
StyleCAPTCHA: CAPTCHA Based on Stylized Images to Defend
against Deep Networks

Haitian Chen
University of California, Davis

htichen@ucdavis.edu

Bai Jiang
Bytedance AI Lab

bai.jiang@bytedance.com

Hao Chen
University of California, Davis

chen@ucdavis.edu

ABSTRACT
CAPTCHAs arewidely deployed for bot detection.ManyCAPTCHAs
are based on visual perception tasks such as text and objection clas-
sification. However, they are under serious threat from advanced vi-
sual perception technologies based on deep convolutional networks
(DCNs). We propose a novel CAPTCHA, called StyleCAPTCHA,
that asks a user to classify stylized human versus animal face im-
ages. StyleCAPTCHA creates each stylized image by combining
the content representations of a human or animal face image and
the style representations of a reference image. Both the original
face image and the style reference image are hidden from the user.
To defend against attacks using DCNs, the StyleCAPTCHA service
changes the style regularly. To adapt to the new styles, the attacker
has to repeatedly train or retrain her DCNs, but since the attacker
has insufficient training examples, she cannot train her DCNs well.
We also propose Classifier Cross-task Transferability to measure the
transferability of a classifier from its original task to another task.
This metric allows us to arrange the schedule of styles and to limit
the transferability of attackers’ DCNs across classification tasks
using different styles. Our evaluation shows that StyleCAPTCHA
defends against state-of-the-art face detectors and against general
DCN classifiers effectively.

CCS CONCEPTS
• Security and privacy → Graphical / visual passwords; Ac-
cess control.

KEYWORDS
CAPTCHA, neural style transfer, deep convolutional network, face
recognition

ACM Reference Format:
Haitian Chen, Bai Jiang, and Hao Chen. 2020. StyleCAPTCHA: CAPTCHA
Based on Stylized Images to Defend against Deep Networks. In Proceedings
of the 2020 ACM-IMS Foundations of Data Science Conference (FODS ’20),
October 19–20, 2020, Virtual Event, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3412815.3416895

1 INTRODUCTION
CAPTCHAs (Completely Automated Public Turing test to tell Com-
puters and Humans Apart) are computer programs to test whether

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FODS ’20, October 19–20, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8103-1/20/10.
https://doi.org/10.1145/3412815.3416895

an online user is a bot. They are widespread security measures
that protect online services against the abuse from automated pro-
grams. Typical CAPTCHAs are based on visual perception tasks,
such as text recognition [39, 40], object recognition [8], and image
classification [10].

However, the rapid evolution of artificial intelligence (AI) tech-
nologies made the traditional CAPTCHAs vulnerable, since well-
trained AI models are capable of accurately completing many visual
perception tasks. For instance, [4, 3] carried out a systemic study
of the existing text-based CAPTCHAs and presented an generic
algorithm for solving CAPTCHA by reinforcement learning. In two
Kaggle competitions [23, 22], various deep convolutional networks
(DCNs) [27, 12, 33, 16, 38] solved the dog versus cat image classifi-
cation task in the Asirra CAPTCHA [10] at a accuracy comparable
to humans. [35] developed a deep convolutional network to solve
the Google reCAPTCHA at an accuracy of 70.78% and the Facebook
image CAPTCHA at an accuracy of 83.5%.

It might be tempting to use an even harder visual perception
task as CAPTCHA, but this will last only until an AI solution to
this CAPTCHA is invented [39, 31]. Moreover, increasing the diffi-
culty of CAPTCHAs will probably worsen its the usability. Even
current CAPTCHAs involving moderately hard text or object recog-
nition tasks were criticized by users because they were hard to
recognize [41].

Instead, we wish to exploit intrinsic differences between humans
and DCNs on visual perception tasks. DCNs are not robust against
certain image perturbations that are invariant to human perception.
For instance, DCN classifiers may wrongly classify adversarially
perturbed images, although these perturbations are invariant to
human visual judgment [37, 14, 1]. Recently, DCNs were shwon
to misunderstood stylized images by a neural style transfer proce-
dure [7], while humans did not [11].

In addition, to achieve high accuracy on a visual perception
task, a DCN requires a vast set of annotated or labelled images
during training. In contrast, humans needs no training to com-
plete CAPTCHAs. Figure 1 illustrates a typical learning curve of
an AI model on a visual perception task. Although humans can
hardly compete with AIs in AIs’ well-trained (later) phase, humans
outperform AIs in AIs’ under-trained (early) phase.

We propose a novel CAPTCHA scheme called StyleCAPTCHA
to exploit the above-mentioned intrinsic weaknesses of current
DCNs. Specifically, our system uses neural style transfer (NST) [11]
to blend face images with style reference images. For each face
image and style reference, NST generates an image of the face
“painted” in the style. In each CAPTCHA challenge, the user is
asked to classify 10 stylized images into either human face or animal
face category. Figure 2 illustrates this StyleCAPTCHA scheme. The
system changes the style every few CAPTCHA challenges to keep

https://doi.org/10.1145/3412815.3416895
https://doi.org/10.1145/3412815.3416895

0 20 40 60 80 100
training efforts

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

under-trained well-trained

AI
Human

Figure 1: Learning curve of AI

the attacker’s DCN classifier in the under-trained state (because
the classifier has not received adequate training examples).

The advantages of StyleCAPTCHA to defend against DCN-based
automated attacks are twofold. First, the NST transformation per-
turbs pixel values of human face images and decreases the accuracy
of the publicly available, well-trained DCN face detectors [43, 5, 17,
44, 9]. This idea shares the same spirit with adversarially perturbing
the pixel values of images to mislead DCN classifiers [37, 14, 6].
To the best of our knowledge, how to robustify DCNs against the
perturbation induced by NST is little known in the literature. By
contrast, after the texture and color of images are destructively
transferred, human users can easily distinguish stylized human
images from stylized animal images, because a stylized image still
contains the content information of the facial appearance of its
original image, and humans are sensitive to facial appearance.

More importantly, to adapt to frequently changing styles, the
attacker has to keep collecting a vast set of stylized images from the
the StyleCAPTCHA service, manually labeling them, and then train-
ing or re-training her DCN classifier. If StyleCAPTCHA switches
to a new style before the attacker’s DCN enters the well-trained
phase, then the attacker’s DCN is kept in the under-trained phase
and hence cannot pass the CAPTCHA challenge consistently. By
contrast, human users can correctly classify stylized images with no
training or re-training, because perceiving human facial appearance
is a lifetime practice for identity recognition and verification.

We also propose a metric called Classifier Cross-task Transfer-
ability (CCT) to measure the ability of a classifier transferring from
one image classification task, featured by one style (or a set of
styles), to another image classification task, featured by another
style. CCT allows us to arrange the style schedule (the sequence of
styles) adversarially against DCN-based potential attackers. After
the system generates a few StyleCAPTCHA challenges, it switches
to another style with low CCT from the previous style(s). By doing
so, we limit the impact of the attacker’s DCN classifier transfering
from one image classification task to the next one, and protect
StyleCAPTCHA from DCNs retrained by transfer learning.

Apart from DCNs for general purpose, DCNs trained for the
specific task of human face detection can also be deployed to at-
tack StyleCAPTCHA. A few accurate and efficient DCN-based face
detectors have been developed recently [43, 5, 17, 44, 9]. For exam-
ple, the-state-of-art face detector RetinaFace[9] (with Resnet50 [16]
as the backbone network) reaches an average precision 90% on
the hard-level validation set of the WIDER Face dataset [42], and
even higher accuracy on the LFW dataset [18]. We will evaluate
StyleCAPTCHA against RetinaFace detector in our experiments.

2 METHODS
This section presents the methodology of StyleCAPTCHA , which
involves two key techniques. Section 2.1 briefly describes the neural
style transfer (NST) technique, which transforms original human
and animal faces to stylized images. Section 2.1 defines Classifier
Cross-task Transferability (CCT) and proposes a practical estima-
tion method for it. CCT will be used to arrange the style schedule.
Section 2.3 presents algorithms of StyleCAPTCHA in action.

2.1 Neural Style Transfer
Neural style transfer (NST) blends a content image, and a style
image together so that the output image looks like the content
image, but is “painted” in the style of the style image [11, 21, 19,
29]. By using deep convolutional networks, NST extracts the con-
tent representations and the style representations from images and
optimizes the output image to match the content representations
of the content image and the style representations of the style ref-
erence image. More precisely, the content and style representations
are defined as intermediate feature maps of a pretrained image
classification network and the correlations among these feature
maps, respectively. At a high level, a network has built internal
representations that convert the raw image pixels into a complex
understanding of the image, when being trained to perform a image
classification task, and thus can serve as a complex feature extractor.
An NST network is trained to minimize the content loss, which
measures the difference between content representations of the
original content image and the output image, plus the style loss,
which measures the difference between style representations of the
style reference image and the output image.

Let ®� ;
8 9
(G) be the ; -dimensional feature vector at location 1 ≤

8 ≤ #; , 1 ≤ 9 ≤ "; of an intermediate layer ; of the pretrain image
classification network for image G . The content loss between the
output image G and the content image 2 is then given by

Lcontent (G, 2) =
∑
8, 9,;

‖ ®� ;8 9 (G) − ®� ;8 9 (2)‖
2 .

The style representations are calculated by taking the outer product
of the feature vector with itself at each location, and averaging that
outer product over all locations

G; (G) =
1

#;";

#;∑
8=1

";∑
9=1

®� ;8 9 (G)
[
®� ;8 9 (G),

]T
which is a ; × ; covariance matrix. The style loss between the
output image G and the style image B is given by

Lstyle (G, B) =
∑
;

F; ‖G; (G) −G; (B)‖2,

Normal Users Attackers

Change

Styles

Stylized Images

Pass Test 1

Collect and label
stylized images;
Train or retrain DCN
classifier.

Fail Tests 1 & 2.

Pass Test 2

Pass Test 3 Pass Test 3

Pass Test 4

Collect and label
stylized images;
Train or retrain DCN
classifier.

Fail Tests 4 & 5.

Pass Test 5

Pass Test 6 Pass Test 6

Change

Figure 2: StyleCAPTCHA scheme. Each test consists of 10 stylized images. The blue boxes show human faces for the conve-
nience of readers but are absent in real CAPTCHA challenges.

whereF; ’s are weights to combine style losses from different layers,
‖A‖ is the Frobenius norm of matrix A, i.e., the ℓ2-norm of the
vectorization of A (the concatenation of column vectors of A). The
total loss function of the NST network is then given by

L(G, 2, B) = _2Lcontent (G, 2) + _BLstyle (G, B), (1)

where _2 and _B are the weights to combine the content and style
losses.

We remark that the content and style loss weights _2 and _B
control the portion of the content information of the output image
G from the original image 2 and the portion of the style information
from the style image B . The quality of the output image varies
according to the choice of these weights.

In this paper, we adopt the “fast” NST method by [21], which
costs a short training time per style reference image and thus meets
our need to frequently change styles of images. Other NST methods
such as MUNIT [20] and StyleGAN [24, 25] might also be utilized
to create stylized images for StyleCAPTCHA.

2.2 Classifier Cross-task Transferability
Classifier Cross-task Transferability (CCT) is intended to measure
the transferability of a classifier from its own classification task
to another task. This measure plays a key role in arranging the
style schedule (the sequence of styles) for StyleCAPTCHA. This
section gives its formal definition and provides a practical method
to estimate it. Technical proofs of theoretical results concerning
the properties of CCT are collected in Section 3.

2.2.1 Definition. Let X0 = {-08 }=8=1 and X1 = {-18 }=8=1 denote
animal and human face images, respectively, which are stylized
by one or a set of multiple style(s). Let Y0 = {.08 }=8=1 and Y1 =

{.18 }=8=1 denote animal and human images which are stylized by
another style.

Let 50 (G) and 51 (G) denote probability density functions of sam-
ples of X0 and X1. Theoretical results from recent advances of
generative modeling [13] suggest that the optimal (soft) binary
classifier to distinguish animal images from human images in the
sense of the minimum binary cross entropy loss is given by

� (G) = 51 (G)
50 (G) + 51 (G)

. (2)

Let . be an unlabelled image in either Y0 or Y1, and let � = 0
or 1 be its label. Define CCT from the classification task X0 versus
X1 to the other classification task Y0 versus Y1 as 1 minus the
conditional entropy of � given � (.). Formally,

CCT(X0,X1;Y0,Y1) = 1 − � (� |� (.)),

where � is the entropy1 notation. If � (.) deterministically tells �
then � (� |� (.)) = 0 and CCT = 1. If� is independent from � (.)
then � (� |� (.)) = � (�) = 1 and thus CCT = 0.

Next theorem shows that CCT can be alternatively defined as
the Jensen-Shannon (JS-) divergence between the distributions of
{� (.08)}=8=1 and {� (.18)}=8=1.

1Information-theoretic quantities in this paper including (conditional) entropy, Jensen-
Shannon divergence, Kullback-Leibler divergence are measured in bits

Theorem 1. Let ℎ0 (I) and ℎ1 (I) be the distributions of /08 =

� (.08) and /18 = � (.18) for 8 = 1, . . . , = and JS stand for the JS-
Divergence. Then

CCT(X0,X1;Y0,Y1) = JS(ℎ0‖ℎ1) . (3)

2.2.2 Estimation. WithTheorem 1 in hand, we proceed to consider
estimating JS(ℎ0‖ℎ1). Given random samplesZ0 = {/08 }=8=1 and
Z1 = {/18 }=8=1 following distribution ℎ0 (I) and ℎ1 (I), respectively,
the JS-divergence between two distributions can be estimated as
follows.

Sort random samples inZ0,Z1 andZ0∪Z1 in the non-decreasing
order as {/0(8) }=8=1, {/1(8) }

=
8=1 and {/ (8) }2=8=1. Let ℎ̃0 (I) be the piece-

wise linear interpolation passing through points

(0, 0),
(
/0(1) ,

1

2=

)
,

(
/0(2) ,

3

2=

)
, . . . ,

(
/0(=) ,

2= − 1

2=

)
, (1, 1);

let ℎ̃1 (I) be the piece-wise linear interpolation passing through
points

(0, 0),
(
/1(1) ,

1

2=

)
,

(
/1(2) ,

3

2=

)
, . . . ,

(
/1(=) ,

2= − 1

2=

)
, (1, 1);

and let ℎ̃(I) be the piece-wise linear interpolation passing through
points

(0, 0),
(
/ (1) ,

1

4=

)
,

(
/ (2) ,

3

4=

)
, . . . ,

(
/ (2=) ,

4= − 1

4=

)
, (1, 1).

ℎ̃0 (I), ℎ̃1 (I) and ℎ̃(I) are actually the continuous piece-wise linear
approximations of the empirical cumulative distribution functions
ofZ0,Z1 and Z0 ∪Z1, respectively.

Let / (0) = 0, / (2=+1) = 1, and n = min2=
8=0

[
/ (8+1) − / (8)

]
/2.

An estimator for JS(ℎ0‖ℎ1) is given by

ĴS (Z0‖Z1) =
1

2=

=∑
8=1

ℎ̃0 (/0(8)) − ℎ̃0 (/0(8) − n)
ℎ̃(/0(8)) − ℎ̃(/0(8) − n)

+

1

2=

=∑
8=1

ℎ̃1 (/1(8)) − ℎ̃1 (/1(8) − n)
ℎ̃(/1(8)) − ℎ̃(/1(8) − n)

− 1 (4)

Theorem 2. The above-defined JS-divergence estimator is strongly
consistent, i.e.,

ĴS (Z0‖Z1) → JS(ℎ0‖ℎ1)
almost surely as = → ∞.

Theorem 1 and Theorem 2 together inspire the following algo-
rithm to estimate CCT.

Algorithm 1 CCT estimation in action

Input: X0, X1, Y0, Y1 defined as above
Output: �CCT(X0,X1;Y0,Y1), a CCT estimate.
For the classification task X0 versus X1, train a DCN classifier
�̂ : G ↦→ [0, 1] to minimize the binary cross-entropy loss.
LetZ0 = {�̂ (~) : ~ ∈ Y0} and Z1 = {�̂ (~) : ~ ∈ Y1}.
Compute ĴS(Z0‖Z1) using (4).

CCTmeasures the transferability of the optimal binary classifier
� : G ↦→ [0, 1] from its original classification task X0 versus X1 to
another classification task Y0 versus Y1. In practice, the optimal

binary classifier � : G ↦→ [0, 1] is unknown. But we could approxi-
mate it well by training a sufficiently complex DCN (e.g., ResNet50
[16]) classifier. Similar approaches have accurately estimate other
information-theoretically quantities on high-dimensional image
data [2].

2.3 StyleCAPCTHA
The StyleCAPTCHA scheme is outlined as Algorithm 2. In this
algorithm, B ⊗ I denotes the set of stylized images, resulting from
blending content images in I and a style reference image B by the
NST method described in Section 2.1. �CCT denotes the estimate of
CCT given by Algorithm 1 in Section 2.2.

Algorithm 2 StyleCAPTCHA

Input: animal face image set I0, human face image set I1, style
reference image set S, a threshold constant X ∈ (0, 1).
Initialize B0 ∈ S.
for C = 0, 1, 2, . . . do
Provide a few times of CAPTCHA service to users, who are
asked to classify B) ⊗ I0 versus B) ⊗ I0.
Find style B ∈ S such that�CCT(∪8≤CB8 ⊗ I0,∪8≤CB8 ⊗ I1; B ⊗ I0, B ⊗ I1) < X.
Set BC+1 = B .

end for

3 PROOFS
This section collects the technical proofs for Theorem 1 and Theo-
rem 2 in Section 2.

Proof of Theorem 1. For an unlabelled image . ∈ Y0 ∪Y1, let
/ = � (.) be the prediction given by the optimal classifier � for . .
Apparently, the random variable / follows the mixture distribution

ℎ(I) = ℎ0 (I) + ℎ1 (I)
2

.

Let ? (2, I) be the joint distribution of � and / = � (.), and write
marginal distributions of 2 as ? (2 = 0) =

∫
? (0, I)3I and ? (2 =

1) =
∫
? (1, I)3I. Write

� (�, � (.))

= −
∑

2∈{0,1}

∫
? (2, I) log ? (2, I) dI

= −
∫

? (I |2 = 0)? (2 = 0) log[? (I |2 = 0)? (2 = 0)] dI

−
∫

? (I |2 = 1)? (2 = 1) log[(? (I |2 = 1)? (2 = 1)] dI

= −
∫

ℎ0 (I)
2

log

[
ℎ0 (I)
2

]
dI −

∫
ℎ1 (I)
2

log

[
ℎ1 (I)
2

]
dI

and

� (� (.)) = −
∫

ℎ(I) logℎ(I) dI

= −
∫

ℎ0 (I)
2

logℎ(I) dI −
∫

ℎ1 (I)
2

logℎ(I) dI.

Then, CCT amounts to

1 − � (� |� (.)) = 1 − � (�, � (.)) + � (� (.))

= 1 −
∫

ℎ0 (I)
2

log

[
ℎ0 (I)/2
ℎ(I)

]
dI −

∫
ℎ1 (I)
2

log

[
ℎ1 (I)/2
ℎ(I)

]
dI

= −1

2

∫
ℎ0 (I) log

[
ℎ0 (I)
ℎ(I)

]
dI − 1

2

∫
ℎ1 (I) log

[
ℎ1 (I)
ℎ(I)

]
dI

=
1

2
KL(ℎ0‖ℎ) +

1

2
KL(ℎ1‖ℎ) = JS(ℎ0‖ℎ1)

�

Proof of Theorem 2. Break the JS-divergence JS(ℎ0‖ℎ1) into
two KL-divergence terms

JS(ℎ0‖ℎ1) =
1

2
KL

(
ℎ0

ℎ0 + ℎ12

)
+ 1

2
KL

(
ℎ1

ℎ0 + ℎ12

)
.

By [32, Thoerem 1],

1

=

=∑
8=1

ℎ̃0 (/0(8)) − ℎ̃0 (/0(8) − n)
ℎ̃(/0(8)) − ℎ̃(/0

(8) − n)
− 1 → KL

(
ℎ0

ℎ0 + ℎ12

)
1

=

=∑
8=1

ℎ̃1 (/1(8)) − ℎ̃1 (/1(8) − n)
ℎ̃(/1(8)) − ℎ̃(/1(8) − n)

− 1 → KL

(
ℎ1

ℎ0 + ℎ12

)
almost surely as = → ∞. Collecting these pieces together completes
the proof. �

4 EXPERIMENTAL DESIGN
4.1 Face Images
We detect and extract faces from the Facial Deformable Models
of Animals (FDMA) dataset [26] and the Flickr-Faces-HQ (FFHQ)
dataset [24] by the state-of-the-art RetinaFace human face detector
[9]. The FDMA dataset contains around 21.9K animal face images
belonging to 334 diverse species. Among them, 10000 animal faces
that look like human faces (according to the judgement of the
RetinaFace detector) are selected.The FFHQdataset contains around
22.0K human face images. Among them, 10000 human faces are
randomly selected. These two sets of 10000 animal faces and 10000
human faces are used in our experiments.

4.2 Styles
Figure 3 visualizes the set of 48 styles used in the experiments on
StyleCAPTCHA. These styles are generated by an open-sourced
style (texture and color) generator named texgen.js (https://github.
com/mrdoob/texgen.js).

4.3 Choice of Loss Weights _2 and _B in NST
For each style, we randomly pick up 2500 human faces and 2500
animal faces from the image sets to train a fast NST network, and
then apply the fast NST network to stylize the rest of the image
sets. The choices of content and style loss weights _2 and _B are
crucial for the performance of the NST network. Smaller _2 and
larger _B would let the NST network focus more on the objective of
matching the style representations and make less account for the
content information, and vice versa. If the stylized face image losses
too much content information of the original face, both the human
visual perception and DCN-based human face detector would not

https://github.com/mrdoob/texgen.js
https://github.com/mrdoob/texgen.js

Figure 3: Styles created by by texgen.js.

distinguish human faces apart from animal faces. On the other hand,
if the stylized face image contains too much content information,
both the human visual perception and DCN-based human face
detector would correctly recognize the human faces.

We choose the values of _2 and _B in the following way. Fix
_B = 105 and gradually decrease _2 from 3.0 to 0.0 until the average
probability score given by the state-of-the-art RetinaFace detector
for stylized human faces drops below the default threshold 0.7 of
the RetinaFace probability score.

4.4 Style Schedules
To evaluate the reliability of StyleCAPCTHA and the effectiveness
of the CCT-based arrangement of the style schedule B0, B1, B2, · · · ,
we compare the following three arrangements of the style schedule.

Unchanging Schedule (US): Use an unchanging style to trans-
fer human and animal face images, i.e., BC = B0 for C ≥ 1.

Random Schedule (RS): Randomly pick up a style BC from the
set of styles at every time C .

CCT-based Schedule (CS): As described by Algorithm 2, pick
up style BC from the set of styles such that CCT from the classifica-
tion task featured by B0, B1, · · · , BC−1 to that featured by BC is below
some threshold X .

The threshold X for CCT values in the StyleCAPTCHA scheme
(Algorithm 2) shall be determined by the trade-off between the
reliability of the StyleCAPTCHA service and the flexibility of the
style schedule arrangement. A low CCT value indicates that the
target classification task featured by the new style obtains little
information from the source classification task. Consequently, the
DCN classifier, that is well trained for the source task, would per-
form poorly on the target task. However, an extremely low CCT
threshold X would filter out many candidate styles and limit the
flexibility of the style schedule arrangement. We choose X = 0.75
by a pilot experiment (see Figure 5).

4.5 Threat Models
We assume three state-of-the-art DCN architectures for general
visual classification tasks, namely, VCG19 [34], ResNet50 [16] and

InceptionV3 [36], and a state-of-the-art DCN-based face detector
RetinaFace [9], are available to the attackers. Below are four threat
models that the attackers may maliciously use to crack down Style-
CAPCTHA.
Baseline (BL) model: The attacker collects 1000 images of style
B0 via repeatedly requesting the StyleCAPTCHA service, manually
label images, and then train one of VCG19, ResNet50 or InceptionV3
networks. The network is initialized with the well-optimized pa-
rameters on general large-scale image recognition task.
Transfer learning (TL) model: The attacker trains an initial DCN
classifier in the same way as in the baseline model. After a style
change from BC−1 to BC happens at time C ≥ 1, the attacker collects
another 1000 images of style BC , and then uses them to re-train the
current DCN classifier by transfer learning techniques.
Cumulative learning (CL) model: The attacker trains an initial
DCN classifier in the same way as in the baseline model. After a
style change from BC−1 to BC happens at time C ≥ 1, the attacker
collects another 1000 images of style BC , and then uses all images
that has been obtained from the StyleCAPTCHA service at that
moment to train a DCN classifier.
Face detectionmodel: The attacker uses the state-of-the-art DCN-
based face detector RetinaFace to detect human faces in stylized
images. RetinaFace detector gives a probability score between 0.0
and 1.0 for each detected object measuring the likelihood of the
object being a human face. The attacker chooses the optimal proba-
bility score threshold to maximize the accuracy of his classifier.

5 EXPERIMENTAL RESULTS
This section presents results of two pilot experiments for hyperpa-
rameter selections, and performances of three arrangement strate-
gies of the style schedule defending against threat models. The
performance of the DCN-based classifiers on the stylized image
classification tasks are evaluated in terms of average classification
accuracy. Note that each StyleCAPTCHA test asks a user to classify
10 images (Figure 2). A DCN-based classifier with accuracy 80% re-
sults in a passing rate 0.8010 = 10.74%. That means, this classifier
will pass through StyleCAPTCHA once per 9.31 times of attempts
on average. We expect that a normal user achieves an accuracy
95% with a passing rate 0.9510 = 59.87% correspondingly and
passes through StyleCAPTCHA once per 1.67 attempts on average.

5.1 Pilot Experiment to Choose _2 for NST
A pilot experiment is conducted to guide the choice of content loss
weight _2 in the NST network such that the RetinaFace detector
would miss a considerately large portion of stylized human faces
as false negatives, meanwhile a normal user would not.

For a single style, various values of content loss weight _2 are
used in the NST network to create multiple sets of stylized human
face images. The average probability scores of the RetinaFace on
each image set are computed. Figure 4a shows that the Retina
probability scores for stylized images and content loss weight _2
are strongly correlated. In this situation, we choose _2 = 1.3 such
that the average probability score of detected faces is below 0.7,
which is the default threshold of the probability score set by the
official implementation of RetinaFace. Weights for other styles are
chosen in the same way.

0.5 1.0 1.5 2.0 2.5 3.0
Content loss weight c

0.0

0.2

0.4

0.6

0.8

1.0

Re
tin

aF
ac

e
pr

ob
ab

ilit
y

sc
or

e

(a) (b)
Figure 4: Choice of content loss weight _2 .

Figure 4b showcases 20 stylized face images with content loss
weight _2 = 2.1, 1.8, 1.3, 0.8, 0.5. Evidently, as the stylized human
face images keep less content information with smaller _2 , the
RetinaFace detector gives less certain judgements, while human
visual perception could still recognize the stylized images. The
choice of _2 = 0.8 lowers the RetinaFace probability score, but the
resulting stylized images may confuse some normal users.

5.2 Pilot Experiment to Choose X for CCT
In order to choose a suitable threshold X for CCT, we estimate CCT
of each classifier transferring from the source task featured by style
B to the target task featured by another style B ′ ≠ B . Results show
that 2184 out of 48 × 47 = 2256 pairs of styles satisfy�CCT(B ⊗ I0, B ⊗ I1; B ′ ⊗ I0, B ′ ⊗ I1) < 0.75.

All of these 2184 obtain < 0.82 classification accuracy on the target
task (Figure 5), thus X = 0.75 is set in further experiments.

5.3 Defense against General DCNs
We evaluate the performance of three style schedules defending
StyleCAPTCHA against the three threat models with one of VGG19,
InceptionV3, Resnet50 backbone networks. Each threatmodel cracks
down the unchanging style schedule with a classification accuracy
> 90%.

Figure 6 plots the classification accuracy of the baseline (BL),
transfer learning (TL) and cumulative learning (CL) threat models
with a DCN backbone network to attack the StyleCAPTCHA service
when the sequence of styles B0, B1, . . . , B9 are scheduled by random
or according the guidance of CCT. Figure 6a shows that the random
schedule (RS) strategy can defend both the baseline (BL) and transfer
learning (TL) attacks, but fail to defend the cumulative learning
(CL) attacks during a few time periods.

In contrast, Figure 6b shows that the CCT-guided schedule (CS)
can defend three types of attacks. Each of VGG19, InceptionV3 and

0.0 0.2 0.4 0.6 0.8 1.0
CCT value

0.5

0.6

0.7

0.8

0.9

1.0
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy

Figure 5: CCT value and classification accuracy of Resnet50
classifiers transferring from the source task featured by one
style to the target task featured by another style.

Resnet50 classifiers obtains less than 80% accuracy during each
of 10 time periods on the stylized images in the StyleCAPTCHA
service. Since each StyleCAPTCHA test asks a user to classify 10
images, these classifiers pass through the StyleCAPTCHA test with
chance at most 0.8010 = 10.74%. They would take more than 9.31
attempts to pass through StyleCAPTCHA once on average.

5.4 Defense against RetinaFace Detector
The RetinaFace detector gives each stylized image a probability
score indicating the chance that it is a human face. To convert the

1 2 3 4 5 6 7 8 9
time period

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

RS against BL (with VGG19)
RS against TL (with VGG19)
RS against CL (with VGG19)

1 2 3 4 5 6 7 8 9
time period

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

RS against BL (with InceptionV3)
RS against TL (with InceptionV3)
RS against CL (with InceptionV3)

1 2 3 4 5 6 7 8 9
time period

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

RS against BL (with ResNet50)
RS against TL (with ResNet50)
RS against CL (with ResNet50)

(a) RS defending against threat models with VGG19 (left), InceptionV3 (middle) and Resnet50 (right) backbones.

1 2 3 4 5 6 7 8 9
time period

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

CS against BL (with VGG19)
CS against TL (with VGG19)
CS against CL (with VGG19)

1 2 3 4 5 6 7 8 9
time period

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

CS against BL (with InceptionV3)
CS against TL (with InceptionV3)
CS against CL (with InceptionV3)

1 2 3 4 5 6 7 8 9
time period

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

CS against BL (with ResNet50)
CS against TL (with ResNet50)
CS against CL (with ResNet50)

(b) CS defending against threat models with VGG19 (left), InceptionV3 (middle) and Resnet50 (right) backbones.

Figure 6: Random style schedule (RS) and CCT-based style schedule (CS) defending against the baseline (BL), transfer learning
(TL) and cumulative learning (CL) threat models with DCN backbone.

probability score output to a classification rule, the attacker needs
to set a probability score threshold. In practice, the threshold is
selected by the ROC curve. We assume both the ROC curve and the
optimal threshold are available to the attackers. Figure 7 illustrates
the ROC curves of the classifier converted from the RetinaFace
detector on stylized images the attackers collect during ten time
periods in Figure 6. The maximum classification accuracy of the
classifier with the optimal score threshold is 84.6% against the CCT-
guided style schedule and 89.6% against the random style schedule.
Correspondingly, the classifier would pass through StyleCAPTCHA
guarded by two style schedules with rates 18.8% and 33.3%.

6 RELATEDWORK
Image-based CAPTCHA with style transfer. Cheng et al.[7]
proposed a CAPTCHA that asked users to select one among nine
stylized images to match a short scene description. A key difference
is that their CAPTCHA used the same style to transfer all their
images, whereas our StyleCAPTCHA schedules different adversarial

styles to transfer images. Another CAPTCHA asked users to detect
human faces with rotations and occlusions [15].
Improving the robustness of classifiers. Szegedy et al. proposed
a defense against adversarial examples by augmenting the training
set with adversarial images [37]. Liu et al. improved the robustness
of classifiers by removing outliers from the training set [28]. How-
ever, [30, 1] showed that retrained models could still be attacked
by other adversarial examples.
Style transfer with neural networks Our StyleCAPTCHA uses
neural style transfer [11]. Other style transfer techniques include
StyleGAN[24, 25] and MUNIT[20], which use cycle consistent loss
and AdaIN block[19]. We plan to evaluate the efficiency of those
style transfer models in StyleCAPTCHA model in the future.

7 CONCLUSION
Deep convolutional networks (DCNs) are serious threats to tradi-
tional CAPTCHAs based on visual perception tasks nowadays. We

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

CCT-based style schedule (AUC = 0.89)
random style strategy (AUC = 0.94)

Figure 7: StyleCAPTCHA against the classifier converted
from the RetinaFace detector.

design StyleCAPTCHA by exploiting two intrinsic differences be-
tween current deep visual networks and human visual perception.
First, we use the neural style transfer technique to generate stylized
images, which are shown to be robust beyond the attacks from
state-of-the-art DCNs. Second, we propose to adversarilly change
the style of images in StyleCAPTCHA according to an information-
theoretical measure for the classifier cross-task transferrability
(CCT). Our experimental evaluation shows that StyleCAPTCHA is
general for a range of common image classifiers.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1801751. This research was partially
sponsored by the Combat Capabilities Development Command
Army Research Laboratory and was accomplished under Coopera-
tive Agreement Number W911NF-13-2-0045 (ARL Cyber Security
CRA). The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Combat Capa-
bilities Development Command Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

REFERENCES
[1] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial

attacks on deep learning in computer vision: a survey. IEEE
Access, 6, 14410–14430.

[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar,
Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon
Hjelm. 2018. Mutual information neural estimation. In Inter-
national Conference on Machine Learning, 531–540.

[3] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and
John CMitchell. 2014.The end is nigh: generic solving of text-
based CAPTCHAs. In the 8th USENIX Workshop on Offensive
Technologies.

[4] Elie Bursztein, Matthieu Martin, and John C Mitchell. 2011.
Text-based captcha strengths and weaknesses. In ACM Con-
ference on Computer and Communications Security, 125–138.

[5] Zhaowei Cai,Quanfu Fan, Rogerio S Feris, and Nuno Vascon-
celos. 2016. A unified multi-scale deep convolutional neural
network for fast object detection. In European Conference on
Computer Vision, 354–370.

[6] Jiyu Chen, David Wang, and Hao Chen. 2020. Explore the
transformation space for adversarial images. In ACM Confer-
ence on Data and Application Security and Privacy (CODASPY).
New Orleans, LA, USA, (March 16–18, 2020).

[7] Zhouhang Cheng, Haichang Gao, Zhongyu Liu, Huaxi Wu,
Yang Zi, and Ge Pei. 2019. Image-based CAPTCHAs based on
neural style transfer. IET Information Security, 13, 6, 519–529.

[8] Ritendra Datta, Jia Li, and James Z. Wang. 2005. Imagination:
a robust image-based CAPTCHA generation system. In ACM
Conference on Multimedia, 331–334.

[9] Jiankang Deng, Jia Guo, Zhou Yuxiang, Jinke Yu, Irene Kot-
sia, and Stefanos Zafeiriou. 2020. RetinaFace: single-stage
dense face localisation in the wild. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5203–5212.

[10] Jeremy Elson, John R Douceur, Jon Howell, and Jared Saul.
2007. Asirra: a CAPTCHA that exploits interest-aligned man-
ual image categorization. In ACM Conference on Computer
and Communications Security. Volume 7, 366–374.

[11] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016.
Image style transfer using convolutional neural networks. In
IEEE Conference on Computer Vision and Pattern Recognition,
2414–2423.

[12] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, SachaArnoud,
and Vinay Shet. 2014. Multi-digit number recognition from
street view imagery using deep convolutional neural net-
works. In International Conference on Learning Representa-
tions.

[13] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2014. Generative adversarial nets. In Neural
Information Processing Systems, 2672–2680.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
2015. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations.

[15] Gaurav Goswami, Brian M Powell, Mayank Vatsa, Richa
Singh, and Afzel Noore. 2014. Facedcaptcha: face detection
based color image captcha. Future Generation Computer Sys-
tems, 31, 59–68.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 770–
778.

[17] Peiyun Hu and Deva Ramanan. 2017. Finding tiny faces. In
IEEE Conference on Computer Vision and Pattern Recognition,
951–959.

[18] Gary BHuang,MarwanMattar, Tamara Berg, and Eric Learned-
Miller. 2007. Labeled faces in thewild: a database for studying
face recognition in unconstrained environments. Technical
report. University of Massachusetts, Amherst.

[19] XunHuang and Serge Belongie. 2017. Arbitrary style transfer
in real-time with adaptive instance normalization. In IEEE
International Conference on Computer Vision, 1501–1510.

[20] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
2018. Multimodal unsupervised image-to-image translation.
In European Conference on Computer Vision, 179–196.

[21] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. 2016. Percep-
tual losses for real-time style transfer and super-resolution.
In European Conference on Computer Vision, 694–711.

[22] Kaggle. 2016. Dogs vs. Cats Redux, Kernels Edition: distin-
guish images of dogs from cats. https://www.kaggle.com/c/
dogs-vs-cats-redux-kernels-edition.

[23] Kaggle. 2013. Dogs vs. Cats: create an algorithm to distin-
guish dogs from cats. https://www.kaggle.com/c/dogs-vs-
cats.

[24] Tero Karras, Samuli Laine, and TimoAila. 2019. A style-based
generator architecture for generative adversarial networks.
In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4401–4410.

[25] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and TimoAila. 2020. Analyzing and improv-
ing the image quality of StyleGAN. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 8110–8119.

[26] Muhammad Haris Khan, John McDonagh, Salman Khan,
Muhammad Shahabuddin, Aditya Arora, Fahad Shahbaz
Khan, Ling Shao, and Georgios Tzimiropoulos. 2020. Animal-
Web: a large-scale hierarchical dataset of annotated animal
faces. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 6939–6948.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012.
ImageNet classification with deep convolutional neural net-
works. In Neural Information Processing Systems, 1097–1105.

[28] Yongshuai Liu, Jiyu Chen, and Hao Chen. 2018. Less is more:
culling the training set to improve robustness of deep neural
networks. In Conference on Decision and Game Theory for
Security (GameSec). Seattle, WA, USA, (October 29–31, 2018).

[29] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
2017. Deep photo style transfer. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 4990–4998.

[30] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. 2017. Universal adversarial per-
turbations. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 1765–1773.

[31] Gabriel Moy, Nathan Jones, Curt Harkless, and Randall Pot-
ter. 2004. Distortion estimation techniques in solving visual

CAPTCHAs. In IEEE Conference on Computer Vision and Pat-
tern Recognition.

[32] Fernando Pérez-Cruz. 2008. Kullback-leibler divergence es-
timation of continuous distributions. In IEEE International
Symposium on Information Theory, 1666–1670.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
2015. Faster R-CNN: towards real-time object detection with
region proposal networks. In Neural Information Processing
Systems, 91–99.

[34] Karen Simonyan and Andrew Zisserman. 2015. Very deep
convolutional networks for large-scale image recognition.
In International Conference on Learning Representations.

[35] Suphannee Sivakorn, Iasonas Polakis, andAngelos DKeromytis.
2016. I am robot:(deep) learning to break semantic image
captchas. In IEEE European Symposium on Security and Pri-
vacy, 388–403.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. 2016. Rethinking the incep-
tion architecture for computer vision. In IEEE Conference on
Computer Vision and Pattern Recognition, 2818–2826.

[37] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014.
Intriguing properties of neural networks. In International
Conference on Learning Representations.

[38] Mingxing Tan and Quoc V Le. 2019. EfficientNet: rethinking
model scaling for convolutional neural networks. In Interna-
tional Conference on Machine Learning, 6105–6114.

[39] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John
Langford. 2003. CAPTCHA: using hard AI problems for se-
curity. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, 294–311.

[40] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David
Abraham, and Manuel Blum. 2008. reCAPTCHA: human-
based character recognition via web security measures. Sci-
ence, 321, 5895, 1465–1468.

[41] Jeff Yan and Ahmad Salah El Ahmad. 2008. Usability of
CAPTCHAs or usability issues in CAPTCHA design. In Sym-
posium on Usable Privacy and Security, 44–52.

[42] Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang.
2016. Wider face: a face detection benchmark. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 5525–
5533.

[43] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.
2016. Joint face detection and alignment using multitask cas-
caded convolutional networks. IEEE Signal Processing Letters,
23, 10, 1499–1503.

[44] Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo
Wang, and Stan Z Li. 2017. C. In IEEE International Conference
on Computer Vision, 192–201.

https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition
https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats

	Abstract
	1 Introduction
	2 Methods
	2.1 Neural Style Transfer
	2.2 Classifier Cross-task Transferability
	2.3 StyleCAPCTHA

	3 Proofs
	4 Experimental Design
	4.1 Face Images
	4.2 Styles
	4.3 Choice of Loss Weights c and s in NST
	4.4 Style Schedules
	4.5 Threat Models

	5 Experimental Results
	5.1 Pilot Experiment to Choose c for NST
	5.2 Pilot Experiment to Choose for CCT
	5.3 Defense against General DCNs
	5.4 Defense against RetinaFace Detector

	6 Related work
	7 Conclusion
	Acknowledgments

