
Angora: Efficient Fuzzing by Principled Search

Peng Chen
ShanghaiTech University

chenpeng@shanghaitech.edu.cn

Hao Chen
University of California, Davis

chen@ucdavis.edu

Abstract—Fuzzing is a popular technique for finding software
bugs. However, the performance of the state-of-the-art fuzzers
leaves a lot to be desired. Fuzzers based on symbolic execution
produce quality inputs but run slow, while fuzzers based on
random mutation run fast but have difficulty producing quality
inputs. We propose Angora, a new mutation-based fuzzer that
outperforms the state-of-the-art fuzzers by a wide margin.
The main goal of Angora is to increase branch coverage
by solving path constraints without symbolic execution. To
solve path constraints efficiently, we introduce several key
techniques: scalable byte-level taint tracking, context-sensitive
branch count, search based on gradient descent, and input
length exploration. On the LAVA-M data set, Angora found
almost all the injected bugs, found more bugs than any other
fuzzer that we compared with, and found eight times as many
bugs as the second-best fuzzer in the program who. Angora
also found 103 bugs that the LAVA authors injected but could
not trigger. We also tested Angora on eight popular, mature
open source programs. Angora found 6, 52, 29, 40 and 48
new bugs in file, jhead, nm, objdump and size, respectively. We
measured the coverage of Angora and evaluated how its key
techniques contribute to its impressive performance.

1. Introduction

Fuzzing is a popular technique for finding software bugs.
Coverage-based fuzzers face the key challenge of how to
create inputs to explore program states. Some fuzzers use
symbolic execution to solve path constraints [5, 8], but
symbolic execution is slow and cannot solve many types
of constraints efficiently [6]. To avoid these problems, AFL
uses no symbolic execution or any heavy weight program
analysis [1]. It instruments the program to observe which
inputs explore new program branches, and keeps these in-
puts as seeds for further mutation. AFL incurs low overhead
on program execution, but most of the inputs that it creates
are ineffective (i.e., they fail to explore new program states)
because it blindly mutates the input without taking advan-
tage of the data flow in the program. Several fuzzers added
heuristics to AFL to solve simple predicates, such as “magic
bytes” [25, 19], but they cannot solve other path constraints.

TABLE 1: Bugs found on the LAVA-M data set by different
fuzzers. Note that Angora found more bugs than listed by
LAVA authors.

Program Listed Bugs found by each fuzzer

bugs Angora AFL FUZZER SES VUzzer Steelix

uniq 28 29 9 7 0 27 7
base64 44 48 0 7 9 17 43
md5sum 57 57 0 2 0 Fail 28
who 2136 1541 1 0 18 50 194

We designed and implemented a fuzzer, called Angora1,
that explores the states of a program by solving path con-
straints without using symbolic execution. Angora tracks the
unexplored branches and tries to solve the path constraints
on these branches. We introduced the following techniques
to solve path constraints efficiently.

• Context-sensitive branch coverage. AFL uses context-
insensitive branch coverage to approximate program
states. Our experience shows that adding context to
branch coverage allows Angora to explore program
states more pervasively (Section 3.2).

• Scalable byte-level taint tracking. Most path constraints
depend on only a few bytes in the input. By track-
ing which input bytes flow into each path constraint,
Angora mutates only these bytes instead of the entire
input, therefore reducing the space of exploration sub-
stantially (Section 3.3).

• Search based on gradient descent. When mutating the
input to satisfy a path constraint, Angora avoids sym-
bolic execution, which is expensive and cannot solve
many types of constraints. Instead, Angora uses the
gradient descent algorithm popular in machine learning
to solve path constraints (Section 3.4).

• Type and shape inference. Many bytes in the input
are used collectively as a single value in the program,
e.g., a group of four bytes in the input used as a 32-
bit signed integer in the program. To allow gradient
descent to search efficiently, Angora locates the above
group and infers its type (Section 3.5).

1. The Angora rabbit has longer, denser hair than American Fuzzy Lop.
We name our fuzzer Angora to signify that it has better program coverage
than AFL while crediting AFL for its inspiration.
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• Input length exploration. A programs may explore cer-
tain states only when the length of the input exceeds
some threshold, but neither symbolic execution nor
gradient descent can tell the fuzzer when to increase the
length of the input. Angora detects when the length of
the input may affect a path constraint and then increases
the input length adequately (Section 3.6).

Angora outperformed state-of-the-art fuzzers substan-
tially. Table 1 compares the bugs found by Angora with
other fuzzers on the LAVA-M data set [9]. Angora found
more bugs in each program in the data set. Particularly,
in who Angora found 1541 bugs, which is eight times as
many bugs as found by the second-best fuzzer, Steelix.
Moreover, Angora found 103 bugs that the LAVA authors
injected but could not trigger. We also tested Angora on
eight popular, mature open source programs. Angora found
6, 52, 29, 40 and 48 new bugs in file, jhead, nm, objdump
and size, respectively (Table 5). We measured the coverage
of Angora and evaluated how its key techniques contribute
to its impressive performance.

2. Background: American Fuzzy Lop (AFL)

Fuzzing is an automated testing technique to find
bugs. American Fuzzy Lop (AFL) [1] is a state-of-the-
art mutation-based graybox fuzzer. AFL employs light-
weight compile-time instrumentation and genetic algorithms
to automatically discover test cases that likely trigger new
internal states in the targeted program. As a coverage-based
fuzzer, AFL generates inputs to traverse different paths in
the program to trigger bugs.

2.1. Branch coverage

AFL measures a path by a set of branches. During each
run, AFL counts how many times each branch executes.
It represents a branch as a tuple (lprev, lcur), where lprev
and lcur are the IDs of the basic blocks before and after
the conditional statement, respectively. AFL gets the branch
coverage information by using lightweight instrumentation.
The instrumentation is injected at each branch point at
compile time. For each run, AFL allocates a path trace table
to count how many times each branch of every conditional
statement executes. The index to the table is the hash of a
branch, h(lprev, lcur), where h is a hash function.

AFL also keeps a global branch coverage table across
different runs. Each entry contains an 8-bit vector that
records how many times the branch executes in different
runs. Each bit in this vector b represents a range: b0, . . . , b7
represent the ranges [1], [2], [3], [4, 7], [8, 15], [16, 31],
[32, 127], [128,∞), respectively. For example, if b3 is set,
then it indicates that there exists a run where this branch
executed between 4 and 7 times, inclusively.

AFL compares the path trace table and branch coverage
table to determine, heuristically, whether a new input trig-
gers a new internal state of the program. An input triggers
a new internal state if either of the following happens:

• The program executes a new branch, i.e., the path
trace table has an entry for this branch but the branch
coverage table has no entry for this branch.

• There exists a branch where the number of times, n,
this branch executed in the current run is different from
any previous runs. AFL determines this approximately
by examining whether the bit representing the range of
n was set in the corresponding bit vector in the branch
coverage table.

2.2. Mutation strategies

AFL applies the following mutations on the input ran-
domly [3].

• Bit or byte flips.
• Attempts to set “interesting” bytes, words, or dwords.
• Addition or subtraction of small integers to bytes,

words, or dwords.
• Completely random single-byte sets.
• Block deletion, block duplication via overwrite or in-

sertion, or block memset.
• Splice two distinct input files at a random location.

3. Design

3.1. Overview

AFL and other similar fuzzers use branch coverage as
the metric. However, they fail to consider the call context
when calculating branch coverage. Our experience shows
that without context, branch coverage would fail to explore
program states adequately. Therefore, we propose context-
sensitive branch coverage as the metric of coverage (Sec-
tion 3.2).

Algorithm 1 shows Angora’s two stages: instrumentation
and the fuzzing loop. During each iteration of the fuzzing
loop, Angora selects an unexplored branch and searches
for an input that explores this branch. We introduce the
following key techniques to find the input efficiently.

• For most conditional statements, its predicate is influ-
enced by only a few bytes in the input, so it would
be unproductive to mutate the entire input. Therefore,
when exploring a branch, Angora determines which
input bytes flow into the corresponding predicate and
focuses on mutating these bytes only (Section 3.3).

• After determining which input bytes to mutate, Angora
needs to decide how to mutate them. Using random
or heuristics-based mutations is unlikely to find sat-
isfactory values efficiently. Instead, we view the path
constraint on a branch as a constraint on a blackbox
function over the input, and we adapt the gradient de-
scent algorithm for solving the constraint (Section 3.4).

• During gradient descent, we evaluate the blackbox
function over its arguments, where some arguments
consist of multiple bytes. For example, when four
consecutive bytes in the input that are always used
together as an integer flow into a conditional statement,



Algorithm 1 Angora’s fuzzing loop. Each while loop has a
budget (maximum allowed number of iterations)

1: function FUZZ(program, seeds)
2: Instrument program in two versions: programnt

(no taint tracking) and programt (with taint tracking).
3: branches← empty hash table ▷ Key: an

unexplored branch b. Value: the input that explored b’s
sibling branch.

4: for all input ∈ seeds do
5: path← Run programt(input)
6: for all unexplored branch b on path do
7: branches[b]← input
8: end for
9: end for

10: while branches ̸= ∅ do
11: Select b from branches
12: while b is still unexplored do
13: Mutate branches[b] to get a new input

input′ (Algorithm 5)
14: Run programnt(input

′)
15: if input′ explored new branches then
16: path′ ← Run programt(input

′)
17: for all unexplored branch b′ on path′ do
18: branches[b′]← input′

19: end for
20: end if
21: if b was explored then
22: branches← branches− {b}
23: end if
24: end while
25: end while
26: end function

we ought to consider these four bytes as a single
argument to the function instead of as four independent
arguments. To achieve this goal, we need to infer which
bytes in the input are used collectively as a single value
and what the type of the value is (Section 3.5).

• It would be inadequate to only mutate bytes in the
input. Some bugs are triggered only after the input is
longer than a threshold, but this creates a dilemma on
deciding the length of the input. If the input is too
short, it may not trigger certain bugs. But if the input
is too long, the program may run too slow. Most fuzzers
change the length of inputs using ad hoc approaches.
By contrast, Angora instruments the program with code
that detects when a longer input may explore new
branches and that determines the minimum required
length (Section 3.6).

Figure 1 shows a diagram of the steps in fuzzing a con-
ditional statement. The program in Figure 2 demonstrates
these steps in action.

• Byte-level taint tracking: When fuzzing the conditional
statement on Line 2, using byte-level taint tracking,
Angora determines that bytes 1024–1031 flow into this
expression, so it mutates these bytes only.

• Search algorithm based on gradient descent: Angora
needs to find inputs that run both branches of the
conditional statement on Line 2, respectively. Angora
treats the expression in the conditional statement as
a function f(x) over the input x, and uses gradient
descent to find two inputs x and x′ such that f(x) > 0
and f(x′) ≤ 0.

• Shape and type inference: f(x) is a function over the
vector x. During gradient descent, Angora computes
the partial derivative of f over each component of x
separately, so it must determine each component and
its type. On Line 2, Angora determines that x consists
of two components each consisting of four bytes in the
input and having the type 32-bit signed integer.

• Input length exploration: main will not call foo unless
the input has at least 1032 bytes. Instead of blindly
trying longer inputs, we instrument common functions
that read from input and determine if longer input
would explore new states. For example, if the initial
input is shorter than 1024 bytes, then the conditional
statement on Line 12 will execute the true branch.
Since the return value of fread is compared with
1024, Angora knows that only inputs at least 1024
bytes long will explore the false branch. Similarly, the
instrumentation on Lines 16 and 19 instructs Angora
to extend the input to at least 1032 bytes to execute the
function foo.

3.2. Context-sensitive branch count

Section 2 describes AFL’s branch coverage table. Its
design has several advantages. First, it is space efficient. The
number of branches is linear in the size of the program.
Second, using ranges to count branch execution provides
good heuristics on whether a different execution count indi-
cates new internal state of the program. When the execution
count is small (e.g., less than four), any change in the count
is significant. However, when the execution count is large
(e.g., greater than 32), a change has to be large enough to
be considered significant.

But this design has a limitation. Because AFL’s branches
are context-insensitive, they fail to distinguish the executions
of the same branch in different contexts, which may over-
look new internal states of the program. Figure 3 illustrates
this problem. Consider the coverage of the branch on Line 3.
During the first run, the program takes the input “10”. When
it calls f() on Line 19, it executes the true branch on
Line 4. Later, when it calls f() on Line 21, it executes
the false branch on Line 10. Since AFL’s definition of
branch is context-insensitive, it thinks that both branches
have executed. Later, when the program takes a new input
“01”, AFL thinks that this input triggers no new internal
state, since both the branches on Line 4 and 10 executed
in the previous run. But in fact this new input triggers a
new internal state, as it will cause crash on Line 6 when
input[2]==1.

We incorporate context into the definition of branches.
We define a branch as a tuple (lprev, lcur, context), where



Figure 1: Steps in fuzzing a conditional statment.

1 void foo(int i, int j) {
2 if (i * i - j * 2 > 0) {
3 // some code
4 } else {
5 // some code
6 }
7 }
8
9 int main() {
10 char buf[1024];
11 int i = 0, j = 0;
12 if(fread(buf, sizeof(char), 1024, fp)
13 < 1024) {
14 return(1);
15 }
16 if(fread(&i, sizeof(int), 1, fp) < 1){
17 return(1);
18 }
19 if(fread(&j, sizeof(int), 1, fp) < 1){
20 return(1);
21 }
22 foo(i, j);
23 }

Figure 2: Example program showing core techniques

lprev and lcur are the IDs of the basic blocks before and after
the conditional statement, respectively, context is h(stack)
where h is a hash function, and stack contains the state
of the call stack. For example, let the program in Fig-
ure 3 first run on the input 10. After it enters f() from
Line 19, it will execute the branch (l3, l4, [l19]). Then, after
it enters f() from Line 21, it will execute the branch
(l3, l10, [l21]). By contrast, when the program executes on
the input “01”, it will execute the branches (l3, l10, [l19])
followed by (l3, l4, [l21]). By incorporating calling context
into the definition of branch, Angora can detect that the
second run triggers a new internal state, which will lead to
the crash site on Line 6 when mutating input[2].

Adding context to branches increases the number of
unique branches, which could be dramatic when deep re-
cursion occurs. Our current implementation mitigates this

1 void f(bool x) {
2 static bool trigger = false;
3 if (x) {
4 if (trigger) {
5 if (input[2]) {
6 // crash;
7 }
8 }
9 } else {
10 if (!trigger) {
11 trigger = true;
12 }
13 }
14 }
15
16 bool[] input;
17
18 int main() {
19 f(input[0]);
20 ...
21 f(input[1]);
22 }

Figure 3: Example where context-insensitive branch count
fails to detect new behavior

problem by selecting a particular function h for computing
the hash of the call stack where h computes the xor of
the IDs of all the call sites on the stack. When Angora
instruments the program, it assigns a random ID to each call
site. Therefore, when a function f recursively calls itself,
no matter how many times Angora pushes the ID of the
same call site to the call stack, h(stack) outputs at most
two unique values, which at most doubles the number of
unique branches in the function f. Our evaluation on real
world programs shows that after incorporating context, the
number of unique branches increases by as many as 7.21
times (Table 7) in exchange for the benefit of improved
code coverage (Figure 7).



3.3. Byte-level taint tracking

The objective of Angora is to create inputs to execute
unexplored branches. When it tries to execute an unexplored
branch, it must know which byte offsets in the input affect
the predicate of the branch. Therefore, Angora requires byte-
level taint tracking. However, taint tracking is expensive,
especially when tracking each byte individually, so AFL
avoids it. Our key insight is that taint tracking is unnecessary
on most runs of the program. Once we run taint tracking on
an input (Step 1 in Figure 1), we can record which byte
offsets flow into each conditional statement. Then, when
we mutate these bytes, we can run the program without
taint tracking. This amortizes the cost of taint tracking on
one input over its many mutations, which allows Angora
to have a similar throughput of input execution as AFL
(Section 5.6).

Angora associates each variable x in the program with a
taint label tx, which represents the byte offsets in the input
that may flow into x. The data structure of taint labels has a
big impact on its memory footprint. A naive implementation
would be to represent each taint label as a bit vector, where
each bit i represents the ith byte in the input. However,
since the size of this bit vector grows linearly in the size of
the input, this data structure would be prohibitive for large
input, but large input is necessary for finding bugs in certain
programs.

To reduce the size of the taint labels, we could store the
bit vectors in a table, and use the indices to the table as taint
labels. As long as the logarithm of the number of entries in
the table is much less than the length of the longest bit
vectors, which is often the case, we can greatly reduce the
size of the taint labels.

However, this data structure raises a new challenge. The
taint labels must support the following operations:

• INSERT(b): inserts a bit vector b and returns its label.
• FIND(t): returns the bit vector of the taint label t.
• UNION(tx, ty): returns the taint label representing the

union of the bit vectors of the taint labels tx and ty.
FIND is cheap, but UNION is expensive. UNION takes

the following steps. First, it finds the bit vectors of the two
labels and computes their union u. This step is cheap. Next,
it searches the table to determine if u already exists. If not, it
adds u. But how to search efficiently? A linear search would
be expensive. Alternatively, we could build a hash set of the
bit vectors, but if there are a lot of them and each bit vector
is long, it would take much time to compute the hash code
and much space to store the hash set. Since UNION is a
common operation when we track tainted data in arithmetic
expressions, it must be efficient. Note that we cannot use
the UNION-FIND data structure because the vectors are not
disjoint, i.e., two different bit vectors may have 1 at the
same position.

We propose a new data structure for storing the bit
vectors that allows efficient INSERT, FIND and UNION. For
each bit vector, the data structure assigns it a unique label
using an unsigned integer. When the program inserts a new

bit vector, the data structure assigns it the next available
unsigned integer.

The data structure contains two components.
• A binary tree maps bit vectors to their labels. Each

bit vector b is represented by a unique tree node vb
at level |b|, where |b| is the length of b. vb stores the
label of b. To reach vb from the root, examine b0, b1, . . .
sequentially. If bi is 0, go to the left child; otherwise, go
to the right child. Each node contains a back pointer to
its parent to allow us to retrieve the bit vector starting
from vb.

• A look up table maps labels to their bit vectors. A label
is an index to this table, and the corresponding entry
points to the tree node representing the bit vector of
this label.

In this data structure, all leaves in the tree represent
bit vectors, and no internal node represents bit vectors.
However, many nodes in the tree may be unnecessary. For
example, if a vector x00∗ is in the tree but no vector
x0[01] ∗ 1[01]∗ is in the tree, where x is any sequence of
bits, then it would be unnecessary to store any node after
the node representing x, because x has only one decedent
that is a leaf, and this leaf represents x00∗. Here we use the
common notation for regular expressions where x∗ means
that x is repeated zero or more times, and [xy] means either
x or y. This observation allows us to trim a vector when
inserting it into a tree as follows:

1) Remove all the trailing 0s of the vector.
2) Follow the bits in the vector, from the first to the last

bit, to traverse the tree.
• If a bit is 0, follow the left child
• Otherwise, follow the right child.
If a child is missing, create it.

3) Store the label of the vector in the last node we visited.
Algorithm 2 describes this insert operations in detail.

Algorithm 3 and Algorithm 4 describe the FIND and UNION
operations, respectively. Note that when we create a node,
initially it contains no label. Later, if this node is the last
node visited when we insert a bit vector, we store the label
of the bit vector in this node. With this optimization, this
tree has the following properties:

• Each leaf node contains a label.
• An internal node may contain a label. We may store a

label in an internal node that has no label yet, but we
never replace the label in any internal node.

This data structure greatly reduces the memory footprint
for storing the bit vectors. Let the length of each bit vector
be n, and let there be l bit vectors. If we naively store all
the bit vectors in a look up table, it would take O(nl) space.
However, in our data structure, the number of nodes in the
tree is O(l). Each node may store at most one index to the
look up table. Since the look up table has l entries and each
entry is a pointer and so has a fixed size, the size of the
look up table is O(l), and each index to the look up table
has O(log l) bits. Therefore, the total space requirement is
O(l · log l).



Algorithm 2 Insert a bit vector into the tree
1: function INSERT(root, vector, nodes) ▷

root: root of the tree. vector: the vector to be inserted.
nodes: an array indexed by labels containing pointers
to tree nodes. return: the label representing vector.

2: Trims all the trailing 0s in vector
3: if vector is empty then
4: if root contains no label then
5: root.label← nodes.length() ▷ Assigns the

next available integer as the label for this vector.
6: nodes.push(root)
7: end if
8: return root.label
9: end if

10: if vector[0] == 0 then
11: node← root.left
12: else
13: node← root.right
14: end if
15: if node does not exist then
16: Creates node
17: if |vector| == 1 then
18: node.label = nodes.length() ▷ Assigns the

next available integer as the label for this vector.
19: nodes.push(node)
20: end if
21: end if
22: if |vector| == 1 then
23: return node.label
24: else
25: return INSERT(node, vector[1..], nodes) ▷

vector[1..] is vector after first element removed.
26: end if
27: end function

Algorithm 3 Find a bit vector by its label
1: function FIND(label, nodes) ▷ label: an

integer representing a tree node, which represents a bit
vector. nodes: an array indexed by labels and containing
pointers to tree nodes. return: the bit vector represented
by label.

2: vector ← empty vector
3: node← nodes[label]
4: parent← node.parent
5: while parent exists do
6: if node is the left child of parent then
7: vector.insert at beginning(0)
8: else
9: vector.insert at beginning(1)

10: end if
11: node← parent
12: parent← node.parent
13: end while
14: return vector
15: end function

Algorithm 4 Union two bit vectors
1: function UNION(label1, label2, nodes, root) ▷

label1, label2: labels of two bit vectors. nodes: a table
containing pointers to tree nodes. root: root of the
tree. Return: the label representing the union of the bit
vectors.

2: v1 ← FIND(label1, nodes)
3: v2 ← FIND(label2, nodes)
4: v ← v1 ∪ v2
5: return INSERT(root, v, nodes)
6: end function

TABLE 2: Transforming comparisons into constraints. a and
b represent arbitrary expressions.

Comparison f Constraint

a < b f = a− b f < 0
a <= b f = a− b f <= 0
a > b f = b− a f < 0
a >= b f = b− a f <= 0
a == b f = abs(a− b) f == 0
a! = b f = −abs(a− b) f < 0

3.4. Search algorithm based on gradient descent

Byte-level taint tracking discovers which byte offsets
in the input flow into a conditional statement. But how
to mutate the input to run the unexplored branch of the
statement? Most fuzzers mutate the input randomly or using
crude heuristics, but those strategies are unlikely to find
an appropriate input value quickly. By contrast, we view
this as a search problem and take advantage of search
algorithms in machine learning. We used gradient descent in
our implementation, but other search algorithms might also
work.

In this approach, we view the predicate for executing a
branch as a constraint on a blackbox function f(x), where
x is a vector of the values in the input that flow into the
predicate, and f() captures the computation on the path from
the start of the program to this predicate. There are three
types of constraints on f(x):

1) f(x) < 0.
2) f(x) <= 0.
3) f(x) == 0.

Table 2 shows that we can transform all forms of
comparison into the above three types of constraints.
If the predicate of a conditional statement contains
logical operators && or ||, Angora splits the state-
ment into multiple conditional statements. For exam-
ple, it splits if (a && b) { s } else { t } into
if (a) { if (b) {s} else {t} } else {t}.

Algorithm 5 shows the search algorithm. Starting from
an initial x0, find x such that f(x) satisfies the constraint.
Note that to satisfy each type of constraint, we need to min-
imize f(x), and we use gradient descent for this purpose.

Gradient descent finds a minimum of a function f(x).
The method is iterative. Each iteration starts from an x,



computes ∇xf(x) (the gradient of f(x) at x), and updates
x as x− ϵ∇xf(x) where ϵ is the learning rate.

When training neural networks, researchers use gradient
descent to find a set of weights that minimize the training
error. However, gradient descent has the problem that it
sometimes may be stuck in a local minimum that is not
a global minimum. Fortunately, this is often not a problem
in fuzzing, because we only need to find an input x that is
good enough instead of a globally optimal x. For example,
if the constraint is f(x) < 0, then we just need to find an x
where f(x) < 0 instead of where f(x) is a global minimum.

However, we face unique challenges when applying gra-
dient descent to fuzzing. Gradient descent requires comput-
ing the gradient ∇xf(x). In neural networks, we can write
∇xf(x) in an analytic form. However, in fuzzing, we have
no analytic form of f(x). Second, in neural networks, f(x)
is a continuous function because x contains the weights
of the network, but in fuzzing f(x) is usually a discrete
function. This is because most variables in a typical program
are discrete, so most elements in x are discrete.

We solve these problems using numerical approxima-
tion. The gradient of f(x) is the unique vector field whose
dot product with any unit vector v at each point x is the
directional derivative of f along v. We approximate each
directional derivative by ∂f(x)

∂xi
= f(x+δvi)−f(x)

δ where δ is
a small positive value (e.g., 1) and vi is the unit vector in
the ith dimension. To compute each directional derivative,
we need to run the program twice, once with the original
input x and once with the perturbed input x + δvi. It is
possible that in the second run, the program fails to reach
the program point where f(x + δvi) is calculated because
the program took a different branch at an earlier conditional
statement. When this happens, we set δ to a small negative
value (e.g., -1) and try to compute f(x + δvi) again. If
this succeeds, we compute the directional derivative based
on it. Otherwise, we set the derivative to zero, instructing
gradient descent not to move x in this direction. The time
for computing the gradient is proportional to the length
of the vector x since Angora computes each directional
derivative separately. Section 3.5 will describe how to reduce
the length of x by merging continuous bytes that are used
as a single value in the program.

In theory gradient descent can solve any constraint. In
practice, how fast gradient descent can solve a constraint
depends on the complexity of the mathematical function.

• If f(x) is monotonic or convex, then gradient descent
can find a solution quickly even if f(x) has a complex
analytic form. For example, consider the constraint
f(x) < 0 where f(x) approximates log(x) using
some polynomial series. This constraint would be very
difficult for symbolic execution to solve because of the
complex analytic form. However, it is easy for gradient
descent to solve because f(x) is monotonic.

• If the local minimum that gradient descent finds satis-
fies the constraint, finding the solution is also quick.

• If the local minimum does not satisfy the constraint,
Angora has to randomly walk to another value x′ and

start to perform gradient descent from there hoping to
find another local minimum that satisfies the constraint.

Note that Angora does not produce an analytic form of f(x)
but rather runs the program to compute f(x).

Algorithm 5 Using gradient descent to solve path con-
straints

1: function FUZZCONDITIONALSTMT(stmt, input) ▷
stmt: The conditional statement to fuzz. input: The
input to the program

2: repeat
3: grad←CALCULATEGRADIENT(stmt, input)
4: if grad == 0 then
5: input← RESAMPLE(input)
6: Continue to the next iteration
7: end if
8: input, value← DESCEND(stmt, input, grad)
9: until SATISFYCONSTRAINT(stmt, value) or time-

out
10: end function

3.5. Shape and type inference

Naively, we could let each element in x be a byte in
the input that flows into the predicate. However, this would
cause problems in gradient descent because of type mis-
match. For example, let the program treat four consecutive
bytes b3b2b1b0 in the input as an integer, and let xi represent
this integer value. When computing f(x+ δvi), we should
add δ to this integer. But if we naively assign each byte b3,
b2, b1, b0 to a different element in x, then we would compute
f(x+ δvi) on each of these bytes, but this is inappropriate.
The program combines these bytes as a single value and
uses only the combined value in expressions, so when we
add a small δ to any byte other than the least significant
byte, we would change this combined value significantly,
which would cause the calculated partial derivative to be a
poor approximation of the true value.

To avoid this problem, we must determine (1) which
bytes in the input are always used together as a single value
in the program, and (2) what is the type of the value. We
call the first problem shape inference, the second problem
type inference, and solve them during dynamic taint analysis.
For shape inference, initially all the bytes in the input
are independent. During taint analysis, when an instruction
reads a sequence of input bytes into a variable where the size
of the sequence matches the size of a primitive type (e.g., 1,
2, 4, 8 bytes), Angora tags these bytes as belonging to the
same value. When conflicts arise, Angora uses the smallest
size. For type inference, Angora relies on the semantics of
the instruction that operates on the value. For example, if an
instruction operates on a signed integer, then Angora infers
the corresponding operand to be a signed integer. When
the same value is used both as signed and unsigned types,
Angora treats it as the unsigned type. Note that when Angora
fails to infer the precise size and type of a value, this does



not prevent gradient descent from finding a solution — the
search just takes longer.

Algorithm 6 Infer which bytes in the input are used collec-
tively as single values in the program

1: procedure INFERTYPES
2: type table← Array(0, INPUT SIZE) ▷

An array whose size is the same as the input, and all
elements are 0 initially.

3: for all inst ∈ memory read instructions do
4: address, size← GETMEMREADINFO(inst)
5: if ISVAILDTYPE(size) then
6: if ISCONSECUTIVEBYTES(address, size)

then
7: offset← GETINPUTOFFSET(address)
8: if type table[offset] == 0 or
9: type table[offset] > size then

10: type table[offset]← size
11: end if
12: end if
13: end if
14: end for
15: end procedure

3.6. Input length exploration

Angora, like most other fuzzers, starts fuzzing with
inputs as small as possible. However, some branches are
executed only when the input is longer than a threshold.
This creates a dilemma for the fuzzer. If the fuzzer uses
too short inputs, it cannot explore those branches. But if it
uses too long inputs, the program may run slow or even out
of memory. Most tools try inputs of different lengths using
ad hoc approaches. By contrast, Angora increases the input
length only when doing so might explore new branches.

During taint tracking, Angora associates the destination
memory in the read-like function calls with the corre-
sponding byte offsets in the input. It also marks return
value from the read calls with a special label. If the return
value is used in a conditional statement and the constraint
is not satisfied, Angora increases the input length so that
the read call can get all the bytes that it requests. For
example, in Figure 2, if the conditional statement is false
on Line 12, Angora extends the input length so that fread
can read all the 1024 bytes that it requests. Our criteria are
not exhaustive because programs could consume the input
and check its length in ways that we have not anticipated,
but it would be easy to add those criteria to Angora once
we discover them.

4. Implementation

4.1. Instrumentation

For each program to be fuzzed, Angora produces cor-
responding executables by instrumenting the program with
LLVM Pass [18]. The instrumentation

• collects basic information of conditional statements,
and links a conditional statement to its corresponding
input byte offsets with taint analysis. On each input,
Angora runs this step only once (not while mutating
this input).

• records execution traces to identify new inputs.
• supports context at runtime (Section 3.2).
• gathers expression values in predicates (Section 3.4).
To support scalable byte-level taint tracking described

in Section 3.3, we implemented taint tracking for Angora
by extending DataFlowSanitizer (DFSan) [21]. We imple-
mented caching facility for operations FIND and UNION,
which speeds up taint tracking significantly .

Angora depends on LLVM 4.0.0 (including DFSan). Its
LLVM pass has 820 lines of C++ code excluding DFSan,
and the runtime has 1950 lines of C++ code, including
the data structure for storing taint labels and the hooks for
tainting the input and tracking conditional statements.

In addition to the if statement, which has two branches,
LLVM IR also supports the switch statement, which may
introduce multiple branches. In our implementation, Angora
translates each switch statement to a sequence of if
statements for convenience.

Angora recognizes libc functions for comparing strings
and arrays when they appear in conditional statements.
For example, Angora transforms “strcmp(x, y)” into
“x strcmp y”, where strcmp is a special comparison
operator understood by Angora.

4.2. Fuzzer

We implemented Angora in 4488 lines of Rust code.
We optimized Angora with techniques such as fork
server [30] and CPU binding.

5. Evaluation

We evaluated Angora in three steps. First, we com-
pared the performance of Angora with other state-of-the-
art fuzzers. Then, we measured the test coverage of Angora
and its ability to find unknown bugs in real world programs.
Finally, we evaluated its key novel features.

We ran all our experiments on a server with an Intel
Xeon E5-2630 v3 and 256 GB memory running 64-bit
Ubuntu 16.04 LTS. Even though Angora can fuzz a program
on multiple cores simultaneously, we configured it to fuzz
the program on only one core during evaluation to compare
its performance with other fuzzers. We ran each experiment
five times and report the average performance.

5.1. Compare Angora with other fuzzers

The ultimate metric for comparing fuzzers is their ability
to find bugs. A good test set should contain real programs
with realistic bugs. LAVA is a technique for producing
ground-truth corpora by injecting a large number of realistic
bugs into program source code [9]. The authors created a



corpus LAVA-M by injecting multiple bugs into each pro-
gram. LAVA-M consists of four GNU coreutils programs:
uniq, base64, md5sum, and who. Each injected bug has an
unique ID, which is printed when the bug is triggered.

We compared Angora with the following state-of-the-art
fuzzers:

• FUZZER (a coverage-based fuzzer) and SES (symbolic
execution and SAT solving). The LAVA authors ran
both of them for five hours [9].

• VUzzer: a fuzzer using the “magic bytes” strategy [25].
Its authors reported the number of bugs found in the
programs in LAVA-M, but not the running time.

• Steelix: a fuzzer outperforming VUzzer on LAVA-
M [19]. The authors reported the number of bugs found
in the programs in LAVA-M by running the fuzzer for
five hours.

• AFL 2.51b: the latest version of AFL as of this writing.
We ran AFL for five hours, where we provided AFL
with one CPU core for fuzzing each program. 2

• Angora: We used the same set up (one CPU core per
program) as AFL.

Table 1 compares the bugs found by all the fuzzers.
AFL performed the worst, finding a total of 10 bugs in all
the programs. VUzzer’s authors could not run it on md5sum
because the LAVA authors incorrectly modified md5sum to
cause it to crash on all the inputs. We confirmed this problem
with the LAVA authors and fixed it. Steelix is the second
best fuzzer, finding almost all the bugs in base64, but only 7
out of 28 injected bugs in uniq, 28 out of 57 injected bugs in
md5sum, and 194 out of 2136 injected bugs in who. Angora
outperformed Steelix by a large margin, finding all the bugs
in uniq, base64, and md5sum, and 1443 out of 2136 injected
bugs in who.

LAVA assigns each injected bug a unique ID, which is
printed when the bug is triggered. The file validated bugs
lists all the injected bugs that the LAVA authors were able to
trigger when creating LAVA. Angora found not only all the
listed bugs in uniq, base64, md5sum and most listed bugs in
who, but also 103 unlisted bugs (bugs that the LAVA authors
injected but were unable to trigger). Table 3 shows the IDs
of these unlisted bugs. Table 4 shows the breakdown of the
listed and unlisted bugs found by Angora.

Figure 4 shows the cumulative number of bugs in who
found by Angora over time. We did not show the re-
sults by the other fuzzers because they found few bugs in
who. Figure 4 shows that initially Angora discovered bugs
quickly, finding 1000 bugs in less than five minutes. Then
the discovery rate slowed, but it still found more than 1500
bugs in merely 45 minutes, out of the total 2136 listed bugs.

We explain why Angora found a magnitude more bugs
than the next best fuzzer as follows. First, LAVA uses
“magic bytes” to guard branches that contain bugs, but
some magic bytes are not copied from the input directly
but rather are computed from the input. Since VUzzer and

2. An author of LAVA mentioned some compilation issues of running
AFL on LAVA in his blog post [11], and we fixed these issues in our
evaluation.

TABLE 3: IDs of bugs injected but unlisted by LAVA,
because the LAVA authors were unable to trigger them when
preparing the data set. Angora found these bugs.

Program IDs of bugs unlisted by LAVA-M but found by Angora

uniq 227
base64 274, 521, 526, 527
md5sum -
who 2, 4, 6, 8, 12, 16, 24, 55, 57, 59, 61, 63, 73, 77, 81, 85,

89, 125, 165, 169, 173, 177, 181, 185, 189, 193, 197,
210, 214, 218, 222, 226, 294, 298, 303, 307, 312, 316,
321, 325, 327, 334, 336, 338, 350, 359, 468, 472, 477,
481, 488, 514, 526, 535, 974, 975, 995, 1007, 1026,
1034, 1071, 1072, 1415, 1429, 1436, 1456, 1718, 1735,
1736, 1737, 1738, 1747, 1748, 1755, 1756, 1891, 1892,
1893, 1894, 1903, 1904, 1911, 1912, 1921, 1925, 1935,
1936, 1943, 1944, 1949, 1953, 2231, 3264, 3545, 3551,
3939, 4287, 4295

TABLE 4: Bugs found by Angora and the corresponding
running time on the LAVA-M data set. Listed bugs are in
LAVA’s validated bugs file. Unlisted bugs were not trig-
gered when LAVA’s authors prepared the data set.

Program Listed Found bugs Time (min)
bugs Listed Unlisted

uniq 28 28 1 10
base64 44 44 4 10
md5sum 57 57 0 10
who 2136 1443 98 45

Steelix’s “magic bytes” strategy can only copy magic bytes
to the input directly, that strategy cannot create inputs that
explore those branches. By contrast, Angora tracks the input
byte offsets that flow into a predicate, and then mutates
these offsets by gradient descent instead of assuming “magic
bytes” or any other special relation between the input and
the predicate, so Angora can find inputs that explore those
branches. Second, VUzzer tries the “magic bytes” strategy
blindly, and Steelix focuses on the “magic bytes” strategy
once one of the magic bytes matches a byte in the input
after a random mutation. By contrast, Angora schedules all
its computing power to solve path constraints on unexplored
branches, so it can cover more branches and therefore find
most of the injected bugs in LAVA-M quickly.

5.2. Evaluate Angora on unmodified real world
programs

Angora has impressive performance on LAVA, finding
not only most of the listed bugs but also many unlisted bugs.
However, its skeptic might contend that these bugs were
artificially injected. To address this concern, we evaluated
Angora on eight popular open source programs using their
latest versions. Since these mature, popular programs had
been extensively tested, we expected them to have few
residue crashing bugs. Therefore, besides measuring the
number of new bugs found, we also measured Angora’s
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Figure 4: Cumulative number of bugs in who found by
Angora over time

coverage on these programs. We used gcov, which records
all the lines and branches executed in a program on an
input [14]. We fed each input generated by Angora to the
program compiled with gcov to obtain the cumulative code
coverage, and afl-cov3allowed us to do this automatically.
We also ran AFL on these programs for comparison. Table 5
shows the results after running Angora and AFL with one
CPU core for five hours, respectively. We deduplicated the
crashes by AFL’s afl-cmin -C command.

Table 5 shows that Angora outperformed AFL on line
coverage, branch coverage, and found crashes on each pro-
gram. In file, jhead, nm, objdump, and size, AFL found
0, 19, 12, 4, 6 unique crashes while Angora found 6, 52,
29, 40 and 48 unique crashes, respectively. The contrast is
the most prominent on jhead, where Angora improved the
line coverage by 127.4%, and branch coverage by 144.0%.
Figure 5 compares the cumulative line and branch cover-
age by Angora and AFL over time. It shows that Angora
covers more lines and branches than AFL at all time. The
reason for Angora’s superior coverage is that it can explore
both branches of complicated conditional statements. For
example, Figure 6 shows such a statement in file, where
Angora successfully explored both branches but AFL could
not explore the true branch.

In the next sections, we will evaluate how each of An-
gora’s key features contributes to its superior performance.

5.3. Context-sensitive branch count

5.3.1. Performance. Section 3.2 introduced context-
sensitive branch count. We believe that distinguishing the
same branch in different function call contexts will find
more bugs. To evaluate this hypothesis, we ran Angora
on file with context-sensitive branch count and context-
insensitive branch count separately. Table 6 shows that
Angora found 6 bugs with context-sensitive branch count,
but no bug without it. Figure 7 shows that starting from 30
minutes into fuzzing, Angora consistently covered more cu-
mulative lines with context-sensitive branch count. We dis-

3. Angora is compatible with afl-cov

covered several real world examples where context-sensitive
branch count allowed Angora to explore more paths. For
example, Figure 8 shows a code snippet in the file readelf.c
in the program file. The function getu32 is called in
multiple contexts, and it returns different results based on
the swap argument. Without context-sensitive branch count,
Angora would not be able to explore both branches of the
conditional statement in all calling contexts.

5.3.2. Hash collision. Similar to AFL, Angora stores branch
counts in a hash table. When Angora incorporates calling
context when counting branch coverage, it will insert more
unique branches into the hash table, so we have to increase
the size of the hash table to keep the collision rate low.
We evaluated how many more unique branches context
sensitivity brings on the real-world programs described in
Section 5.2. The author of AFL observed that the number of
unique branches (without context) usually ranges between
2k and 10k, and a hash table with 216 buckets should
be enough for common cases [30]. Table 7 shows that
incorporating context sensitivity increases the number of
unique branches by a factor of at most 8, which requires
us to increase the size of the hash table by also a factor of
8 to have the same expected hash collision rate. By default
Angora allocates 220 buckets in its hash table, which is
16 times as large as the hash table in AFL and should be
adequate for most programs. Although growing the hash
table may be harmful when it no longer fits in the cache,
unlike AFL, which traverses the hash table both to find new
paths and to prioritize inputs that cover many basic blocks,
for each input Angora traverses the hash table only once
to find new paths. Therefore, Angora is less affected by
the growing size of the hash table, as demonstrated by the
execution speed in Section 5.6).

5.4. Search based on gradient descent

Section 3.4 described how to use gradient descent to
solve constraints in conditional statements. We compared
gradient descent with two other strategies: random mutation,
and VUzzer’s magic bytes plus random mutation. To exclude
other variables in the measurement, we ensure that the three
strategies receive the same inputs: we collected the inputs
generated by AFL in Section 5.2, and fed them to Angora
as the only inputs to fuzz. We ran Angora for two hours
using the above three strategies respectively.

Table 8 shows that gradient descent solved more con-
straints than the other two strategies on all the programs. As
explained in the last paragraph of Section 5.1, the “magic
bytes” strategy cannot solve constraints whose values are not
copied directly from the input. For example, the variable
descsz in Figure 6 is used in many constraints in the
program, but it is not copied from the input directly, so the
“magic bytes” strategy did not help.

5.5. Input length exploration

Section 3.6 describes that Angora increases the length of
the input on demand when it observes that a path constraint



TABLE 5: Comparison of Angora and AFL on real world programs

Program Argument Size Line coverage Branch coverage Unique crashes

(kB) AFL Angora Increase AFL Angora Increase AFL Angora

file-5.32 617 2070 2534 21.2 % 1462 1899 29.9 % 0 6
jhead-3.00 120 347 789 127.4 % 218 532 144.0 % 19 52
xmlwf(expat)-2.2.5 791 1980 2025 2.3 % 2905 3158 8.7 % 0 0
djpeg(ijg)-v9b 790 5401 5509 2.0 % 1677 1782 6.3 % 0 0
readpng(libpng)-1.6.34 972 1592 1799 13.0 % 872 1007 15.5 % 0 0
nm-2.29 -C 6252 6372 7721 21.2 % 4105 4693 14.3 % 12 29
objdump-2.29 -x 9063 3448 6216 80.3 % 2071 3393 63.8 % 4 40
size-2.29 6207 2839 4832 70.2 % 1792 2727 52.2 % 6 48
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Figure 5: Line and branch coverage on file by Angora and AFL in five hours

// readelf.c:620
if (namesz == 10 &&

strcmp((char*)&nbuf[noff], "DragonFly")==0
&& type == NT_DRAGONFLY_VERSION
&& descsz == 4) {
...

}

Figure 6: A complicated conditional statement in the file
readelf.c in the program file whose true branch Angora
explored successfully but AFL could not

TABLE 6: Comparison of non-context-sensitive branch
count vs. context-sensitive branch count on the program file

Metric Non-context-sensitive Context-sensitive

Line coverage 2416 2534
Branch coverage 1788 1899
Unique crashes 0 6

may depend on the length, while AFL and related fuzzers
increase the input length randomly. We compared these two
strategies based on two criteria:

• How many times does the strategy increase the input
length? Among the inputs created by this strategy, how
many are useful? An input is useful if it explores a new
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Figure 7: Comparison of non-context-sensitive vs. context-
sensitive branch count on line coverage on the program file
in five hours

branch either directly or after some mutation.
• What is the average length of those useful inputs?

We ran Angora with our proposed strategy and the
random strategy for five hours respectively. Table 9 shows
that Angora’s strategy increased the input length about two
orders of magnitude fewer times than the random strategy,
but it found more useful inputs in all cases except two:
on readpng it found three fewer useful inputs out of a



// readelf.c:96
uint32_t getu32(int swap, uint32_t value) {

...
if (swap) {
...
return retval.ui;

} else
return value;

}

Figure 8: An example showing that without context sensitive
branch count, Angora would not be able to explore both
branches of the conditional statement, because getu32 is
called from different contexts

TABLE 7: Impact of incorporating context sensitivity on
unique branches

Program Unique branches Ratio
Context insensitive Context sensitive

file 3578 13 554 3.79
jhead 1049 6914 6.59
xmlwf 5531 11 746 2.20
djpeg 3819 13 787 3.61
readpng 7130 27 577 3.87
nm 9029 65 131 7.21
objdump 8113 40 539 5.00
size 5964 40 148 6.73

total of 46, and on jhead neither strategy found any useful
input because jhead only parses the header of an image and
therefore is not affected by the length of the image data.
Table 9 also shows that while Angora’s strategy generated
more useful inputs, it generated shorter inputs on average on
each program tested. Shorter inputs make many programs
run faster. This evaluation shows that Angora’s strategy
generates higher quality inputs than the random strategy.

5.6. Execution speed

Angora’s taint tracking is expensive. However, Angora
runs taint tracking once for each input, and then mutates
the input and runs the program many times without taint
tracking, so the one-time cost is amortized. Since branch
count dominates the running time of the instrumented code
without taint tracking, the Angora-instrumented program
runs at about the same speed as its AFL-instrumented
version. Table 10 shows that AFL executes inputs at a
slightly higher rate than Angora. However, because Angora
generates higher-quality inputs that more likely explore new
branches, Angora had much better coverage and found
significantly more bugs as shown earlier.

TABLE 8: Percentage of solved constraints in conditional
statements using three strategies

Program Random Magic bytes Gradient descent+ random

file 63.5 % 76.0 % 87.1 %
jhead 86.9 % 87.1 % 97.6 %
xmlwf 77.4 % 81.4 % 97.0 %
djpeg 66.1 % 73.6 % 78.3 %
readpng 19.9 % 23.7 % 24.5 %
nm 57.5 % 66.4 % 80.2 %
objdump 47.0 % 54.9 % 56.3 %
size 44.1 % 52.4 % 54.3 %

TABLE 9: Comparison of Angora’s input length exploration
vs. other tools’ random strategy. The total columns report
how many times the strategies created a longer input, respec-
tively. The useful columns report how many of these inputs
successfully explored new branches, respectively. The two
rightmost columns report the average lengths of the inputs
in the useful columns, respectively.

Program
Longer inputs Average length

Random Angora Random Angora
Useful Total Useful Total

file 185 79k 251 3342 889.9 399.0
jhead 0 66k 0 26 0.0 0.0
xmlwf 277 143k 588 2196 190.3 128.9
djpeg 32 106k 474 3476 846.6 283.6
readpng 46 35k 43 152 2242.7 363.1
nm 17 170k 19 872 771.7 248.0
objdump 44 214k 60 1614 1271.6 496.0
size 27 197k 33 1482 1584.5 949.7

6. Related work

6.1. Prioritize seed inputs

An important optimization for mutation-based fuzzers is
to select the seed input wisely. Rebert et.al. [26] formulated
and reasoned about the seed selection scheduling problem.
They designed and evaluated six different seed selection
algorithms based on PeachFuzzer [23]. The algorithms used
different features to minimize the seed input set, such as
execution time and file size. The result showed that heuris-
tics employed by seed selection algorithms performed better
than fully random sampling. AFLFast [4] observed that
most fuzzing tests exercised the same few “high frequency”
paths. They used Markov chain to identify “low-frequency”
paths. AFLFast prioritized the inputs that contain such path.
VUzzer [25] used control-flow features to model a path
to prioritize the input whose path is hard-to-reach. Addi-
tionally, VUzzer detected error-handing basic-blocks, and
prioritized the valid inputs that do not contain these basic-
blocks. By contrast, Angora selects the inputs whose paths
contain conditional statements with unexplored branches.
This is a more general strategy, which automatically directs



TABLE 10: Inputs tested per second

Program AFL Angora

file 971.17 791.73
jhead 2684.45 2648.91
xmlwf 2225.07 2206.24
djpeg 1439.94 1185.52
readpng 3374.43 2881.72
nm 1633.72 1045.35
objdump 1882.05 1192.04
size 1671.95 1174.55

Angora to focus on the low-frequency paths after exploring
the high-frequency ones.

6.2. Taint-based fuzzing

Taint tracking has many uses, such as analyzing mal-
ware behavior [24], detecting and preventing information
leaks [10, 29], and debugging software [22, 12]. It can
also be used in fuzzing. Taint-based fuzzers analyze how an
application processes an input to determine which part of the
input should be modified. Some of these fuzzers [13, 2, 17]
aimed to locate the values used in security sensitive code in
input files, and then fuzzed these parts of input file to trigger
crashes. For example, BuzzFuzz [13] used taint tacking to
find which input bytes were processed by “attack point” that
they defined. Dowser [17] considered code that likely leads
to buffer overflow as security sensitive code. In other words,
these fuzzers aimed to exploit bugs in the reachable paths.
Woo et al. mentioned the trade off between exploration vs.
exploitation [32]. Angora can incorporate these techniques
to exploit the explored paths. Taintscope [31] used taint
analysis to infer checksum-handling code and bypassed
these checks by control flow alteration, because these checks
are hard to satisfy by mutating the input.

VUzzer [25] is an application-aware fuzzer that used
taint analysis to locate the position of “magic bytes” in
input files, and then assigned these magic bytes to fixed
positions in the input. VUzzer can find magic bytes only
when they appear continuously in the input. Steelix [19]
improved VUzzer by learning from program state where
the magic bytes are located in the input and how to mutate
the input to match the magic bytes efficiently. By contrast,
Angora applies byte-level taint tracking to get the byte
offsets in the input that flow into each conditional statement,
and then mutates these bytes to satisfy the condition for the
unexplored branch, so Angora can find many more types
of values efficiently than magic bytes, e.g., non-continuous
magic bytes or magic bytes that are not copied directly
from the input but are computed from the input. Besides,
VUzzer uses a compressed bit-set data structure to represent
taint labels where each bit corresponds to a unique byte
offset in the input. Therefore, the size of the taint label is
large for values with a complex pattern of input byte offsets
because they can not be effectively compressed. By contrast,
Angora stores the byte offsets in a tree and uses indices

into the tree as taint labels, so the size of the taint label
is constant regardless of how many input byte offsets are
in the label. For example, when the taint labels of several
values have the same byte offsets, VUzzer repeatedly stores
these byte offsets in each taint label, but Angora stores these
byte offsets only once in the tree, thus greatly reducing the
memory consumption.

Angora’s data structure for efficiently representing taint
labels is similar to reduced ordered binary decision diagrams
(roBDD). roBDD was used to represent dynamic slices [33]
and data lineage [20] compactly, but to the best of our
knowledge, Angora is the first to use this idea to represent
taint labels efficiently.

6.3. Symbolic-assisted fuzzing

Dynamic symbolic execution provides high semantic in-
sight into the target application. Since such techniques know
how to trigger desired program state, they can be used to
find vulnerabilities in programs directly. Classic approaches
performed symbolic execution to maximize code coverage to
find crashes [5, 8]. But the challenges of path explosion and
constraint solving make symbolic execution hard to scale [6,
27]. Some tools tried to mitigate this obstacle by combining
it with fuzzing [15, 16, 7, 28]. DART [15] and SAGE [16]
used a dynamic symbolic execution engine to modify input
in fuzzing. SYMFUZZ [7] leveraged symbolic analysis on
an execution trace to detect dependencies among the bit
positions in an input, and then used this dependency to com-
pute an optimal mutation ratio to guide fuzzing. Driller [28]
used dynamic symbolic execution only when fuzzing with
AFL got stuck. However, all of them inherited the scalability
problem from symbolic execution. By contrast, Angora does
not use symbolic execution, and can find many bugs on large
programs efficiently.

7. Conclusion

We designed and implemented Angora, a powerful
mutation-based fuzzer that produces high quality inputs,
thanks to the following key techniques: scalable byte-level
taint tracking, context-sensitive branch count, search algo-
rithm based on gradient descent, shape and type inference,
and input length exploration. Angora outperformed other
state-of-the-art fuzzers by a wide margin. It found signif-
icantly more bugs than other fuzzers on LAVA-M, found
103 bugs that the LAVA authors could not trigger when
they prepared the data set, and a total of 175 new bugs in
eight popular, mature open source programs. Our evaluation
shows that Angora raised the bar of fuzzing to a new level.
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