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Abstract
Research showed that deep learning models are vulnerable to membership inference 
attacks, which aim to determine if an example is in the training set of the model. We pro-
pose a new framework to defend against this sort of attack. Our key insight is that if we 
retrain the original classifier with a new dataset that is independent of the original training 
set while their elements are sampled from the same distribution, the retrained classifier will 
leak no information that cannot be inferred from the distribution about the original training 
set. Our framework consists of three phases. First, we transferred the original classifier to 
a Joint Energy-based Model (JEM) to exploit the model’s implicit generative power. Then, 
we sampled from the JEM to create a new dataset. Finally, we used the new dataset to 
retrain or fine-tune the original classifier. We empirically studied different transfer learning 
schemes for the JEM and fine-tuning/retraining strategies for the classifier against shadow-
model attacks. Our evaluation shows that our framework can suppress the attacker’s mem-
bership advantage to a negligible level while keeping the classifier’s accuracy acceptable. 
We compared it with other state-of-the-art defenses considering adaptive attackers and 
showed our defense is effective even under the worst-case scenario. Besides, we also found 
that combining other defenses with our framework often achieves better robustness. Our 
code will be made available at https://​github.​com/​ChenJ​iyu/​meminf-​defen​se.​git.

Keywords  Data privacy · Membership inference attack · Generative modeling · Deep 
neural networks

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 *	 Jiyu Chen 
	 jiych@ucdavis.edu

	 Yiwen Guo 
	 guoyiwen.ai@bytedance.com

	 Qianjun Zheng 
	 bachjin@mail.ustc.edu.cn

	 Hao Chen 
	 chen@ucdavis.edu

1	 University of California, Davis, USA
2	 ByteDance AI Lab, Beijing, China
3	 University of Science and Technology of China, Hefei, China

http://orcid.org/0000-0002-0144-6376
https://github.com/ChenJiyu/meminf-defense.git
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05951-6&domain=pdf


652	 Machine Learning (2021) 110:651–674

1 3

1  Introduction

Deep learning models are widely deployed, and many of them are continuously trained by 
data collected from users. As such, privacy becomes a major concern.

Researchers have proposed several privacy attacks on deep learning models, such as 
inference attacks  (Shokri et  al., 2017; Hayes et  al., 2019; Nasr et  al., 2019), inversion 
attacks (Fredrikson et al., 2015), and model stealing attacks (Tramèr et al., 2016; Wang & 
Gong, 2018). We focus on defending against membership inference attacks, which aims to 
infer whether an example is among the target model’s training data. The ability of resisting 
membership inference attacks is crucial in practical scenarios where the privacy of training 
data is of importance. For example, while a patient consents to use her medical record to 
train a sensitive disease classifier, she does not want the model to reveal that her record is 
part of the training set (and hence she has the disease).

Researchers considered overfitting as a major contributing factor to inference 
attacks (Shokri et al., 2017; Yeom et al., 2018). Therefore, many defenses aimed to reduce 
overfitting by forcing the model to learn the distribution instead of memorizing the data 
by applying different regularization strategies, such as weight decay and dropout (Srivas-
tava et al., 2014). However, recently researchers also showed that overfitting is a sufficient 
but not necessary condition for performing privacy attacks (Yeom et al., 2018; Jain et al., 
2015; Salem et  al., 2018), which means that merely reducing overfitting may be inade-
quate. Others proposed certifiable training algorithms (Chaudhuri et al., 2011; Abadi et al., 
2016; Wang et al., 2018) to theoretically guarantee that the trained model is differentially 
private. Section 6 will discuss more defenses. Among these defenses, the original training 
data are always exposed to model training, which makes it challenging to defend against 
privacy attacks. Moreover, some defenses bear conditional restrictions, require additional 
architectures and data, or need large time budgets.

In this paper, we propose a novel framework for defending a pre-trained deep learning 
classifier against inference attacks without requiring additional architectures and datasets, 
or special training algorithms. Our key insight is that if we retrain the model with a gen-
erated dataset that (1) is from the same distribution as the original training set but (2) is 
independent of the original training set, then no information about the original training set 
that cannot be inferred from the distribution itself will be available to the retrained model. 
Therefore, the retrained model achieves information-theoretic security against inference 
attacks. However, we do not know the true distribution of the underlying data in practice, 
so we instead turn to approximate it using the empirical distribution via generative models 
based on our original datasets.

Our framework consists of three phases. First, we train a generative model using the 
original training data. Second, we sample from the generative model to create a new data-
set. Finally, we use the new dataset to retrain or fine-tune the original classifier.

Applying generative models creates two potential problems. First, the divergence 
between the original dataset’s empirical distributions and our generated dataset may reduce 
the retrained classifier’s accuracy. Second, the generated dataset may not be completely 
independent of the original dataset. To address these problems, we need to carefully select 
generative models and evaluate our retrained models on classification accuracy and robust-
ness against inference attacks.

Several generative models can produce high-quality examples, including genera-
tive adversarial networks (GANs)  (Goodfellow et  al., 2014), variational auto-encoders 
(VAEs)  (Kingma and Welling 2013), and energy-based models (EBMs)  (Ackley et  al., 
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1985). Recently, Grathwohl et  al. introduced joint energy-based models (JEM). A JEM 
consists of a discriminative model and a generative model that share the same deep net-
work architecture (Grathwohl et al., 2019). We selected JEM to provide the required gen-
erative ability for several reasons. First, since JEM’s generative model can reuse the same 
network architecture of the pre-trained classifiers, we need no architectural engineering. 
Second, sampling from EBMs (including JEMs) is theoretically guaranteed to be asymp-
totically in the true data distribution. Finally, training JEMs requires less computation, 
especially when it is possible to transfer the pre-trained classifier to JEM. This transfer 
learning is efficient because it can inherit the useful features that the pre-trained classifier 
has already learned.

We have performed extensive evaluations for two main objectives. One is to provide 
insight into how different transferring to JEM and model fine-tuning strategies would result 
in our final results. The other is to demonstrate the performance of the model produced by 
our framework under popular membership inference attacks.

For the first objective, we compared different amounts of network transfer from the 
original classifier to the JEM and found that JEM training failed to converge when we 
transferred all the layers from the original classifier to the JEM. By contrast, transferring 
only the early convolutional layers resulted in the fastest convergence. We also compared 
retraining the original classifier with fine-tuning it and found that fine-tuning increased 
both classification accuracy and the attacker’s membership advantage moderately. Mean-
while, for the second objective, our evaluation shows that our framework reduced the 
attacker’s membership advantage from 32.91% on the original model to 2.66% on the 
retrained model on CIFAR-10, and from 25.28% on the original model to 4.55% on the 
retrained model on SVHN,1 while our retrained model suffers a moderate decrease in clas-
sification accuracy. More importantly, by comparing our defense with other state-of-the-
art defenses under adaptive attacks, we show that our defense is effective even under the 
worst-case scenario and can provide better accuracy-robustness tradeoff when combined 
with other defenses.

2 � Background

2.1 � Membership inference attacks

One main category of privacy attacks consists of inference attacks, which contains mem-
bership inference attacks and attribute inference attacks. Membership inference attacks 
aim to infer whether an example was in the target model’s training dataset, e.g., inferring 
whether a patient’s record was used in medical research. Shokri et al. (2017) designed a 
black-box membership inference attack against machine learning models. Subsequently, 
researchers introduced several variants of the attack, such as attacks on GANs (Hayes et al., 
2019), VAEs (Hilprecht & Härterich, 2019), model explanations (Shokri et al., 2019), and 
collaborative learning models  (Nasr et  al., 2019). We focus on mitigating membership 
inference attacks on DNN classifiers in this paper.

A well-known membership inference attack is the shadow-model attack (Shokri et al., 
2017). It requires the attacker to train several shadow models and attack models. To attack 

1  Membership advantage = 2 * attack accuracy − 1
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a victim model, first, the attacker collects or synthesizes data from the same domain as the 
victim classifier’s training and test data, and divides the data into several private training 
and test sets. Then, the attacker uses each of the private training set to train one shadow 
model f i

shadow
 to mimic the behavior of the victim classifier. Next, the attacker sends all the 

examples in each private training and test set to its corresponding shadow model to create a 
dataset D that contains the tuple (y, f i

shadow
(x), I(x)) for each example x , where y is the class 

label of x , f i
shadow

(x) is a vector containing the outputs of the ith shadow model, and I(x) 
indicates whether x is used for training the shadow models. Finally, the attacker partitions 
D based on the examples’ class labels and uses them to train one attack model per class to 
distinguish the training data from the others.

2.2 � Energy‑based models

Energy-based models (EBMs) was proposed long ago (Ackley et al., 1985) and has been 
largely improved during the years (LeCun & Huang, 2005; Hinton et al., 2006). Currently, 
energy-based models can achieve state-of-the-art generative power compared with other 
generative models (Du & Mordatch, 2019), such as GANs and VAEs, but have more flex-
ible architectures because they directly model reasonable energy representations.

An energy-based model represents the probability density function p(x), x ∈ ℝ
D as

where E
�
(x) ∶ ℝ

D
→ ℝ

D is the energy function parameterized by a set of learnable param-
eters � (e.g., a neural network), and Z(�) =

∑
x�∈X exp(−E�

(x�)) is a normalizing constant 
known as the partition function.

Computing Z(�) directly is usually intractable. Instead, we can train the energy-based 
model by computing the gradient of p

�
(x) w.r.t. �:

The detailed derivation of Eq. (2) can be found in “Appendix 1”. At each training step, we 
approximate the expectation in Eq.  (2) by sampling from the current model, using Sto-
chastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011) which is an iterative 
sampling method:

where x0 is uniformly drawn from the valid input domain of the model, the step size � 
decays polynomially, and the noise � is drawn from the normal distribution N(0, �) . SGLD 
is efficient and is provable to asymptotically produce samples from the target distribution.

3 � Design

3.1 � Threat model

A DNN classifier takes an example as input and outputs a vector describing the probabil-
ity that the input belongs to each class (or label). In the concerned membership inference 

(1)p
�
(x) =

exp(−E
�
(x))

Z(�)
,

(2)∇
�
log(p

�
(x)) = �p

�
(x�)∇�

E
�
(x�) − ∇

�
E
�
(x).

(3)xt+1 = xt −
�

2
∇xt

E
�
(xt) + �,



655Machine Learning (2021) 110:651–674	

1 3

attacks, the attacker aims to determine if a given example was used to train the classifier. 
As defenders, our goal of this paper is to protect a pre-trained classifier from such attacks.

We assume the following threat model in this paper:

•	 The attacker has gray-box access to the classifier. She knows the architecture of the 
classifier and can query it using arbitrary examples. However, she knows neither the 
weights nor the activation of nodes inside the classifier.

•	 Even though the attacker does not know the training data of the original classifier, she 
knows the distribution of the training data and can access other datasets from the same 
distribution.

This threat model applies to many real-life scenarios. For example, a company provides 
face recognition service via an API. The attacker can query the API. She may even guess 
the architecture of the classifier. However, she can access neither the weights nor the acti-
vation of nodes inside the classifier. She has no access to the training data, but she can 
collect her own face datasets and use them to launch an attack, e.g., by training a shadow 
model (Shokri et al., 2017).

3.2 � Defense framework

The goal of a classifier is to learn the conditional probability distribution of data. Unfor-
tunately, DNN classifiers tend to overfit the training data and thus enabling membership 
inference attacks. Our insight is that if we replace the training dataset with a new dataset 
that (1) is independent of the training data, and (2) is from the same distribution of the 
training data, then we can mitigate membership inference attacks while retaining the test-
set accuracy of the original classifier.

One straightforward way is to transform individual training examples, e.g., by add-
ing noise. However, this approach has an irreconcilable dilemma: If the transformation is 
small, then the transformed example will be highly correlated with the original example; 
on the other hand, if the transformation is large, then the transformed example may deviate 
from the distribution.

Fig. 1   The three-phase framework of our defense. Transferring the pre-trained classifier to a JEM, sampling 
a new dataset by SGLD, retraining/fine-tuning a privacy-preserving classifier. All phases share a single 
model architecture
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We proposed a new approach to satisfy both properties. Instead of transforming 
individual example, we first learned the distribution of the training data (Sect. 3.2.1), 
and then sampled from the distribution to create a new dataset (Sect. 3.2.2). Finally, 
we used the new dataset to train the classifier (Sect. 3.2.3). Figure 1 summarizes our 
pipeline of performing these steps.

3.2.1 � Train the generative model

We learned the distribution of the training data by training a generative model. GAN 
is a popular option, but we would need to design a suitable GAN architecture and 
carefully tune its hyper-parameters to suit the training data. We aimed to achieve the 
goal by exploiting the original classifier’s generative power such that no extra archi-
tecture engineering is needed. On this point, we created a Joint Energy-based Model 
(JEM) (Grathwohl et al., 2019), which reused the architecture of the original classifier 
but changed its log-likelihood loss to

where

The energy function here is defined as E
�
(x) = − logΣy exp(f�(x)[y]) and f

�
(x)[y] is the out-

put logit of the DNN corresponding to the label y on the input x computed by the original 
classifier.

When training the JEM, the gradient of log p
�
(y|x) is readily available from the DNN 

using back-propagation (as log p
�
(y|x) is simply the negative cross-entropy loss of the 

DNN when used as a classifier). To compute the gradient of log p
�
(x) , we approxi-

mated the expectation in Eq. (2) by sampling from the current model. Specifically, we 
applied Stochastic Gradient Langevin Dynamics (SGLD, Eq. 3) for sampling, which is 
the common choice in many recent energy-based models’ training.

The original goal of JEM was to train both a discriminative model and a generative 
model from scratch (Grathwohl et al., 2019), but that requires sophisticated parameter 
turning and converges slowly. By contrast, since we already had the original classifier 
as a descent discriminative model on which we wished to defend against membership 
inference attacks, we attempted to transfer the classifier to the JEM. Since the JEM and 
the classifier had the same architecture (but with different loss functions), we simply 
used the weights of the original classifier to initialize the JEM. We compared different 
transfer strategies (and the detailed results are deferred to Sect. 4.2):

•	 Transfer all: initialized all the weights in the JEM to their corresponding values in 
the original classifier.

•	 Transfer some: for some layers in the JEM, initialized their weights to their cor-
responding values in the original classifier; for the other layers, initialize their 
weights randomly.

•	 Transfer none: initialized all the weights in the JEM randomly.

(4)log p
�
(x, y) = log p

�
(x) + log p

�
(y|x),

(5)p
�
(x) =

exp(−E
�
(x))

∑
x�∈X exp(−E�

(x�))
and p

�
(y�x) =

exp(f
�
(x)[y])

∑
y� exp(f�(x)[y

�])
.
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3.2.2 � Sample from the generative model

In fact, when we trained the JEM, according to Eqs. (2) and (3), we needed to sample from 
the generative model of the JEM at every training iteration. However, sampling that starts 
from random noise every time can result in a large computational overhead. In practice, we 
kept the examples that we used to approximate the gradient of log p

�
(x) during SGLD in a 

replay buffer. Specifically, the replay buffer works under the following procedure. Initially, 
the fixed-sized replay buffer is filled with random noise. Whenever we sample a new exam-
ple, we will randomly select an entry in the replay buffer and use it as the starting point of 
SGLD, and the new sample will replace the original entry as a new seed for the next time 
selected. The replay buffer is dynamically updated at each training iteration and thus can 
gradually boost the sampling speed and quality.

After we obtained a well-trained JEM, we sampled from its generative model p
�
(x) to 

create a set for training the final privacy-preserving classifier. We leveraged the replay 
buffer to get samples from the generative model similar to in training. We also randomly 
selected seeds from the replay buffer and then used SGLD to acquire samples according to 
Eq. (3). We will discuss how the replay buffer size would affect the final classifier’s genera-
tion quality and performance in Sect. 4.2.1.

3.2.3 � Fine‑tune the classifier

After we collected enough samples as a new training set from the generative model, we 
were ready to train the final privacy-preserving classifier. A straightforward way was to 
retrain the final classifier from scratch by randomly initializing all its weights. Retraining 
provides the best privacy protection because no information was left over from the original 
privacy-sensitive training data. However, if the generated data were inadequately diversi-
fied as they cannot approximate the true data distribution better than the original training 
data, the resulting classifier’s test accuracy might deteriorate comparing to the original one. 
Considering the trade-off between classification accuracy and membership robustness, we 
can also fine-tune the original classifier either fully or partially. We compared these three 
strategies (train from scratch, fine-tune partially, and fine-tune fully) in terms of test accu-
racy and robustness against membership inference attack in Sect. 4.3, where the proposed 
framework will also be compared with other effective defenses to membership inference 
attacks empirically.

As we will see in Sect. 4.3, by the nature of JEM and SGLD sampling, the generated 
dataset would have a similar distribution with the real dataset. Thus, the model would only 
drop little accuracy even if it was retrained from scratch by the generated dataset. We pro-
vide more visualized evidence in “Appendix 5”.

4 � Evaluation

4.1 � Experiment settings

To evaluate the effectiveness of our approach, we performed an extensive empirical study. 
First, we evaluated our JEM on its discriminative model’s accuracy and the quality of the 
examples sampled from its generative model. Then we evaluated how different training 
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settings, including replay buffer size and early stopping, would affect our result. Next, 
we evaluated the retrained/fine-tuned classifier on classification accuracy and robustness 
against membership inference attacks. Finally, we compared our defenses with other state-
of-the-art defenses to further demonstrate the effectiveness of our defense.

We used WideResNet  (Zagoruyko & Komodakis, 2016) as our network architecture, 
the same as used by Grathwohl et al. (2019). We used two datasets: CIFAR-10 contains 
colored natural objects of 10 classes (Krizhevsky et al., 2009), and SVHN contains colored 
digital photos of street house numbers (Netzer et al., 2011).

Unless specified otherwise, all the models (JEMs, shadow models, and attack models) 
were selected at the point of best validation accuracy.

4.2 � Training efficiency of JEM

JEM contains a discriminative model (classifier) p(y|x) and a generative model p(x) , both 
sharing the same network architecture. When training JEM from scratch, it requires sophis-
ticated parameter tuning and considerable time to converge. Since we already had the pre-
trained original classifier, our JEM used the same architecture as the original classifier. We 
compared the three schemes for transferring the weights from the original classifier to our 
JEM introduced in Sect. 3.2.1. The WideResNet network in our JEM has 90 convolutional 
layers (the others are mainly batch-normalization layers). The three schemes are:

•	 Transfer all (or transfer 90/90): Transfer all the 90 convolutional layers from the origi-
nal classifier to JEM.

•	 Transfer some (or transfer 50/90): Transfer the early 50 convolutional layers from the 
original classifier to JEM.

•	 Transfer none (or transfer 0/90): Do not transfer.

Any weight not transferred from the original classifier was randomly initialized in the JEM.
Figure 2 shows the training curves of the transfer learning schemes. It shows that when 

we used the entire pre-trained classifier to initialize the JEM (i.e., transfer all), training was 
hard to converge. We explain this difficulty by the following phenomenon. Given an exam-
ple and its label (x, y) , a trained classifier is expected to output a high confidence in class 

Fig. 2   Training curves of differ-
ent transfer learning schemes
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label y , e.g., a high p(y|x) . However, the converse is not true, which means that even when 
the classifier outputs a high confidence in the label y on another example x′ , we cannot 
conclude that x′ is likely from the same distribution as x . So the original network, which 
was solely optimized over p(y|x) , may have very poor performance in terms of describing 
p(x) . This phenomenon also makes deep learning models vulnerable to adversarial exam-
ples (Szegedy et al., 2013), which are specially crafted examples to make models output 
different decisions than humans.

By contrast, when we transfer only some of the convolutional layers from the origi-
nal classifier to the JEM, training became more stable and easily converged. This is likely 
because early convolutional layers mostly contain low-level features extracted from the 
training images, which are more likely to be shared between the discriminative model 
p(y|x) and the generative model p(x) . Consequently, between transferring some layers (i.e., 
transfer 50/90) and training from scratch (i.e., transfer 0/90), the former also converged 
faster. See for example Fig. 3, it shows that the accuracy of the discriminative model dur-
ing training converged faster when we transferred some convolutional layers than training 
from scratch.

Fig. 3   Accuracy of JEM’s 
discriminative model during 
training

Fig. 4   Image quality during training. At each epoch, we randomly sampled 500 images for calculating the 
Inception Score and Fréchet Inception Distance
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Figure 4 further shows how the Inception Score (IS) (Salimans et al., 2016) and Fréchet 
Inception Distance (FID) (Heusel et al., 2017) of the images sampled from the generative 
model of the JEM changed during training. Inception Score and Fréchet Inception Distance 
are commonly used to assess image generation in terms of image quality and variety. We 
can see that the transfer learning scheme (i.e., transfer 50/90) improved image quality faster 
during training than training from scratch.

4.2.1 � Size of the replay buffer

After training the JEM, we sampled images from its generative model to create a dataset 
for fine-tuning/retraining the classifier for protecting data privacy. As Sect. 3.2.2 described, 
during each iteration of JEM training, we stored the example that was used to approximate 
the gradient of p(x) in a replay buffer. To get a sample from the generative model, we 
randomly selected an entry from the replay buffer as the start point and then used SGLD 
to acquire a sample. In other words, the replay buffer contained high-quality seeds based 
on which we sampled from the distribution. On the one hand, larger replay buffers allow 
us to acquire samples with greater variety, which will improve the generalizability of the 
retrained classifier. But on the other hand, since the size of the replay buffer is linear in the 
number of training iterations, a larger buffer will require longer training time.

Table 1 shows how replay buffer size (i.e., number of seeds in the buffer) affects the 
accuracy of the retrained classifier. We trained the JEM with different buffer sizes. On each 
buffer size, we sampled the same number of images from the replay buffer and used them 
to retrain the original classifier (i.e., used the architecture of the original classifier but ini-
tialized its weights randomly). As we expected, a larger buffer size increased the accuracy 
of the retrained model. The user of our framework needs to balance the trade-off between 
the training time of the JEM and the accuracy of the retrained classifier.

In the following experiments, we set the replay buffer size to 100 000 and transferred 
the early 50 convolutional layers of the original classifier to the JEM.

4.2.2 � Early stopping

Normally we stop the training of the JEM when its generative model achieves the best 
validation accuracy. However, this usually takes a long time. Since our goal is not to train 
the best generative model but to train a good enough generative model to generate high-
quality examples, we could stop the training early, but how will this affect the quality of the 
sampled images and the retrained/fine-tuned classifier’s accuracy and robustness against 
membership inference attacks?

Figure 5 compares the images sampled at the end of the 10th epoch (Fig. 5a) with those 
at the end of the 50th epoch (Fig.  5b). It shows that even though more photo-realistic 
images appeared at the later epoch, some photo-realistic images also appeared at the earlier 

Table 1   The impact of the size of 
the replay buffer on the accuracy 
of the retrained classifier. We 
retrained the classifier for 10 
epochs

Buffer size Classification accuracy (%)

CIFAR-10 SVHN

10,000 54.27 81.62
50,000 74.34 84.14
100,000 80.19 87.98
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epoch. In our experiments, we used the original classifier as a quality filter where a sam-
pled image passes the filter only if the original classifier outputs a high confidence in its 
class label. This filter allows us to stop the JEM training early “safely”.

Figure 6 shows the impact of early stopping of JEM training on the privacy and test-set 
accuracy of the retrained classifier. Figure 6a shows that the accuracy of the discrimina-
tive model of the JEM increased rapidly during the first 10 epochs but much slower after 
that, and more importantly, the same trend can be observed in the test-set accuracy of the 
retrained classifier (trained using data generated by the JEM model collected at the cor-
responding epoch). Therefore, early stopping may be desirable for better efficiency of our 
framework when the discriminative model of JEM reaches an acceptable classification 
accuracy. Figure 6b shows that the attack accuracy barely changed as the training of JEM 
progressed, i.e., in the context of privacy-preserving, retraining or fine-tuning the final 

(a) Sample from the 10th epoch (b) Sample from the 50th epoch

Fig. 5   Synthesized images from different training epochs for CIFAR-10. The left were sampled from the 
10th epoch, and the right were sampled from the 50th epoch. While the right samples have higher quality, 
there are also lots of photo-realistic samples in the left, which only took 1/5 training time

Fig. 6   Impact of early stopping on the regular accuracy and on the attack accuracy of the retrained CIFAR-
10 classifier
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classifier using data generated after 10 epochs of the JEM training can be as effective as 
using data generated after 50 epochs. This phenomenon supports our hypothesis that the 
data sampled from the generative model of JEM are independent of the original training 
data, no matter how long the JEM has been trained.

4.3 � Privacy of the final classifier

4.3.1 � Robustness against shadow‑model attack

After retraining or fine-tuning the original classifier, we performed the shadow-model 
attack (Shokri et al., 2017) on (1) the original classifier, (2) the fine-tuned classifiers, and 
(3) the retrained classifier using our framework. We use Membership advantage (or sim-
ply advantage) to measure the amount of information leaked to the attacker (Yeom et al., 
2018):

which equals the difference between the true positive rate and the false positive rate of the 
attacker.

The row with the label “Ours” in Table 2 reports the performance of our defenses. It 
shows that our retrained or fine-tuned classifiers significantly reduced the attacker’s advan-
tage, from 32.91 to 2.66% on CIFAR-10 and from 25.28 to 4.55% on SVHN. It also com-
pares fine-tuning the original classifier and retraining it. The results show that the fully 
fine-tuned classifier (i.e., obtained by fine-tuning all the 90 convolutional layers) achieved 
the highest accuracy while giving the attacker slightly more advantage than the retrained 
classifier, while the retrained classifier gave the attacker the smallest advantage with a 
slight decrease in the accuracy. Besides classification accuracy and attacker advantage, 
another factor to consider when making the trade-off is training time, as fine-tuning takes 
less time to converge than retraining.

4.3.2 � Comparison with other defenses

For comparison, we also implemented several state-of-the-art defenses that have been 
shown effective against membership inference attacks.

We have selected the following defenses for comparison: standard regularizations 
( L2 Reg. and Dropout)  (Shokri et  al., 2017), Min–Max adversarial regularization  (Nasr 
et al., 2018), DP-SGD (Abadi et al., 2016). Note that we mostly selected regularization-
based defenses for comparison, since output masking based defenses, such as MemGuard 
and output vector truncation, have been shown ineffective under black-box label-only 
attacks  (Choo et  al., 2020). Regularization-based attacks can keep their performance as 
they directly adjust the discriminative features learned by the model. Our attack can also be 
categorized as a regularization based defense. Additional evaluations for label-only attacks 
can be found in “Appendix 3”.

As successfully defending against vanilla attacks does not really guarantee privacy, 
we considered adaptive attacks when evaluating all defenses, which means the attackers 
have the knowledge of which defense algorithm and what hyper-parameters may have been 
applied to training the target model, so that they can plug these algorithms into their own 
shadow models. In most cases, there is no straightforward adaptive attack to our defense, 
since we essentially substituted the training dataset with a randomly generated dataset that 

Membership advantage = 2 ⋅ Attack accuracy − 1



663Machine Learning (2021) 110:651–674	

1 3

Table 2   Membership advantage of the shadow-model attack and regular accuracy of different target mod-
els, including the original classifier and all defended classifiers. Note that Membership advantage = 2 * 
Attack accuracy − 1. Detailed attack accuracy table for each class label can be found in the “Appendix 2”

†Evaluation under the worst-case scenario which is somewhat unlikely to occur
*d: dropout ratio, w: weight-decay rate, � : standard derivation of the white Gaussian noise

Defense Setting* Membership advantage 
(%)

Regular accuracy (%)

(a) CIFAR-10
None – 32.91 85.60
Ours Fine-tune (90/90) 14.01 83.97

Fine-tune (50/90) 9.45 81.32
Retrain 2.66 80.19
Retrain

† 12.86 80.19
Dropout d = 0.2 33.63 87.26

d = 0.4 32.60 88.59
d = 0.6 31.42 90.47
d = 0.8 27.04 91.07

L
2-Reg. w = 0.001 20.45 84.33

w = 0.01 8.78 71.94
DP-SGD � = 0.001 24.05 83.91

� = 0.01 23.06 83.79
Min–Max – 23.94 79.81
Combined Retrain

†+DP(�=0.001) 12.74 80.55

Retrain
†+DP(�=0.01) 2.41 79.89

Retrain
† + Min–Max 2.55 80.14

(b) SVHN
None – 25.28 94.98
Ours Fine-tune (90/90) 8.81 90.72

Fine-tune (50/90) 6.57 88.42
Retrain 4.55 87.98
Retrain

† 19.74 87.98
Dropout d = 0.2 22.63 94.91

d = 0.4 22.62 95.45
d = 0.6 24.14 96.07
d = 0.8 23.53 96.25

L
2-Reg. w = 0.001 22.05 95.28

w = 0.01 – Not converged
DP-SGD � = 1.0 16.78 82.19

� = 2.0 14.59 70.05
Min–Max – 14.45 94.75
Combined Retrain

† + DP(� = 1.0) 20.54 74.54

Retrain
† + DP(� = 2.0) 12.39 60.80

Retrain
† + Min–Max 12.84 86.51
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would be different every time we do the sampling. However, in order to perform a more 
thorough and fair evaluation, we considered the following case: the attacker has direct 
access to the exact generated samples we used for fine-tuning or retraining. Although not 
quite possible in reality, it is the worst-case scenario for our defense, where all the training 
set information included in the final model, if any, would be revealed to the attacker.

Moreover, we observed that our defense is orthogonal with the other defenses. In other 
words, our defense can work simultaneously with other defenses to achieve possibly even 
better performance, so we also evaluated several combined methods to see whether our 
defense can boost other defenses’ performance. Note that all the combined methods with 
our defense were evaluated in the worst-case scenario described in the previous paragraph.

The detailed results are also shown in Table 2. The most effective defenses under adap-
tive attack are large L2 regularization or large DP. However, as shown in multiple previous 
works, large regularization can result in degradation in model accuracy. From the “Regular 
accuracy” column, we can see that large L2 regularization or DP severely harmed the mod-
el’s regular accuracy with a more than 20% decrease of accuracy. At the same time, even 
if our defense is under the worst-case adaptive attack, the defended model can still keep an 
acceptable accuracy while achieving high membership robustness. Interestingly, we found 
that the combined defenses often achieve much better robustness against adaptive attacks 
than individual defenses while having better regular accuracy than large L2 regularization 
or DP. Although the trade-offs between the model accuracy and membership robustness 
are inevitable, a proper combination of defenses may provide us with smaller trade-offs to 
achieve better performance in both.

5 � Discussion

5.1 � Privacy analysis of JEM

As described in Sect. 3.2.3, we either retrained or fine-tuned the original classifier by using 
new data generated from a JEM, which is transferred from the original classifier, aiming to 
make it more privacy-preserving. A natural curiosity is if we can directly use the discrimi-
native model of the JEM as a robust classifier against membership inference attacks since 
JEMs are more likely to have learned from the underlying data distribution and have better 

Fig. 7   Comparison of the attack-
er’s advantage when launching 
the shadow-model attack on the 
original classifier, the JEM’s dis-
criminative model, and our fully 
fine-tuned classifier, respectively
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generalization ability by their nature. In fact, it has been shown that JEMs are more robust 
against adversarial examples (Grathwohl et al., 2019).

Therefore, we performed a direct evaluation by applying the shadow-model attack 
on JEM’s discriminative part. Figure 7 compares the advantage of the attacker using the 
shadow-model attack on the JEM’s discriminative model, the original classifier, and our 
fully fine-tuned classifier, respectively. Unfortunately, it shows that the JEM’s discrimina-
tive model is no better than the original classifier in terms of robustness against member-
ship inference attacks, but our fine-tuned model is much more robust than both of them.

Since JEM is a joint model with both discriminative and generative ability, we also try 
to provide some insights into JEM’s generative model’s robustness against membership 
inference attacks for completeness. In the black-box setting, the attacker has no informa-
tion about the generative model. However, if we consider the white-box scenarios where 
the attacker can access the JEM weights, we found that JEM’s generative model might also 
be vulnerable to membership inference attacks. Specifically, if we apply the training data as 
the initialization of the SGLD sampling using a well-trained JEM and proceed with many 
sampling steps, the resulting images will be more likely to be close to the original ones. 
On the other hand, if the sampling starts from other images from the same distribution but 
not inside the training data, the resulting images have a high probability of containing a 
different object of the same class. Figure 8 shows the phenomenon described above. This 
phenomenon might be leveraged to design membership inference attacks on JEM’s genera-
tive model.

A question following our observations of JEM’s privacy would be: can we build a robust 
JEM? In this paper, our framework is a multi-phase transfer learning process designed for 
pre-trained classifiers. It requires us to train two models: the JEM transferred from the 
original classifier and the fine-tuned privacy-preserving classifier. However, it is possible 
to apply an integrated training strategy that directly trains a privacy-preserving JEM by 
gradually replace the training data by generated samples during training.

Since studying the robustness of JEM against privacy attacks is outside the scope of this 
paper, we only provide some preliminary results and will leave the topic of improving the 
privacy robustness of JEMs as future work.

5.2 � Other limitations and future work

Different threat models The threat model that we are using considers the grey-box attack. It 
allows the attacker to have knowledge of the target model’s architecture. On the one hand, 

Fig. 8   SGLD results start from 
samples inside/outside the 
training dataset. If starting from 
training data, the SGLD gener-
ated samples are more likely to 
keep the original objects inside 
the images. On the other hand, if 
starting from non-training data, 
the samples may become other 
randomly generated objects of 
the same classes as the original 
ones

Start from training data
========================⇒

1000 steps

Start from non-training data
========================⇒

1000 steps
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we consider a stronger attacker to evaluate the worst-case vulnerability of the target model 
and our defenses, and we should even consider a white-box scenario where the attacker has 
full access to the models in the future. On the other hand, we may also want to know how 
is the attacker’s realistic performance when less or even no information about the model 
is provided. We showed some empirical results in “Appendix 4” to provide some insights.

Moreover, our work only protects against membership inference attacks, and it would be 
interesting to apply the key ideas behind our framework to defending against other privacy 
attacks, such as model inversion attacks.

Training efficiency Though much simpler than training GANs, training JEMs is still 
slower than training classifiers. Moreover, JEM training faces many similar problems 
as training other generative or hybrid models, e.g., requiring careful selection of hyper-
parameters. This paper introduced a new, efficient training strategy by transferring from 
pre-trained classifiers. Since optimizing the JEM training algorithm is out of the scope of 
this paper, we leave as future work ways to maximize the features and information that we 
can borrow from the pre-trained classifier.

6 � Related work

Membership inference defenses Though it seems impossible to eliminate privacy attacks 
due to the intrinsic property of statistical inference, many methods were proposed to reduce 
the advantage that the attacker can obtain from such attacks. Current defenses can be 
roughly put into two categories. The first is regularization based defense, and the second is 
model output vector obfuscation.

Regularization based defenses are shown effective towards every kind of membership 
inference attacks. Using standard regularization such as L2 regularization and Dropout as 
membership inference mitigation strategies are proposed together with the shadow model 
attack by  Shokri et  al. (2017). These standard regularization techniques also have been 
shown effective in enhancing privacy in other literature  (Jain et  al., 2015; Salem et  al., 
2018). Nasr et al. (2018) proposed an adversarial regularization technique, which tries to 
optimize a min–max game that simultaneously takes into account the model accuracy and 
membership robustness. Besides, Differential Privacy (DP)  (Dwork 2008) has been fre-
quently leveraged in defending against membership inference attacks, such as (Chaudhuri 
et al., 2011; Abadi et al., 2016; Wang et al., 2018). DP-based defenses try to theoretically 
ensure a differentially private training algorithm by inducing random noises, either in loss 
functions or in each optimization step. Once a model is differentially private, it can guaran-
tee each data point’s worst-case privacy risk.

The second category of defenses tries to increase the difficulty of training an attack 
model. The most straightforward strategies are output vector masking strategies, such as 
truncating the output vector to top-k classes, restricting the precision of the output that is 
revealed to the attacker, or increasing the entropy of the output towards uniform distribu-
tion. Besides simple output vector masking strategies, Jia et al. (2019) proposed another 
direction to mislead the attack models via adversarial attacks  (Szegedy et  al., 2013). By 
adding specially crafted adversarial perturbations to the model output, they could fool the 
attacker to infer given examples as wrong classes, thus increasing the attack difficulty. 
Unfortunately, these defenses have been shown ineffective against label-only attacks (Choo 
et al., 2020), which requires no information on the output vector.
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Other defenses are from the perspective of keeping part of the information secret. Xiang 
et al. (2019) proposed to leverage the complex-valued neural networks, and to use a ran-
domly generated rotation angle � and complex counterpart b secrets, thus making it hard 
for the attacker to infer information from the transformed input exp(i�)[a + bi].

The aforementioned defenses either face restrictions to meet the theoretical conditions, 
require additional architectures or require large computational overhead. More importantly, 
the original training data are still directly exposed to the model training procedure. By con-
trast, we propose to defend against membership inference attack from a different perspec-
tive: generating samples from the same data distribution and hide the real training data. 
As we have shown, our method is straightforward and applies to all the current classifiers 
without requiring any additional architecture.

Other privacy attacks Besides membership inference attacks introduced in Sect. 2, there 
are also other privacy attacks. For example, attribute inference attacks aim to infer prop-
erties that should not be exposed to the public, such as background environment or gen-
der information of a target in human face recognition systems. Ganju et al. (2018) tried to 
obtain properties by permutation invariant representations. Melis et  al. (2019) also con-
sidered attribute inference in collaborative learning settings. Yeom et  al. (2018) showed 
that membership inference attack is highly related to property inference attack in the way 
that they are both highly related to the overfitting problem. They also showed that property 
inference attack is harder to succeed than membership inference attacks.

Another category of attacks that also tries to extract information of data is the model 
inversion attack. Model inversion attack was first proposed by Fredrikson et al. (2015). It 
tries to inversely generate the original inputs of a target machine learning model given out-
puts or activations of the intermediate layers. Besides the attacks towards data, there also 
exist attacks that aim to steal the machine learning models (Tramèr et al., 2016; Wang & 
Gong, 2018).

Among all these attacks, the privacy vulnerabilities in machine learning models can 
cause severe privacy leaks when it comes to models used in areas where each single data 
point should be kept confidential. In this paper, we focus on defending against membership 
inference attacks.

7 � Conclusion

We proposed a simple yet effective framework to protect pre-trained classifiers from mem-
bership inference attacks. We exploited the hidden generative power in a classifier by trans-
ferring it to a Joint Energy-based Model (JEM). We efficiently sampled data from the JEM 
to create a new dataset, which is independent of the original training set and is from the 
same distribution. Then, we used this new dataset to retrain or fine-tune the original clas-
sifier. We performed extensive empirical studies to evaluate different learning strategies 
and our framework’s effectiveness against membership inference attacks. Our framework 
significantly reduced the attacker’s membership advantage, from 32.91% on the original 
model to 2.66% on the retrained model on CIFAR-10, and from 25.28% on the original 
model to 4.55% on the retrained model on SVHN, while maintaining acceptable classifica-
tion accuracy, which means it is an effective defense against membership inference attacks. 
Moreover, by comparing with other state-of-the-art defenses, we showed that our defense 
could maintain effective under the worst-case scenario and provide better accuracy-robust-
ness trade-off when combined with other defenses.
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Appendix 1: Derivation of Eq. (2)

We provide a detailed derivation of Eq. (2) which computes the gradient of p
�
(x) . Given 

p
�
(x) =

exp(−E
�
(x))

Z(�)
 and Z(�) =

∑
x�∈X exp(−E�

(x�)) , we have:

Appendix 2: Detailed attack results

For best performance, shadow-model attack (Shokri et al., 2017) trains a separate attack 
model for each class label of the target model. Table 3 shows the detailed attack accu-
racy for each class label for the CIFAR-10 and SVHN dataset. The membership advan-
tage in Table 2 is computed based on these raw results.

Appendix 3: Evaluation of the label‑only attack

Recently, Choo et  al. (2020) proposed the label-only membership inference attack, 
which only requires output labels instead of output logits from the target model. The 
label-only attack has close performance compared with shadow-model attack. Surpris-
ingly, though regularization based defenses are still effective, their attack can easily 
break output masking defenses such as MemGuard (Jia et al., 2019). We mainly evalu-
ated the shadow-model attack in the paper. Since our defense directly functions during 
model training, it should be resistant to label-only attack if it can perform well under the 
shadow-model attack.

For completeness, we also evaluated our framework on CIFAR-10 and SVHN under 
the label-only attack to provide empirical evidence that our defense is still robust under 
the label-only attack. In this experiment, we use the same experiment settings in the 
label-only attack paper: a set of 5000 images, and the HopSkipJumpAttack (Chen et al., 
2020) for the black-box adversarial attack. The results are listed in Table 4.
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From the table, we can find that our defense can still reduce the attack performance 
to nearly random guess (around 50%).

Appendix 4: Shadow models trained by different architectures

Current literature in membership inference attack usually considers the grey-box threat 
model proposed in Shokri et al. (2017), where the attacker has full knowledge of the target 
model’s architecture. However, in this section, we will show some empirical results to pro-
vide insights on how using a different model architecture for the shadow model will affect 
the attack performance.

In the experiment, we consider three possible scenarios: (1) the attacker uses the same 
architecture as the target model, (2) the attacker uses a minor variation of the target model, 
and (3) the attacker has no knowledge of the target model and use an entirely different 
architecture for shadow models.

Specifically, the original model is a 28 × 10 WideResNet (Zagoruyko and Komodakis 
2016) and is undefended. We applied a 34 × 10 WideResNet for the second scenario and 
a VGG19  (Simonyan and Zisserman 2014) network for the third scenario. The training 
parameters for the first and second scenarios are the same. All experiments are done on 
CIFAR-10.

The results are shown in Table 5. We can see that using a minor variation of the origi-
nal model for the shadow model attack can achieve very close performance to using the 
real architecture. However, using an entirely different model architecture resulted in failed 
attacks, which indicates that hiding the original model architecture from the attacker is a 
feasible strategy to prevent membership inference attacks based on shadow models. Further 
study on this topic will be left as future work.

Table 4   Evaluation results of the 
label-only attack

Defenses Attack performance (%)

CIFAR-10 SVHN

Accuracy Precision Accuracy Precision

No defense 81.08 75.48 60.15 66.67
MemGuard 80.90 53.06 59.35 55.17
Ours (retrain) 51.28 50.14 50.55 53.81

Table 5   Results of shadow model attacks on CIFAR-10 of different shadow model architectures. The target 
model of the attack uses WRN(28 × 10)

Architecture Attack accuracy (%)

Target class Average

0 1 2 3 4 5 6 7 8 9

WRN(28 × 10) 65.74 59.89 71.40 75.11 68.39 70.81 65.13 64.20 61.64 62.25 66.46
WRN(34 × 10) 64.4 58.2 66.85 73.78 67.59 69.92 64.48 63.12 60.38 61.43 65.01
VGG19 50.27 49.66 49.86 53.5 49.91 50.3 49.89 50.28 49.84 49.64 50.31
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Appendix 5: Quality of the generated dataset

Since the accuracy of our defended model is highly dependent on the quality of the 
generated dataset. The divergence between the real data distribution and the generated 
data distribution may cause a great loss in the model accuracy. In addition to Fig.  5, 
we provide more visualized evidence to show how well is the dataset sampled from the 
JEM in Fig. 9. Specifically, we applied t-SNE (Maaten and Hinton 2008) on 500 random 
samples from the CIFAR-10 training dataset, 500 random samples from the CIFAR-10 
testing dataset, and 500 random samples from the generated dataset. We can observe 
that the generated dataset can very well catch the real data distribution.
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