspective, a web application is any program r

within a web browser. Once we look behind the scenes, we see

that many different types of programs make up the category of

web applications. The browser displays a presentatiorr lafyie
web application that a users sees, but the code used to theate

presentation can start from different sources. There isetagm of

web application based on their design for code executiordatel

processing. The execution of web application code ranges fr
being primarily server-based to primarily browser-based.

e Server-basedveb applications are programs that run all of
their code on a server communicating with the browser over
the network. The interaction with these programs usually
consist of a repeated sequence of a synchronous web page
retrieval and load followed by user input submission.

AJAX web applications push some code execution into the
browser. They ship a Javascript client component to improve
the user experience by having the client perform some pro-
cessing of user input and data locally and communicate with
the server process without page reloads.

Mashupweb applications process data not only from the user
but also from other web-accessible data sources by interact
ing directly with other web applications that are loadechia t
same browser.

Offline capableveb applications can run when disconnected
from the network for some period of time. They download all
the necessary executable code and store it within the browse
When disconnected from the network, all code executiorstake
place within the browser. An offline application may recon-
nect to a server later when network access is available to
perform additional processing. A completely offline web ap-
plication would be able to connect to a server once to redriev
the code, and never need reconnect. This would be equivalent
to downloading a program executable to run locally on the
computer.

For each of these types of web applications that need to ssane
data, we believe that the web application can be separaiettire

storage of user data. A web application does not need to ssare

data at the same location is it executing. We already seéntliie

Benefits to users: Users should have the freedom to decide case of web applications with a server-based componentc#mt
what happens to the data they create with applications. This outsource storage to a third party like Amazon S3. In thispae
existed with traditional desktop applications (modulo DRM propose a storage solution for web applications with brovessed
and proprietary file formats), but was lost in the move to components. As the browser becomes a richer platform, girayi
web applications. By default, the data is locked up on the functionality equivalent to full operating systems, welplégations

can take advantage of the platform by running more code on the applications, where the operating system connects theyslem

browser.

2.2 Goals

We propose a mashable file system service for web application
We have two design goals:

e The file system should be easy to use by application devel-

opers.
At the most basic level, a file system provide a way for a

with the applications. In a web-based computing envirortmsa
let the mashup integrator to connect the applications vhiéhfile
system service, assuming the role of an operating system.

2.4 Requirements

Our proposed file system service requires that the browser pr
vide secure cross-domain communication. More specifictily
browser can isolate contents from different domains anayetv
controlled communications between the domains. The foneer
quirement is provided by the same origin policy, which issadtrd

client to store a chunk of data and retrieve that data. The file security policy in modern browsers. The latter requireniebeing
system provides a handle or name by which the client uses to fulfilled by browser cross-domain communication mechasism

designate a particular chunk of data. For ease of use, we can

layer on top of the basic storage mechanism additional APIs. 2 5 Exam ple

For desktop replacement web applications, we provide an In the example in Figure Editor.comprovides an application for

API of the file system designed to mimic that of POSIX.

editing photos, andrganizer.conprovides an application for or-

Since host-based applications use POSIX-style APl to acces ganizing photos. Neither of them stores any user data. ddste

the file system, our API facilitates porting host-based iappl
cations to a web application architecture. Web application
requiring other data storage semantics like the objece stbr

user chooses to store his photodilgisystem.comintegrator.com
provides an application that connects the two applicatiotise file
system. When the user visitgegrator.comintegrator.concreates

Amazon S3, can make use a simpler API that is a subset of three frames and loads the main pages fasfitor.com(containing

the functionality provided by the POSIX-style API.

e The file system should let users own their data. A web appli-

cation should not dictate where users store their datajéhou

not be able to access the data when the user is not running
the application, and should not restrict how the user uses th
data. By contrast, current web applications decide where to

the editor),organizer.com(containing the organizer), arfdesys-
tem.com(containing the client code for the file system) into the
frames. integrator.comalso sets up communication channels be-
tween the frame froneditor.comand that fronfilesystem.com

3. DESIGN

store the user’s data, have constant access to the datdregar 3.1 ~Components

less whether users are running the applications, andaestri

To the web browser, the mashable file system can be treated as a

the data to be used only by the application running on the other web application. Its APl is retrieved via HTTP as a 3axiat

same server.

2.3 Web Application Design

From the user’s perspective, the move away from desktopcappl
tions to web applications has centralized computing in a sy
ilar to the earlier computing environment of mainframe caep
and connected terminals. Although the user is now relianaon
bevy of web application services instead of a single syskenstill
relinquishes some control over his computing resources.

Cloud computing has allowed web applications to unteth@nfa
particular server and have their computation, data stomgtnet-
work bandwidth requirements serviced by third-parties.bélgeve
that pushing user-data storage into the cloud, also to bé&sdrby
third-parties, would give web applications and users manakll-

ity in their use of computing resources.

A user-centered storage system for web applications ngt renl
turns more control to the user to run the decentralized egiptin

library. It would be combined by a mashup integrator withesth
web applications needing a file system for storage. Our nidsha
file system service runs as a provider, which exposes a fitersys
API to a web application running as another provider. As sl
for mashup providers, the file system service has a serveslamd
component.

3.1.1 Server component

The server component provides persistent data storagexpndes

an APl via a file system access protocol for the client. Sihee t
client is JavaScript code running in an unmodified browdas t
API must be accessible by JavaScript in browsers. Since a file
system service deploys both its server and client compen#éme

API between these components need not be standardizediseeca
interoperability between server and client components faiffer-

ent file system services in unnecessary. This gives the ajexed

the freedom to optimize their API.

Since web applications interact only with the client comgranof

that he was accustomed to on the desktop, but also enables nevihe file system service, the location of the file system séswesns-

types of applications. With user-centered data storagéngles
web application can have a better view of all of the a userta.da
An web application like a trusted personalized search engiuld
crawl the user data storage and answer search queries btlee al
data. Previously, a user would only have been able to searsh o
publicly published data with a web search engine, or relyten t
separate web applications to individually performs thecess.

To illustrate the design of our file system service, we drawarzal-
ogy between a web-based computing environment to a hostibas
environment. The latter has an operating system, a filersystad

parent to web applications. The server could run either teiyor
locally (on the same machine as the browser). When the server
on the network, the access protocol must be over HTTP sirece th
browser restricts the client component, which is in Javip§cio
use HTTP. When browsers provide data storage capabilgies)

as thelocalStorageobject of HTMLS5, they also can function as file
system servers. In this case, the client component of owsyfieem
service can use the API provided by the browser to accesscheé |
data storage. Note that no browser modification is neceseary
this case. Since web applications are being deployed with of
line capabilities, providing file system services both réshoand

[Wozils Firgfor
Ele Edit View History Bookmarks Tools Help
& (

organizer.com

— |

editor.com
1 5,
? 3.
X 4

Figure 1. Example of file system service used by two web apphtions. Step 1: The application fromeditor.com requests to open a
file. Step 2: The file system client component displays a file bwser where the user chooses an existing or new file name. St&prhe
file system client component requests the server componert bpen the file. Step 4: The file system server component operetfile,
obtains a capability for this file, and returns the capability to the client component. Step 5: The file system client compent returns
the capability to the application. Thereafter, the applicaion can access the file via the capability.

locally is desirable. Compared to the current approach evheb
application developers have to handle offline mode explidihe
file system API can provide offline storage transparently &b w
applications.

3.1.2 Client component

For desktop-replacement web applications, the client aapt of
our file system service provides similar functions to thaaafet-
worked file system. It exposes an APl to web applications ana-c
municates with the server component of the file system ser\iie
design the API between the client component and web apialitat
to be similar to the POSIX file API to facilitate porting hdstsed
applications to the web. A basic client can simply trandbetisveen
the POSIX-like JavaScript API (between the client compoenl
web applications) and a remote file system protocol (betvieen
client and server components). Advanced clients may peofiie
replication, caching, and online/offline access.

Unlike a traditional client component of a networked filetsys,
our client component provides an interface to allow the user
authorize access to his files. The user interface provideke a fi

client component, we need to provide no file system privitegbe
integrator. Since the user interacts directly with cliemtnponent,
the client component will not authorize any file access witho
the user’'s consent. By the same reasoning, our design cl®ice
superior to placing the file browser in the web application.

3.2 Access control

The file system service regulates access by a capabilitgrayst
After the browser loads the client component of the file syste
service, the client component asks the user to log in. Tlegiator
connects API calls from the web applications to the API fiorm

in the client component of the file system service. When a web
application requests a user file, the client component offitae
system service displays a file browser where the user seldies

or creates a new file. Then, the file system creates a capabilit
for this file and sends the capability to the web applicatidine
application can subsequently access the file using thiddéapa

We choose capabilities over access control lists for acoassol
because capabilities mesh well with the decentralized-eatuveb
applications. We expect the user to find new web applicatatins

browser for the user to delegate access to his files. When a webthe time and to want to share file access with new friends. Main

application requests to create or open a user file (not aijuic
configuration files, see Section 3.2), the client componérhe
file system service opens the file browser, which allows tlee tcs
select an existing file or name a new file.

We could place the file browser in the mashup integrator or the

web application, but both these options are inferior to dwice
of placing the file browser in the file system client compondht
we place the file browser in the integrator, each file openeasiu
from the web application would have to go to the integratast fir
before it reaches the client component. This could causefarpe
mance penalty. More importantly, this design would haventga
the integrator all the privileges that the authenticateet s on
the file system: because the user selects files in the Ul prdvid
the integrator, the client component, having no knowledigthe
user’s action, would have to grant access to all the usees. fiBy
contrast, since we chose to place the file browser in the fitegy

taining an access control list at the file service would beialuy
and not scale. With capabilities, we empower the user togdéde
access as he sees fit.

The designer needs to decide on the granularity of the clitpei
Does a capability allow access to only one file or a set of filés?
a capability refers to a directory, does the capabilityvaliccess
to the files in all the subdirectories? The file browser digptaby
the client component could include check boxes to allow e u
to make these choices.

Our access control scheme so far requires the user to appacte
file access request (unless the user chooses a directorjland a
access to all the files in the directory). This is appropriate
user files. User files are created by applications for usetscan
be potentially shared with other applications. Exampleduite
documents, images, address books, and bookmarks. Sine use

manage and manipulate their files directly (e.g., backinglefet- 4.1 Authentication

ing, or emailing their documents), it is reasonable to ekpsers The user first authenticates to the file system service. Thahme
to make intelligent access control decisions on these filasthe anism for authentication is not important to our design. Whe
other hand, applications also create and access appliesgiecific web application wishes to use the file system, the integratest
data, such as configuration and temporary files. Since ugers d introduce the file system to the client. The integrator ptesithe
not typically manage or manipulate these files, we cannotexp filesystem with the identity of the application desiringuéees and

users to make intelligent access control decisions on tfilese provides the application a handle to directly make file systalls.
Fortunately, since these files rarely need to be shared wligro We trust the integrator to identify the applications cotlyecwe
applications, we can simply create a directory for eachiegfbn, have no recourse if the integrator is malicious. The file ayst
and returns a capability that allows the application fulless rights service needs to know the identity of the application to mev
to this directory. To allow the application to access thiectiory access to application-specific storage.

across sessions, we could name the directory by the apptisat
domain name or a hash of its public key and enforce accesstont 4.2 Storage API

based on this. Once the application has a handle to make calls into the sy

client, it can use the full API provided to store data on the fil
system. Currently, we provide a basic POSIX-like API, witle fi
operations likeopen() read(), write(), truncate() etc. The POSIX
API provides a capability-like system when issuing file diggors
for file access.

In this scheme, granting access to other users would beasitoil
granting access to a web application. When a users wishésite s

a file with others, he simply needs to share the capability.il&Vh
our design does not directly recognize the other users,taisis

can be delegated to a file sharing web application. The usgr fir
grants access to a file he wants to share to the file sharing web
application. The file sharing web application would thenspais

the capability it was granted to the recipients’ web appitathat
eventually accesses the file.

The file system client intervenes open()calls for user data with
the file system user interface. The iterface prompts thetaggant

the application access to one or more user data files. The user
additionally has the option to specify the type of accesstgdh
(read-write/read-only). The handles returned by dpen() calls

are opaque identifiers. These opaque identifiers are eslbent-
pabilities for access to the file. Web applications wishinghare
files can simple exchange the file handles once they are dreate
These capabilities grant access as long as no applicasorssa
close()for the handle. For other API calls, the file system client
serves as a simple relay of these API calls to the file systeveise

The longevity of these capabilities can also be user cdatiolA
user may explicitly expire a capability. This would usuatigcur
when the user is done using the web application requestajl¢h
and the web application would then signal the file systemiserv
to close the file. The user or file system service may also @xpir
capability based on time, access count, or other parametéiis
form of expiration may be useful for capabilities given to abw
application that may have crashed without properly closipgned
files, or for capabilities that may need to persist beyond & we 5. SECURITY ANALYSIS
application session, such as for the file sharing web apjuica 5.1 Threat model

previously mentioned. We assume the trustworthiness of the following entities:

3.3 Usage example e The mashup integrator, which connects the file system ser-
Continuing from the example in Section 2.5 where integreon vice to the web application. It truthfully conveys the ident
loads three frames from two web applicati@ulitor.comandorga- of the web application to the user and the file system service,
nizer.com and one file system servicél¢system.cojn The user and it does not violate the confidentiality and integrity o t
creates a new picture in the application fraditor.com When file system.

the user saves the file, the application caljen() in the client

component fronfilesystem.coniStep 1 in Figuré 1). The client e The file system. It can authenticate its users securely.

component displays a file browser where the user chooses-an ex
isting or new file name (Step 2 in Figure 1). Then, the client
component makes a request of the server to open the filepstaai
capability for this file, and returns the capability to thepkgation])
(Step 3, 4, 5 in Figure 1). The application then uses thishitipa 5.2 Security benefits
to write to the file. When the user wishes to add this file to the Compared to current practice of storing user data on the samer
photo organizer fronorganizer.comthe above process repeats. as the web application, our file system service has the fallgw
security advantages:

e The browser. The browser isolates contents from different
domains but allows secure cross-domain communication.

4. IMPLEMENTATION

We developed a proof-of-concept file system server andtcligre e It reduces the risk of user data compromise in the case of
two components work together to provide data storage s\ an application server compromise. Using our file system
browser-based web applications. The client, written iradaxipt, service, a web application has no access to user data when
provides the file system API for other Javascript applicatiolt the user is not running the application. Therefore, when an
primarily translates and redirects storage requests flmanweb attacker breaks into a web application server, he can compro
application to the file system server. We chose a simple JSON- mise only the data of the users who are running the applica-
RPC protocol over the HTTP transport provided by the browser tion. As another benefit, it relieves the web applicatiomfro
The server is also a software layer processing the networdests complying with regulatory mandates for user data security

into actual storage of the data. because the application server stores no user data.

e The use of capabilities for file access protects the user au-
thentication credentials at the file system service evemwhe
an application or integrator server is compromised, bexaus
the credentials never leave the file system service. The capa
bilities also restrict the web application to only the filaait
the capabilities allow.

5.3 Potential attacks

5.3.1 Network MITM

We prevent network Man-In-The-Middle attacks with SSL/Tios
connections to integrator and file system. If we do not trbst t
user not to bypass SSL/TLS by ignoring warnings, the apitioa
themselves can use a Diffie-Hellman key exchange to seceire th

directly into a database. Keeping data into these local feowon-
tainers ties the data to a single instance of the browserh #ab
application needs to handle its own data synchronizatidiviithu-

ally among the different browser instances of a user. Dadairsf
among web applications is possible, but is still limited by same
origin policy. By contrast, our system provides for arbijgralata
file sharing governed by the user.

6.2 Web application storage

With cloud computing, web applications can run without Igein
installed to a particular server, by renting on-demand aging
resources from a third-party and run “in the cloud”. Sersitke
Amazon S3[[1], provide web applications with network acitg#es

communication. The user does need a secure connection to thestorage. Such cloud storage systems have rudimentarysaooes

integrator to bootstrap this process.

5.3.2 Malicious web applications

A malicious web application could attack the applicatioedfic
storage or the user data. With quotas, we can limit resouxtaus-
tion attacks on application specific storage. The appticatieeds
to be handed a capability to have access user data. Thigesqui
the user to consciously give that access to the applicaliioorder

to accomplish this, the malicious application must misespnt
itself to both the integrator and to the user when he is gngrttie
capability. Any damage is restricted only to the file for whibte
capability is assigned.

6. RELATED WORK
6.1 Networked file systems

Networked file systems allow for distributed storage andasof
data. The Sun Network File System (NFS)|[15, 16], originaly
signed for sharing among a small set of mutually-trustingksta-
tions, developed over several versions to now support aanes
wide-area networks with strong security mechanisms foiteead
mutual authentication and integrity. Other network fileteyss like
the Andrew File system [10] and CIFS [3] developed in a simila
fashion and also now scale to service large distributed orétswof
computers.

As the web grew to become one of the most pervasive computing
platforms, network file systems were created or adapted|fitl fu
the needs of this new area. WebFS [18] provides a global file
system over HTTP with support for functionality needed byngna
distributed Internet applications. WebDAV [5] focuses ogbaau-
thoring specifically and extends HTTP to a read-write platféor
web clients. WebDAVA [12] provides for file sharing over HTTP
with flexible access controls using user issued access rirakie
WebNFS [2] adapts the NFS protocol for the web, by extending
the semantics of the NFS protocol to support web browsentslie
by creating a lightweight binding mechanism. Even thougtséh
protocols target web browsers as clients, they are not &uly-
ported by current web browsers. They require additionairsot

to enable the browser to communicate with the file systenesgrv
Web applications running in the browser do not interfacéthiese
network file systems in through the browser.

The web browser itself is changing to support the more coxple
AJAX web applications with new data storage requirementse T
HTML5 specification [11] proposes structured client-sitterage
that is being adopted by some browsers and projects suchageso
Gears|[8] provide similar mechanisms as a browser add-ory Th
enable web applications to store data locally as name/yzlire or

trol settings, since the cloud storage systems are prigdegigned
provide the storage service to a single web application. ulo
views [7] proposes a system to construct views over datasets
a cloud storage service. Web applications define these atsab
style views of their data and can then selectively share ibe v
with other web applications. Menagerie [6] provides a \dltfile
system composed of data from heterogeneous web applisdijon
providing an interface for a web application to export tluita into

a namespace and a file system interface that combines thessna
paces. A user can then mount this virtual file system on hialloc
computer and manipulate it with standard file system commsand
We take a user-centric approach where data is stored selyarat
from the application and provide web applications with iifgtees

to the storage. The user then also retains control over thensh
of his data.

6.3 Capability systems

Capability systems are an access control mechanism thatiates

an unforgable object identifier with set of rights. They piism-

ple and transparent sharing of those rights. A holders oté#pa-
bility only needs to transmit the identifier to another graotess.
They work well as authorization mechanisms for distribusgd-
tems where access control may be decentralized. OAuth [iB] a
delegation permits [9] provide mechanisms to grant andsfean
arbitrary authorizations among web applications. Our fijigtam
could be extended to use one of these systems for file access co
trol, however we maintain our own access control systemifor s
plicity. CapaFS [14] encodes capabilities into the name#esf on

a file system to allow a user to share files with dynamic grodps o
other users. In our file system, we provide a similar meclmanis
for granting access to different web applications as wellsess.
The design of our file management user interface is inspised b
CapDesk[[17] where the user directly grants capabilitiesfife
access to an application via a file browser.

7. CONCLUSION

We have proposed a design for a web based file system to provide
a storage service to web applications. Such a file systemdwoul
free web applications from developing and administerirggrtown
storage mechanisms. The web applications can instead medy o
POSIX-like standard file system interface, much like hateal
applications. Our file system provides another componentafo
web-based computing environment that will simplify apation
development and provide greater ease of use to end users.

Users of web applications that rely on this file system gaimemo
control over their data since their files are independentéynaged
from the web applications. Our file capability system allawers

to grant new web applications access to existing file andkesvo
access at any time. By providing the familiar file metapharao [18]
user’'s data, we can make it easier for users to understand whe
data sharing takes place and for users to control the actéssio

data. [19]

8. REFERENCES

[1] Amazon Simple Storage Service (SB)t ps://s3.
amazonaws. coni .

[2] B. Callaghan. WebNFS Client Specification. RFC 2054
(Informational), Oct. 1996.

[3] Common internet file system (cifs) technical reference.
http://ww. snia.org/tech_activities/Cl FS/

Cl FS- TR- 1p00_FI NAL. pdf .

[4] S. Crites, F. Hsu, and H. Chen. OMash: enabling secure web
mashups via object abstractions €S '08: Proceedings of
the 15th ACM conference on Computer and communications
security pages 99-108, New York, NY, USA, 2008. ACM.

[5] L. Dusseault. HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV). RFC 4918 (Proposed
Standard), June 2007.

[6] R. Geambasu, C. Cheung, A. Moshchuk, S. D. Gribble, and
H. M. Levy. Organizing and sharing distributed personal
web-service data. IRroceeding of the 17th international
conference on World Wide Wagtages 755-764, Beijing,
China, 2008. ACM.

[7] R. Geambasu, S. D. Gribble, and H. M. Levy. CloudViews:
communal data sharing in public clouds.HotCloud '09
Workshop on Hot Topics in Cloud Computir&09.

[8] Google gearshttp://gears. googl e. cont .

[9] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, and
N. Ramani. Please permit me: Stateless delegated
authorization in mashup&omputer Security Applications
Conference, AnnuaD:173-182, 2008.

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file syste"@M Trans.
Comput. Syst6(1):51-81, 1988.

[11] HTML 5 draft recommendatiot t p: / / www. what wg. or g/
specs/ web- apps/ current - work/ .

[12] A. Levine, V. Prevelakis, J. loannidis, S. loannidiedaA. D.
Keromytis. Webdava: An administrator-free approach to web
file-sharing. INWETICE '03: Proceedings of the Twelfth
International Workshop on Enabling Technologipage 59,
Washington, DC, USA, 2003. IEEE Computer Society.

[13] OAuth core 1.0http://oauth. net/core/ 1.0/.

[14] J. T. Regan and C. D. Jensen. Capability file names:
separating authorisation from user management in an
internet file system. I8SYM’'01: Proceedings of the 10th
conference on USENIX Security Symposipages 17-17,
Berkeley, CA, USA, 2001. USENIX Association.

[15] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and
B. Lyon. Design and implementation of the sun network
filesystem. InProceedings of the Summer 1986 USENIX
ConferenceUSENIX Association, 1985.

[16] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,

C. Beame, M. Eisler, and D. Noveck. Network File System
(NFS) version 4 Protocol. RFC 3530 (Proposed Standard),
Apr. 2003.

[17] M. Stiegler and M. S. Miller. E and capdesk: Pola for the

distributed desktoght t p: / / www. conbex. conl t ech/

edesk. htm .

A. M. Vahdat, P. C. Eastham, and T. E. Anderson. Webfs: A
global cache coherent file system. Technical report, UC
Berkeley, 1996.

H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and Communication Abstractions for Web Browsers in
MashupOS. IrProceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP 20@&ges 1-16,

New York, NY, USA, October 2007. ACM.

https://s3.amazonaws.com/
https://s3.amazonaws.com/
http://www.snia.org/tech_activities/CIFS/CIFS-TR-1p00_FINAL.pdf
http://www.snia.org/tech_activities/CIFS/CIFS-TR-1p00_FINAL.pdf
http://gears.google.com/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://oauth.net/core/1.0/
http://www.combex.com/tech/edesk.html
http://www.combex.com/tech/edesk.html

	Introduction
	Overview
	Web Applications
	Goals
	Web Application Design
	Requirements
	Example

	Design
	Components
	Server component
	Client component

	Access control
	Usage example

	Implementation
	Authentication
	Storage API

	Security analysis
	Threat model
	Security benefits
	Potential attacks
	Network MITM
	Malicious web applications

	Related work
	Networked file systems
	Web application storage
	Capability systems

	Conclusion
	References

