
On the Origin of Mobile Apps:
Network Provenance for Android Applications

Ryan Stevens
UC Davis

rcstevens@ucdavis.edu

Jonathan Crussell
UC Davis

jcrussell@ucdavis.edu

Hao Chen
ShanghaiTech University

chenhao@shanghaitech.edu.cn

ABSTRACT
Many mobile services consist of two components: a server
providing an API, and an application running on smart-
phones and communicating with the API. An unresolved
problem in this design is that it is difficult for the server
to authenticate which app is accessing the API. This causes
many security problems. For example, the provider of a pri-
vate network API has to embed secrets in its official app
to ensure that only this app can access the API; however,
attackers can uncover the secret by reverse-engineering. As
another example, malicious apps may send automatic re-
quests to ad servers to commit ad fraud.
In this work, we propose a system that allows network

API to authenticate the mobile app that sends each re-
quest so that the API can make an informed access con-
trol decision. Our system, the Mobile Trusted-Origin Pol-
icy, consists of two parts: 1) an app provenance mechanism
that annotates outgoing HTTP(S) requests with informa-
tion about which app generated the network traffic, and 2)
a code isolation mechanism that separates code within an
app that should have different app provenance signatures
into mobile origin. As motivation for our work, we present
two previously-unknown families of apps that perform click
fraud, and examine how the lack of mobile origin information
enables the attacks. Based on our observations, we propose
Trusted Cross-Origin Requests to handle point (1), which
automatically includes mobile origin information in outgo-
ing HTTP requests. Servers may then decide, based on the
mobile origin data, whether to process the request or not.
We implement a prototype of our system for Android and
evaluate its performance, security, and deployability. We
find that our system can achieve our security and utility
goals with negligible overhead.

1. INTRODUCTION
Many mobile services consist of two components: a server

providing an API, and an application running on smart-
phones and communicating with the API. An unresolved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09-11, 2016, New Orleans, LA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857712

problem in this design is that it is difficult for the server
to authenticate which app is accessing the API. For exam-
ple, Snapchat1 wishes to allow only its official app to access
its API. However, attackers reverse-engineered the API and
produced malicious third-party apps to steal Snapchat users’
credentials and photos [11]. Unfortunately, there is no ro-
bust way to protect against such an attack on Android or
iOS. For example, common iOS HTTP libraries automati-
cally include the app’s name in the HTTP header of outgoing
requests, but attackers can easily forge the header either by
setting the value manually or by using sockets directly. As
long as apps can use sockets directly, relying on HTTP li-
braries to provide app provenance in HTTP requests would
be insufficient. An alternative is to embed a secret key in
the app to create an authentication token for accessing the
API, but attackers can reverse-engineer the app to uncover
the secret, as in the case of Snapchat. Clearly we need a
better solution.

To solve this problem, we propose a system that inserts
unforgeable app provenance in outgoing requests, which the
servers can then use to identify the app making the request.
To do so, we add a network proxy on the device that observes
all outgoing HTTP(S) communications and injects an app
identifier into the HTTP header (this approach could be ex-
tended to work with other application layer protocols, but
as we will show in Section 8.3, the majority of apps commu-
nicate over HTTP). This unforgeable app identifier in the
header allows the server to identify the app and enforces ac-
cess control accordingly. The benefit of using a proxy is that
the proxy is agnostic to how the network requests were gen-
erated, including using HTTP libraries, sockets, WebView,
or native code (in Android). In Section 6, we build such a
system for Android and evaluate it in Section 7. We call this
approach Trusted Cross-Origin Requests (TCOR for short),
as we trust the operating system to add the unforgeable
header. If widely deployed, it would enable private network
APIs for apps, and even enable API providers to “sell” their
API to developers without fear of API keys being stolen.

However, the proxy alone can identify provenance only at
the app granularity, which cannot detect all forgery attacks
because of the way how mobile apps are developed. For ex-
ample, on Android, many apps include ad libraries to display
ads to generate revenue. These ad libraries are provided by
a third party called an ad provider, but are included as part
of the app’s code. Thus, our proxy presented above would

1Snapchat is a smartphone messaging service that allows
users to send ephemeral images that cannot be stored by
the receiver.

not be able to distinguish between ad requests generated by
the ad library and those forged by the app. When apps au-
tomatically generate ad requests without user interaction,
they are committing ad fraud, as no real user is viewing or
clicking ads. To motivate the need to protect against such
an attack, we present two previously-undisclosed families of
Android click fraud malware in Section 3. To defend against
this attack, we need a mechanism to divide an app’s code
into different mobile origins — e.g., app code and ad library
— so that the proxy can distinguish network requests by mo-
bile origin and tag the correct mobile origin in the HTTP
header. Since inner-app code isolation has been studied in
Android, we use an existing system called LayerCake [21]
for implementing code isolation in our system.
We have discussed the need for two security mechanisms

in smartphone operating systems: app provenance in net-
work requests and inner-app code isolation. We will call the
combination of these mechanisms the Mobile Trusted-Origin
Policy (MTOP for short), loosely motivated by browsers’
Same-Origin Policy. Our contributions are as follows:

• We propose the Mobile Trusted-Origin Policy and Trusted
Cross-Origin Requests to provide both app provenance
in network requests and inner-app code isolation to en-
able private network API and defend against ad fraud.

• We report two previously-unknown families of click
fraud apps by leveraging existing methodology for de-
tecting ad fraud behavior in apps and clustering apps
based on code similarity. For each family, we classify
their fraudulent behavior and identify what aspects of
mobile systems they use to perform fraud.

• We implement Mobile Trusted-Origin Policy on An-
droid and evaluate its performance, security, and de-
ployability. We find that our system can achieve our
security and utility goals with reasonable performance
overhead.

2. BACKGROUND

2.1 Android Advertising
Figure 1 shows an overview of Android app advertising:

• The publisher is the app owner that is paid to show ads
in her app. Publishers register with ad providers, who
maintain relationships with publishers and marketers.
Marketers pay ad providers to have their ads shown.

• An ad provider gives a registered publisher an ad li-
brary to embed in her app and a publisher ID to iden-
tify her. The ad library has an API to display ads.

• When instructed to show an ad, the ad library sends
an ad request to the ad provider’s ad server. The ad
request contains the publisher ID and any ad targeting
information (e.g. the user’s age or gender).

• The ad server responds with ad metadata that includes
a URL for the ad’s content and a click URL where to
redirect the user if the ad is clicked.

• Publishers are paid for impressions, where an ad is
successfully requested and shown, and for clicks, when
the user clicks the ad. Clicks are tracked by redirecting
the user through the ad server before sending them to
the marketer’s webpage.

Device

Ad Server Marketer
Website

Ad Request

Ad Response

Ad Click Redirect

Application

Ad
Library Impression

Figure 1: Overview of the Android in-app advertis-
ing model.

The primary difference between this ad serving model and
the web ad serving model is how ad code is included with
the publisher’s content. Instead of code libraries, websites
include external Javascript through <iframe> objects, called
ad tags. This is necessary as the Javascript code must be
hosted on the ad server to make network requests to the
server due to the restrictions of the Same-Origin Policy.
Once the ad request is made, the infrastructure to select
and track ad views remains unchanged. In fact, many ad
libraries choose to implement the requesting and display of
ads by opening web ad tags in a WebView environment, which
acts as an embedded browser in the app’s UI.

3. MOTIVATION
In this section we motivate the need to mediate apps’ net-

work requests via MTOP. We first discuss private web APIs
and then present two previously unpublished families of An-
droid click fraud malware.

3.1 Private Web APIs
As previously mentioned, it is difficult for a network API

provider to reliably ensure that only its mobile app can ac-
cess its API. This difficulty contrasts with the case of such
APIs for web apps, because web code is restricted by the
Same-Origin Policy, preventing a web app on another web-
site from completing a cross-domain network request. A
recent study by Viennot, et. al. [26] found that thousands
of apps embedded authentication tokens for web services,
including API tokens for cloud computing services such as
Amazon Web Services, as well as OAuth tokens for various
social media sites. This is a high security risk because at-
tackers can uncover these tokens by reverse-engineering, but
developers have no other solutions for authenticating their
apps with network APIs. Once an API token has been dis-
covered, attackers can craft phishing apps or trojans that
imitate the functionality of a legitimate one while secretly
stealing user credentials or monitoring their behavior, as
mentioned with Snapchat in the introduction. In addition,
unscrupulous developers could use competitors APIs to bol-
ster their own apps’ functionality. All this can be done with-
out exploiting the underlying operating system, motivating
the need for a system-centric solution.

3.2 Case Study: Click Fraud
Ad fraud (or click fraud) is the practice of “viewing” and

“interacting” with ads in an automated way to artificially

inflate revenue. For example, an unscrupulous website pub-
lisher may inflate her ad revenue by having an automated
script visit her website and click on ads. Ad fraud is a seri-
ous security issue as digital marketers who pay to have their
ads shown will not receive any commercial benefit for ads
shown to scripts.
In order to receive revenue, fraudsters must remain unde-

tected while issuing large numbers of ad requests and clicks.
To do so, fraudsters use botnets to instruct real devices to
run code that periodically visits the fraudsters’ webpages in
the background and clicks on the ads located there, to gener-
ate revenue for the fraudsters. The use of bots allows fraud-
sters to use the characteristics of the compromised devices to
generate varied ad traffic (for example, fraudulent requests
from a botnet would use many different IP addresses). Un-
fortunately, Android apps distributed through a market can
give fraudsters these same characteristics without the need
to exploit users’ machines.

3.2.1 Click Fraud Detection
To find apps that perform click fraud, we first run them

through MAdFraud [3]. MAdFraud automatically identifies
ad requests and clicks in mobile app traffic that is recorded
from running the apps in an emulator. It uses simple rules
to flag apps with suspicious ad behavior, which are can-
didates for further investigation. As a starting point, we
use the initial MAdFraud dataset of 130,339 apps collected
from 19 Android markets, which flagged 12,421 apps as po-
tentially performing ad fraud. We then ran an additional
60,726 apps through MAdFraud, from the developers that
uploaded these flagged apps. In total, MAdFraud identi-
fied 615 apps which send ad clicks without user interaction,
which is too many to manually investigate. We chose to use
AnDarwin [2] to cluster any detected click fraud apps into
families based on code similarity. This significantly reduces
the number of apps which need to be manually investigated.
Originally, AnDarwin excluded any feature appearing in

at least N apps. This threshold-based approach is problem-
atic for comparing our small set of apps that issue clicks as 1)
we may set the threshold too low and exclude all click mod-
ules (code for committing click fraud that is shared across
an app family), or, 2) we may set the threshold too high and
fail to exclude libraries. Instead, we take an approach in-
spired by term-frequency inverse-document-frequency (TF-
IDF). Rather than exclude features that are present in many
apps, we instead give them a small weight based on the
inverse of the number of apps they appear in. Now that
features have weights, we cannot compare apps using the
Jaccard similarity, as done in the original work. Instead,
we compare apps using the Cosine similarity of their feature
vectors which are weighted using the IDF weights. Ulti-
mately, AnDarwin placed our 615 click fraud apps into 65
clusters. From our analysis of the app families, we found
two clear examples of Android click fraud malware: Pixcel
and AppsGeyser.

3.2.2 Pixcel
The first family of click fraud apps we present all contain

a common package called com.pixcel.core, which contains
code to perform fraud against a number of ad providers.
The package implements an Android service which issues
ad and click requests in the background when started. The
ad fraud service first makes a request to nucleardroid.com

to receive parameters used for issuing fraudulent ad traffic.
An example response is shown in Figure 3 in the Appendix.
The response contains instructions for the service, indicat-
ing which ad providers to perform fraud against (in this
case Madvertise, Mobfox, and Tapjoy), which publisher IDs
(sometimes called “siteid”) to use, and how many fraudu-
lent requests to make to each. A timing component uses
parameters in the response (specifically, the countperday

parameter) to start the service at regular intervals, or it de-
faults to running hourly if no parameters have been loaded.
For each ad provider, the Pixcel package contains a custom
module that is able to send ad requests to the ad provider’s
ad server, parse the response, and then issue click requests
if instructed to do so. Interestingly, each custom module
has very different code from the ad library of the associated
ad provider. This implies that the authors of Pixcel spent
the time to reverse engineer the ad server’s API, instead
of simply modifying an existing library. Figure 4 shows a
code snippet (after decompilation) from the ad fraud service
that issues fraudulent requests and clicks after receiving in-
structions. For each entry returned by nucleardroid.com,
it dynamically instantiates the appropriate custom module
to issue ad requests and clicks. The custom modules first
issue countfake ad requests (from Figure 3), followed by
counttry impressions and click requests.

The apps containing Pixcel are from various developer ac-
counts and Android markets. Table 1 shows a breakdown
of app packages which contain Pixcel and which markets
these apps reside. Some markets have removed the Pixcel
apps between the time we crawled the market and the time
we discovered Pixcel. The markets may have discovered the
fraud separately, or they may have removed them as many
of the apps are “spam” apps that contain little content and
are all essentially identical except for superficial cosmetic
differences. To measure which ad providers Pixcel targets,
we queried the Nucleardroid server hourly for three days and
observed which ad providers and accounts are returned, us-
ing the package names in Table 1 as parameters. In total,
Nucleardroid returned instructions to perform fraud using 43
publisher accounts from 5 different ad providers2. Since dis-
covering Pixel, we have reported the fraud to each targeted
ad provider and had the publisher accounts terminated.

The Pixcel module is an interesting case study. The prac-
tice of receiving instructions from a centralized server prior
to performing fraud is reminiscent of botnets, where bots re-
ceive instructions from a command and control server. From
looking at the responses, its clear the fraudsters wish to re-
main stealthy. Not only do they rotate which ad providers
and publisher IDs they use, but they also balance the num-
ber of clicks with the number of impressions issued. In ad-
dition, because the publisher ID and behavior are chosen
dynamically, the fraudsters can easily modify the app’s be-
havior if one of their accounts is terminated. Given that
Pixcel attempts to remain stealthy and can be easily recon-
figured, it would be more effective to prevent ad fraud on the
device than via detection of individual cases. By adopting
the Mobile Trusted-Origin Policy presented in subsequent
sections, such fraud techniques would not be possible.

3.2.3 AppsGeyser
Here we discuss a second family of apps which issue click

requests when run. These apps are all made with the Apps-

2Tapjoy, Madvertise, Vserv, MobFox, and Mojiva

Package Name Markets Distinct Apps Install Count
com.pixcel.DroidSaver Play*, Opera, SlideME* 3 10,619
com.pixcel.FoxSaver Play*, Opera, SlideME* 3 5,547
com.pixcel.OlympicWallpapers2012 Play*, Opera, SlideME* 2 2,077
com.pixcel.PRDroid Play*, Opera, SlideME 3 4,963
com.pixcel.MorzeDroid Play*, Opera, SlideME 2 3,874
com.pixcel.NuclearFlashlight Opera, SlideME 2 4,072
com.wallpapersdroid.bestcarwallpapers Opera, SlideME* 2 2,596
com.wallpapersdroid.housemdwallpapers Opera, SlideME* 2 997
com.wallpapersdroid.offroadcarwallpapers Opera, SlideME* 2 1,139
com.wallpapersdroid.porschewallpapers Opera, SlideME* 2 2,936
com.wallpapersdroid.luxurycarwallpapers Opera 1 238
com.wallpapersdroid.lamborghiniwallpapers Opera 1 337
com.wallpapersdroid.bmwwallpapers Opera 1 490
com.wallpapersdroid.peugeotwallpapers Opera 1 148
com.wallpapersdroid.animalworldwallpapers Opera 1 225
com.wallpapersdroid.supersedanswallpapers Opera 1 84
com.wallpapersdroid.mobilewallpapers Opera 1 335
com.wallpapersdroid.coolwallpapers Opera 1 221

Table 1: Information about the apps containing the Pixcel click fraud module. An astericks next to a market
denotes that the app is no longer available through the market. Distinct apps are counted based on the
SHA-1 hash of the APK file. For markets that provide a range for install counts, we use the lower bound to
ensure that our total install count is a lower bound on the actual number of installs.

Geyser framework3, and perform fraud by loading malicious
Javascript into a WebView that displays ads.
The AppsGeyser framework allows developers to develop

web applications with HTML and Javascript and then wrap
them in an Android app that can be distributed through
Android Markets. We found 211 click fraud apps that were
built using AppsGeyser, based on our clustering. Apps built
through AppsGeyser will show advertisements when run. As
part of the AppsGeyser business model, AppsGeyser receives
a portion of revenue for ads shown in the apps in exchange
for providing their app building service for free.
The AppsGeyser framework loads ads using a WebView.

Upon starting the app or refreshing an ad, the framework
makes a request to ads.appsgeyser.com/, which returns
Javascript that bootstraps the WebView for showing ads. Un-
der normal circumstances, benign Javascript is loaded and
ads are displayed as usual. This Javascript sets up timers
for refreshing the ad after some amount of time, config-
ures the “close” button in the top right corner of the ad
space, and sets up an onClick listener for handling when
the user clicks an ad. Finally, a request is made to pos-

tupdate.info/delivery/ajs. php with some parameters,
which returns an ad tag from another ad provider that even-
tually loads and displays the ad. In our experiments, we ob-
served that these ad tags used a variety of ad providers, in-
cluding InMobi, InnerActive, Jumptap, Madgic, MassiveIm-
pact, Mocean, and Vserv. The practice of reselling ads from
one ad provider to another is common practice, so fetching
third party ad tags is not fraud.
However, rarely, we find apps making a request for addi-

tional Javascript content located at postupdate.info/carou
sel/ad_track.js. This additional Javascript contains ob-
fuscated code that performs click fraud. The de-obfuscated
Javascript content can be found in the Appendix. When
run, it scrapes the HTML DOM for any anchor tags, as well
as the DOM of any included <iframe> objects. For each

3http://www.appsgeyser.com/

URL, it creates a 1 pixel by 1 pixel invisible image, sets the
src attribute of this image to be the click URL, and then
inserts this image into the DOM. The result of this is that
all click URLs in the populated ad tags of the third-party
ad providers will be followed, which results in fraudulent
click requests. There is a 1-to-1 mapping between requests
to postupdate.info/carousel/ad_track.js and clicks de-
tected by MAdFraud.

Normally, this kind of attack would not be feasible due to
the Same-Origin Policy of browsers and WebView. However,
we found that some ad requests to third-party ad providers
contain the Access-Control-Allow-Origin: * header in
the servers’ response, which explicitly disables the Same-
Origin Policy on delivered content [16]. Due to this vul-
nerability, the Javascript is able to extract click URLs and
follow them by creating image objects which point to the
click URLs. A properly configured Same-Origin Policy could
have prevented these attacks, and the case study illustrates
how trivially ad fraud can be performed without origin pro-
tections. This is especially disconcerting given that Apps-
Geyser app code runs in the same WebView as the ad code.
If AppsGeyser were configured to have the app code and
ad code run in separate mobile origins, then apps would be
protected from misconfigurations in ad code. Additionally,
with Trusted Cross-Origin Requests, WebViews with SOP
misconfigurations or that have the SOP disabled (using the
setAllowUniversalAccessFromFileURLs() API) would at
least have app provenance information appended to outgo-
ing requests in the case that malicious Javascript was loaded
into the insecure WebView.

4. GOALS
Our goal is to provide app provenance for network requests

so that servers can differentiate authorized and unauthorized
app traffic. In order to do so, we must also isolate code
within an app into separate protection domains, called mo-
bile origins, when the code should have different app prove-

nance signatures. Section 5.1 describes how our framework
unambiguously identifies and reports mobile origins. The
Mobile Trusted-Origin Policy provides the following secu-
rity benefits:

• Code in one mobile origin should not be able to ac-
cess or manipulate the code and/or data from other
mobile origins. However, code from separate origins
can communicate using message passing. On Android,
this communication is done through Intents. (On the
web, cross-origin communications can be done using
cross-document messaging.)

• Code should be able to communicate with only autho-
rized web domains, where the definition of“authorized”
is left up to the receiver of the communication. This is
because we wish to protect against network forgery at-
tacks without restricting the rich functionality of legit-
imate apps. Many legitimate apps communicate with
several different domains. If we were to require each
app communicate with only one domain, as the web’s
Same-Origin Policy does, we would break many benign
apps.

We discuss the first point in Section 5.2 and the second in
Section 5.3. The former requirement isolates app code and
third-party libraries. The latter requirement ensures that
malicious apps cannot use the device as a network bot to
send unwanted or fraudulent traffic to arbitrary websites, as
well as restricts private API to only authorized apps.

4.1 Assumptions
We make the following assumptions in designing our sys-

tem:

• The user, mobile operating system, and system apps
are trusted, but user-installed apps are untrusted and
potentially malicious.

• There exist mechanisms to split and sandbox app and
library code on the user’s device. In our implementa-
tion, we chose LayerCake.

• Malicious code cannot exploit the operating system or
sandbox to escalate privilege.

• The user has not rooted the device (a rooted device
has no restrictions regarding which apps can run code
as the superuser).

4.2 Non-Goals
Our goal is to prevent malicious apps running on a benign

user’s device from attacking the other apps on the device or
using the device as a bot to attack network sites. Thus, we
do not consider the case where attackers run their code on
their own devices or operating systems (just as the web’s
Same-Origin Policy does not consider the case where at-
tackers launch attacks on their own machines or modified
browsers), because such attacks would not have the prop-
erties that make the attacks presented in Section 1 useful,
such as access to user data or a diverse range of IP ad-
dresses. Additionally, we do not aim at preventing other
forms of attacks. For example, our framework does not de-
fend against apps that exfiltrate sensitive user data to the
attacker’s server. Other systems have already been proposed
to detect these kinds of attacks [8, 13]. Just as the SOP

does not protect web apps against malicious code injected
via cross-site scripting (XSS), the MTOP does not protect
vulnerable apps that are tricked to run untrusted code.

5. DESIGN
Here we discuss the design of MTOP in order to achieve

the goals presented in the previous section. In Section 6, we
describe how we implemented the following design.

5.1 Identifying Mobile Origins
Our first challenge is how to determine the mobile origin

of code and data contained in an app. To identify mobile
code origins, we need a globally unique identifier for each
app that an attacker cannot forge. For Android, one might
consider an app’s package name as its mobile origin, as the
package name identifies the app uniquely on the device (e.g.
com.example.game). Unfortunately, package names are not
globally unique, as different apps on different markets may
have the same package name. Instead, we take advantage
of digital signatures. Code signing allows content to be un-
ambiguously and unforgeably assigned an origin: libraries
are signed by the library developer’s key before being dis-
tributed, and apps are signed by the app developer’s key be-
fore being uploaded to markets. The public key used to ver-
ify the app’s signature is sufficient for identifying the app’s
mobile origin; given a large key size, app public keys should
be globally unique.

This is analagous to how Android uses signatures to allow
apps to share a UID: two apps which are signed by the same
key may share a UID (effectively running both apps in the
same mobile origin). This differs from how certificates are
used for authentication on the web (i.e., in SSL/TLS). Au-
thenticating a website requires that the certificate be signed
by a certificate authority. This is because users need to make
security decisions based on the identity information stored
in the certificate, so they need the certificate authority to
bind the identify to the certificate. By contrast, our system
requires a trust relationship between the server and devel-
oper to be set up beforehand. Once established, the server is
expected to remember the binding between its partners and
their certificates, allowing the server to easily determine if
a certificate is trusted (e.g., is the certificate its own or its
partner’s); it does not rely on the identity information in
the certificate and therefore requires no certificate author-
ity. Without reliance on a certificate authority, developers
are free to self-sign their apps, which is already common
practice in Android app publishing.

In the case of ad servers which receive ad requests from
reselling, any resold ad requests (i.e., the publisher ID is
from a trusted affiliate) would simply be trusted; the ad
server would not check the TCOR header and assume their
affiliate did the check. This is reasonable since affiliate ad
networks require a certain amount of trust (often times the
context of the original request is lost in resold ad requests,
making ad fraud detection difficult on affiliate traffic [24]).
Ad spammers would not have incentive to forge affiliate re-
quests, as they would not receive revenue for the requests.

5.2 Origin Sandboxing
In the current version of Android, apps are sandboxed

from each other, however, all code included within an app
runs in the same sandbox. For example, a developer who
wishes to monetize her apps may include ads, but this re-

quires including an ad provider’s library with her app’s code.
The library code runs with all the privileges that her app has
been granted, which leads to privacy concerns; for example
ad libraries automatically use these privileges to collect user
data [23]. To reap the benefits of the Mobile Trusted-Origin
Policy, app and library code should be split into separate
origins and run in separate sandboxes.
There are several ways that app and library code can be

split. Because of the aforementioned privacy infringements
from ad libraries, recent research has primarily focused on
splitting app and ad code. This previous work provides an
excellent foundation upon which to enforce our policy. Some
examples include:

• AdSplit [22]: Adds provenance to data and actions,
such that the operating system can enforce policies
dictating how data and actions can pass between app
and ad code.

• AFrame [27]: Separates ad libraries into their own
apps, leveraging Android’s existing access control poli-
cies. Modifies the framework to allow app UIs to be
embedded within each other.

• LayerCake [21]: Like AFrame, runs library code in a
separate process. Unlike AFrame, generalizes to any
scenario that requires UIs to be embedded within each
other, ensuring the code that controls each UI will not
run in the same sandbox.

Any of these approaches could be used to sandbox code and
data from separate origins on Android. Leveraging AFrame
and LayerCake requires libraries to be distributed as sepa-
rate Android apps. On the other hand, AdSplit would allow
an app to contain multiple origins and sandboxing could be
achieved within a single app. We build our system on top
of LayerCake and discuss our reasoning for doing so in Sec-
tion 6.1.

5.3 Trusted Cross-Origin Requests
In Section 3.2, we saw an example of a family of apps that

can issue fraudulent ad requests and clicks because there is
no mechanism in Android to mediate apps’ network commu-
nications. To mitigate this, our framework should be able to
restrict which domains code can contact, so that untrusted
code cannot silently forge arbitrary network requests from
the user’s device. On the web, code can only talk to the
origin (i.e., domain) from which it was fetched. However,
mobile apps are expected to be able to communicate with
many domains (an email client app, for example), and thus a
policy that only allows communication to one domain would
be overly restrictive in the mobile space. To alleviate this,
we propose Trusted Cross-Origin Requests, which shifts the
decision of whether a mobile origin is authorized to contact
a domain from the OS to the server the app is contacting.
The mobile origin of the app is included in outgoing HTTP
requests by the operating system, such that it cannot be
forged by apps. If the server wishes to accept the origin,
it responds with the requested content as usual. However,
requests from unauthorized origins should receive a Client

Error 4xx HTTP response status code, such as 403 For-

bidden, to indicate that the request was unauthorized.
An alternative to this design would be to let the app de-

veloper annotate each app with a list of authorized domains,
e.g., by adding elements to the app’s Manifest file, which is

already used to grant permissions. This approach is prob-
lematic for two reasons. First, since we do not trust apps in
our threat model, we cannot just let the app developer de-
clare which domains her app can visit. Therefore, the mar-
ket or the user must determine whether to authorize the app
to visit those declared domains; however, neither party has
enough information to make an informed decision. Second,
this would break the existing advertising model as some con-
tent is hosted on the digital marketer’s domain, which the
developer cannot know ahead of time. For these reasons, we
choose to let the server authorize.

Our approach has a similar effect to cross-origin resource
sharing (CORS) on the web [16], where the server indicates
in its response which origins in the web page may read the
content in the response. CORS makes sense for browsers, as
the browser always receives the content in the response; the
CORS header only enables cross-origin reads for the speci-
fied domains. However, for the Mobile Trusted-Origin Pol-
icy, apps that make unauthorized network requests will not
receive any content. Therefore, it is more economical for the
server to refuse to deliver content to unauthorized apps up
front.

To add Trusted Cross-Origin Requests to Android, we pro-
pose adding a custom HTTP header, X-Mobile-Origin, that
contains information about the app that is making the re-
quest. This header will be added by the device and the
server will be free to use it as needed. Some HTTP servers
are designed to communicate with all clients and may ig-
nore the header completely. On the other hand, servers that
host a private API may restrict communications to only a
few origins. Finally, some servers may wish to maintain a
whitelist of authorized apps. Server whitelists are common-
place among services already — e.g., publisher IDs for ad
providers, username/password credentials for web APIs, or
symmetric keys as in Section 3.1. However, these credentials
are all subject to replay attacks once the attacker has identi-
fied or reverse-engineered them from the apps. By contrast,
the signatures used by Mobile Trusted-Origin Policy cannot
be replayed as long as the developer’s signing key has not
been compromised.

To mitigate the privacy concern that a network eavesdrop-
per may determine what apps a user is running by examining
the X-Mobile-Origin header, we require apps that need this
header to opt in by requesting a special permission, which
our system uses when modifying the proxied traffic. Apps
that do not opt in will have an empty value for X-Mobile-
Origin in outbound requests (see Section 8.2).

6. IMPLEMENTATION
Using the design presented in the previous section, we de-

velop an implementation of the Mobile Trusted-Origin Pol-
icy for Android.

6.1 Origin Sandboxing
As previously mentioned in Section 5.2, we use LayerCake

to sandbox code and data from different mobile origins. We
chose to build our framework on LayerCake because it is
simpler than AdSplit, general enough to handle more than
just ad libraries, and is implemented for a more recent ver-
sion of Android than the alternatives. LayerCake adds the
concept of embedded activities to Android, allowing for one
app’s UI to be embedded in another app without the parent
or child UI being able to forge touch events on the other.

In this way, libraries can be separated into a different apps,
and sandboxing is achieved through Android’s current app
isolation mechanisms. The decision to use LayerCake means
that code from different origins will need to be distributed as
separate apps. Regular apps and libraries may communicate
using Intents, which allow apps to send messages between
each other in Android. This may seem heavy-handed, but it
is reasonable given that not all libraries will need to be run
in a separate origin, only libraries which require a unique
TCOR header. Additionally, various network-enabled li-
braries on Android already require another app to be in-
stalled to work such as the Facebook SDK 4 or Adobe Air 5.

6.2 Trusted Cross-Origin Requests

6.2.1 Failed Attempts
Our first idea was to use app rewriting [5] to modify apps

so that all calls to make HTTP requests are wrapped in code
that appends the origin header. This works in the simplest
of cases but has many drawbacks. First, it requires rewriting
every app to add the header logic. Second, and more severe,
it also requires rewriting every app to remove existing logic
that would forge the header. The second drawback would be
very difficult to solve as it would require extensive program
analysis. Third, it is prone to omission as existing rewriting
tools require a list of method signatures to rewrite. Finally,
this approach does not cover native code and would have
difficulties when apps use non-library methods for making
HTTP requests (such as writing to a TCP socket directly).
Next, we considered modifying the popular Android HTTP

libraries to automatically append the origin header. How-
ever, this solution has many of the same limitations as the
rewriting solution: it cannot handle apps that include their
own HTTP libraries, native code, or apps that use TCP
sockets directly.

6.2.2 Framework Modifications
Our solution solves all of the above issues by using a trans-

parent HTTP proxy to capture and set the origin header for
all HTTP requests made by apps installed on the device.
We handle HTTPS traffic by installing a new certificate au-
thority (CA) on the device and allowing our proxy to man-
in-the-middle apps’ HTTPS connections using the private
key of the new CA. Figure 2 shows an overview of our im-
plementation.
We implement the Mobile Trusted-Origin Policy for An-

droid using a new system app. Our system app has two com-
ponents: a Service that manages the proxies and a Broad-

castReceiver that listens for apps being installed or re-
moved. When an app is installed, the BroadcastReceiver

instructs the Service to create a new proxy and then gener-
ates a user-ID-specific iptables rule that redirects all out-
bound HTTP and HTTPS traffic from the app to the newly
created proxy. Since each app in Android is installed with a
unqiue Linux user ID, UID granularity is sufficient6 When an
app is removed, the BroadcastReceiver removes the ipta-

bles rules and terminates the app’s proxy.

4https://developers.facebook.com/docs/android/
5https://play.google.com/store/apps/details?id=
com.adobe.air
6There is an exception to this rule: apps signed by the same
key may share a UID. Given that we define mobile origin by
signing key, this is not a problem.

Device

ip
ta
bl
es

App

App

App

Proxy

Internet
Proxy

Proxy

Figure 2: Overview of our implementation of the
Mobile Trusted-Origin Policy for Android.

Once the iptables rule is in place and the proxy is run-
ning, the app can begin to make HTTP requests. These re-
quested will be transparently redirected through our proxy
which acts as forwarding proxy. For every request, the proxy
modifies the HTTP request header to include the origin of
the app that made the request before forwarding the re-
quest to the server. The origin header is populated with
the SHA1 of the public key used to sign the app, which
the proxy retrieves from Android’s PackageManager when
the app was installed. This signature will be unique to apps
from the same developer, assuming that private keys are not
disclosed. The proxy then forwards the response from the
server back to the app which made the request.

For HTTPS traffic, there are a few additional steps. On
first boot, the system app creates a new CA and installs it
as a trusted authority on the device, keeping the new CA’s
private key (we should not do this at system compilation
time as we do not want different devices to share the same
CA, in case the private key becomes known). When an app
makes an HTTPS connection, it will be redirected to the
proxy. The proxy first fetches the destination server’s certifi-
cate, extracts identity information from the sever certificate,
creates a new certificate using the extracted server’s iden-
tify information, and signs the new certificate using the new
CA’s private key. Then, the proxy returns the new certifi-
cate to the app during the SSL/TLS handshake. This allows
the proxy to perform a man-in-the-middle modification on
the HTTPS requests from the app to the server where it
modifies the HTTP headers to include the app’s origin. In
the special case that the server’s certificate is not signed by
a trusted CA, our system proxy will sign the new certificate
with an ephemeral key, so that we do not elevate the trust
level of the destination server.

7. EVALUATION
Here we evaluate to what extent MTOP achieves the goals

presented in Section 4. We evaluate our security goals and
make a special case for deployment concerns, as any real-
world adoption of our system would have to deal with partial
deployment on devices, at least initially. Finally, we inves-

tigate the performance overhead of proxying HTTP traffic
and adding the TCOR header.

7.1 Security
In Section 4, we defined two goals of our framework: 1)

sandbox code and content from separate mobile origins, and
2) allow servers to detect unauthorized communications via
mobile origins. We achieve the first goal by separating li-
braries and regular apps into separate Android apps and us-
ing LayerCake to allow them to share the screen. We achieve
the second using the TCOR which allows servers to decide
which mobile origins can communicate with it. Because our
proxy determines mobile origin per UID, even HTTP re-
quests generated by the app in a WebView (a UI object that
acts as an embedded browser window), will have the cor-
rect mobile origin header. However, this means that any
<iframes> in loaded websites will also be Trusted Cross-
Origin Requests as they will also contain the app’s origin
header. For this reason, web APIs that allow for writes
should contain cross-site request forgery tokens to protect
from these “cross-mobile-origin request forgery” attacks.
Malicious code authors may attempt to circumvent TCOR

by proxying their traffic through their own server to remove
the header. As mentioned in Section 4, we do not consider
the case where attackers run their code on their own devices
or operating systems. In this case, proxying traffic would
have the side effect of limiting all malicious traffic to a small
set of IP addresses, which could be detected by private web
APIs or ad networks.

7.2 Deployment
We consider the difficulty of deploying the Mobile Trusted-

Origin Policy, and what security concerns arise if there is
partial adoption from devices, servers, and apps.

7.2.1 Complete Deployment
When all mobile devices support MTOP, no app can fab-

ricate its mobile origin, so receiving servers will be able to
differentiate legitimate and unauthorized traffic from apps,
effectively prohibiting unauthorized cross-domain commu-
nications. Note that just because cross-domain communica-
tions are forbidden doesn’t mean that servers can rely on this
property for client authentication. For example, a web server
should not assume that all incoming XMLHttpRequests are
generated by its pages, and neither should a mobile server
assume that all incoming requests are generated by its apps,
because an attacker can generate both these requests from
his computer without using a web browser or mobile OS.

7.2.2 Partial Deployment
When Mobile Trusted-Origin Policy is partially deployed

on mobile devices, it has the following implications.

Servers not supporting Mobile Trusted-Origin Policy.
If a server does not wish to support MTOP, meaning it ac-

cepts communications from all apps, it needs no modification
to handle requests from devices supporting Mobile Trusted-
Origin Policy. These servers can simply ignore the TCOR
HTTP headers (provided that the HTTP header would not
conflict with any headers added by the client itself).

Servers supporting Mobile Trusted-Origin Policy.

When a server supports MTOP but not all mobile devices
do, the server would encounter two problems when handling
requests from these non-compliant devices:

1. The requests from the server’s authorized apps would
not have the required HTTP header.

2. A malicious app would be able to fabricate the required
HTTP header.

To solve the first problem, the server’s authorized apps
could add the required HTTP header by itself as a tempo-
rary compatibility measure. The second case, on the other
hand, essentially reduces non-compliant devices to the cur-
rent security model. As discussed above, the mobile server
should not rely on Mobile Trusted-Origin Policy for client
authentication (just as a web server should not rely on the
Same-Origin Policy for client authentication), instead our
system allows the server to identify and reject unwanted
requests from compliant devices. As more devices deploy
Mobile Trusted-Origin Policy, such unwanted traffic will de-
crease.

When a server starts to support Mobile Trusted-Origin
Policy, it adds the mobile origins of its authorized apps to
its whitelist. However, a special case arises when the server
provides third-party libraries for apps. When these apps
embed the libraries, requests from the libraries would be
rejected by the server because the mobile origin of these
libraries would be those third-party apps rather than the
library itself. To handle this case, the server should release
its code in a standalone app instead.

Fortunately, even low levels of adoption can be useful for
reducing attacks like click fraud. Fraudsters will have two
choices when devices start to append the X-Mobile-Origin
headers): 1) they can detect when this occurs and not per-
form their fraud, or 2) they can perform their fraud regard-
less. In the former case, fraudsters will lose out on the rev-
enue they would have gained from installs on MTOP-enabled
devices. In the latter case, MTOP would append the mobile
origin to the fraudulent app’s HTTP requests, which may
help servers identify fraudulent traffic (and which apps are
generating it). This hurts the fraudsters regardless of the
choice that they make.

7.2.3 Legacy Apps
Apps which do not contain network-enabled libraries do

not need to be modified to work with our framework. Apps
which do contain network-enabled libraries, on the other
hand, would likely be incompatible with our framework, as
traffic generated from the libraries would have the mobile
origin of the parent app. Library developers would be in-
centivized to modify their library to be a standalone app in
order to protect against unauthorized access to their web
APIs, and app developers would be incentivized to upgrade
their apps in order to be able to use the functionality of
these libraries.

7.3 Performance
We evaluate the additional delay to network requests in-

troduced by our proxy implementation. As our implementa-
tion is built on LayerCake, we inherit its performance char-
acteristics. Roesner and Kohno [20] determine that Layer-
Cake introduces minor overhead when UI embedding is used,
and negligible overhead to input event dispatch delay.

Load time (ms)
Webpage Size HTTP HTTPS

w/o Proxy with Proxy Overhead w/o Proxy with Proxy Overhead
Small (431B) 7 17 10 27 85 58
Large (580KB) 238 250 12 308 521 213

Table 2: Comparison of the average time required for an app to load a small webpage (averaged over loading
10,000 times) and a large webpage (averaged over loading 1,000 times) while using our proxy vs. not using
our proxy.

Our proxy-based approach introduces overhead on HTTP
traffic from apps as the traffic must pass through our proxy.
To determine whether the overhead is manageable, we per-
form two experiments: loading a small webpage (431 B)
10,000 times and loading a large webpage (580KB) 1,000
times. For both experiments, the website is hosted on a
nearby server and the phone (a Nexus 4) is connected to
the Internet via USB. Table 2 summarizes the results. It
took 168 seconds and 68 seconds to load the small website
10,000 times with and without the proxy, respectively, so the
proxy introduced only 10 millisecond overhead in each page
load. For loading the large webpage 1,000 times, it took
250 seconds and 238 seconds with and without the proxy,
respectively, so the proxy introduces only 12 milliseconds
overhead in each page load. Such overhead caused by our
proxy is negligible and therefore should be unnoticeable to
users.
We perform the same benchmark for our HTTPS proxy.

Our HTTPS proxy introduces a significant inital latency
(about 1.5 seconds) the first time when it makes a request
to a host, as the proxy must fetch the server’s certificate,
extract its identify information, and create a new one. (By
comparison, without our proxy, the app still needs to fetch
the server’s certificate but need not create a new one.) How-
ever, subsequent requests to the same host are much faster
since they reuse the newly created certificate. It took 854
seconds and 273 seconds to load the small website 10,000
times with and without the proxy, respectively, resulting in
an overhead per page load of 58.1 milliseconds. The proxy
must establish two SSL connections each time an app con-
nects using HTTPS, meaning the cost of fetching a small
webpage is dominated by the cost of the SSL handshakes.
For the large webpage, it took 521 seconds and 308 seconds
to make 1,000 requests with and without the proxy, respec-
tively. Fetching the larger webpage amortizes the cost of
the handshakes over a longer connection, meaning that the
larger webpage had a significantly lower overhead per byte
compared to the smaller one.

8. DISCUSSION

8.1 Other Operating Systems
Mobile Trusted-Origin Policy could apply to other smart-

phone operating systems besides Android. An interesting
case is Firefox OS. Firefox OS is a mobile phone operat-
ing system which distributes apps as HTML and Javascript,
and enforces the web’s Same-Origin Policy to prevent exter-
nally loaded Javascript from accessing device functionality
or reading app data. Additionally, app code is restricted
from communicating with arbitrary websites according to
the restrictions of the web’s Same-Origin Policy. Despite
this, Firefox mobile apps may request privileges to circum-

vent this restriction (the network-http permission or sys-
temXHR permission). In fact, this permission is the most
commonly requested among apps on the Firefox mobile app
market [6]. Given this, Firefox OS could still benefit from
using the Trusted Cross-Origin Requests HTTP header to
prevent apps from making unauthorized network requests.
Firefox OS would be free to implement the remainder of the
Mobile Trusted-Origin Policy using the existing Same-Origin
Policy built into the OS.

8.2 Privacy
Our framework may create privacy concerns as it enables

a network snooper to determine which apps a user has in-
stalled by observing the X-Mobile-Origin values in out-
bound HTTP requests. We note there are a number of
ways network eavesdroppers may already infer what apps
a user is running, for example by network profiling [4], ob-
serving publisher IDs in ad requests [23], or by simply ob-
serving HTTP user-agent strings of apps in iOS. Regard-
less, our system relies on a partial mitigation to reduce the
privacy impact of the TCOR headers. Apps which require
a TCOR header must opt-in to having them added by re-
questing a special permission which our system uses when
modifying the proxied traffic. Apps which opt-in will have
the X-Mobile-Origin header added as usual. Apps which
do not will have an empty value for X-Mobile-Origin in
outbound requests. What is important to note is that all
apps are subject to having their traffic proxied, regardless
of whether they opt-in, meaning the origin headers cannot
be forged by apps which choose to opt-out.

8.3 Limitations
We use the app’s verification key to create its mobile-

origin signature. However, in Android, developers may sign
many of their apps with the same key, meaning our system
defines mobile origin at the developer level. An alternative
design would be to use a combination of the verification key
and the app’s package name, but since two apps on differ-
ent markets may have the same package name (as discussed
in 5.1), this only provides per-developer, per-market granu-
larity. Finally, the code signature itself could be used, but
since apps may be updated, this would be too granular, caus-
ing servers to have to update their signature each time an
app updates.

Our implementation only adds origin information for HTTP
traffic on port 80 and HTTPS traffic on port 443. Thus,
servers which wish to enforce origin-based policies should
listen on one of these ports. Apps which communicate via
other protocols will not have their origin included with out-
bound requests. To estimate how many apps connect with
a protocol other than HTTP(S), we ran a random sample
of 1,000 Android apps through PyAndrazzi [15], a dynamic

analysis tool which performs UI state exploration. From the
resulting network logs, we found that of the 793 apps with
network connections to known ports, 622 apps (78%) only
connect over HTTP, while 786 apps (99%) only use HTTP
or HTTPS (based on destination port number)7.
A limitation of our proxy for HTTPS connections is cer-

tificate pinning, where the client app specifies the exact cer-
tificate it expects the server to respond with, instead of re-
lying on certificate authorities. Apps which use certificate
pinning will get certificate errors from our proxy, which re-
signs the remote server’s certificate so it can perform its
man-in-the-middle. According to [9], approximately 10% of
the top apps on Google play use certificate pinning. Break-
ing certificate pinning is a limitation of the prototype imple-
mentation rather than of MTOP. This necessitates further
research into how to send the provenance information. For
example, it could be added at a lower level protocol (e.g., as
an IP option).

9. RELATED WORK
One of the goals of the Mobile Trusted-Origin Policy is to

prevent a user’s device from being turned into a “bot” with-
out exploiting the device’s operating system, simply because
a malicious app was downloaded. Botnets are collections of
compromised user machines (called bots) which can be in-
structed to generate fraudulent network traffic. The damage
caused by botnets is well documented in previous literature.
For example, botnets can be used to perform ad fraud [24],
send spam emails [25], and perform distributed denial-of-
service attacks [10].

9.1 Mobile Ad Fraud
There is limited prior work investigating mobile app ad

fraud. Liu, et al. [18] investigate display fraud on Windows
Phone, which uses techniques that analyze the UI of apps
to determine if developers are obfuscating ads or coercing
users to click ads by placing them near buttons and other
actionable UI elements. Our proposed framework prevents
this attack as the app cannot interfere with the ad app’s
UI. Crussell et al. [3] built a system, MAdFraud, to auto-
matically extract ad requests and clicks from network traces
to investigate apps performing ad fraud : apps making ad
requests when in the background and issuing clicks without
user interaction. Our work performs a detailed investigation
of two click fraud app families and proposes a framework
that prevents the ad fraud found by MAdFraud. In addition,
Symantec [1] and Lookout [12], two security companies, pro-
vide case studies of malware which issues fraudulent clicks
to search engines. These include a type of click fraud called
search engine poisoning, where search engine results can be
influenced by clicking on search engine links to increase their
page rank. We note that despite similar nomenclature, this
type of click fraud is independent of ad click fraud.

9.2 Inner-App Code Isolation
Grace, et. al. [14] and Stevens, et. al. [23] investigate the

practice of Android ad libraries leveraging permissions of the

7PyAndrazzi cannot log in to services, and thus may not
expose all the network functionality of an app. For apps that
perform log in over HTTPS, however, PyAndrazzi will still
attempt to submit the form with dummy values, and thus
we expect to see the outgoing HTTPS connection regardless,
even if the log in fails.

parent app to exfiltrate sensitive user data. As a result of
these infringements, there have been proposals for different
ways to separate ad libraries and apps into different secu-
rity domains on Android. LayerCake [21] and AFrame [27]
achieve this by separating the app and ad library into sep-
arate processes, relying on the built-in Linux process iso-
lation mechanisms to put them into separate security do-
mains. This requires distributing the app and library as
separate Android apps which share a UI, while the systems
ensure that touch events cannot be forged between security
domains. Moshchuk, et. al. [19] develop a content-based iso-
lation mechanism for Windows called ServiceOS, in which
the operating system is able to sandbox code based on where
the code came from, like the browser’s SOP. This allows for
isolation beyond application granularity (for smartphones)
or user granularity (for desktops). These systems can isolate
library and app code, but do not provide a way to mediate
apps’ network access to prevent the attacks in Section 3.

9.3 App Provenance for Network Requests
AdSplit [22], on the other hand, is built on Quire [7], which

adds call stack provenance to IPC and RPC calls. Quire’s
RPC attestations, while able to to protect against the at-
tacks in Section 3, rely on the presence of a manufacturer-
embedded private key on the device to sign the RPC call
stacks. Another work, AdAttester [17], provides impression
and click attestations for ad requests by leveraging ARM’s
TrustZone hardware, preventing apps from sending forged
impressions and clicks. Like AdSplit, it requires a private
key stored on the device to sign its attestations. Not only
would compromise of this key allow for forged attestations to
be made, but it is unclear whether servers would be able to
enumerate all the certificates associated with these deployed
keys, as each device and manufacturer would need to have
its own. Our MTOP, on the other hand, does not require a
secret to be embedded on the device, and servers would need
to enumerate only signatures for authorized apps, instead of
for all devices which may contact the server. We note that
it is already common for servers to whitelist apps, e.g., in
the form of publisher IDs for ad providers and username/-
password credentials for web APIs.

10. CONCLUSION
We proposed the Mobile Trusted-Origin Policy, which con-

sists of two parts: 1) an app provenance mechanism which
annotates outgoing HTTP(S) requests with information about
which app generated the network traffic, and 2) a code iso-
lation mechanism that separates code within an app which
should have different provenance signatures into what we call
a “mobile origin”. To handle point (1), we propose Trusted
Cross-Origin Requests, which allows servers to decide if an
app’s communication is authorized by including app prove-
nance in outgoing HTTP requests. To motivate such a sys-
tem, we investigated two families of click fraud malware in
Section 3.2 and observe how the lack of origin protections
enables the fraud to occur. Finally, we implement MTOP on
Android, using a network proxy to add the TCOR header to
outgoing HTTP requests and HTTPS requests, evaluating
its deployability and performance.

Acknowledgements This paper is based upon work sup-
ported by the Intel Science and Technology Center for Secure
Computing and UC Davis RISE award.

References
[1] Eric Chien. Motivations of Recent Android Malware.

Tech. rep. Technical Report, Symantec Security, 2013.

[2] Jonathan Crussell, Clint Gibler, and Hao Chen. “An-
Darwin: Scalable Detection of Semantically Similar An-
droid Applications”. In: Computer Security–ESORICS
2013. Springer, 2013, pp. 182–199.

[3] Jonathan Crussell, Ryan Stevens, and Hao Chen.“MAd-
Fraud: Investigating Ad Fraud in Android Applica-
tions”. In: Proceedings of 12th International Confer-
ence on Mobile Systems, Applications and Services.
2014.

[4] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Anto-
nio Nucci, and Dawn Song. “Networkprofiler: Towards
automatic fingerprinting of android apps”. In: INFO-
COM, 2013 Proceedings IEEE. IEEE. 2013, pp. 809–
817.

[5] Benjamin Davis and Hao Chen.“RetroSkeleton: Retro-
fitting Android Apps”. In: Proceeding of the 11th an-
nual international conference on Mobile systems, ap-
plications, and services. ACM. 2013, pp. 181–192.

[6] Daniel DeFreez, Bhargava Shastry, Hao Chen, and Jean-
Pierre Seifert. “A First Look at Firefox OS Security”.
In: Workshop on Mobile Security Technologies. 2014.

[7] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, An-
hei Shu, and Dan S Wallach. “QUIRE: Lightweight
Provenance for Smart Phone Operating Systems.” In:
USENIX Security Symposium. 2011.

[8] William Enck et al. “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones.”In: Proceedings of the 9th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation. Vol. 10. 2010, pp. 1–6.

[9] Sascha Fahl et al. “Why Eve and Mallory love An-
droid: An analysis of Android SSL (in) security”. In:
Proceedings of the 2012 ACM conference on Computer
and communications security. ACM. 2012, pp. 50–61.

[10] Felix C. Freiling, Thorsten Holz, and Georg Wicherski.
“Botnet Tracking: Exploring a Root-Cause Methodol-
ogy to Prevent Distributed Denial-of-Service Attacks”.
In: Computer Security–ESORICS 2005. Vol. 3679. Lec-
ture Notes in Computer Science. Springer Berlin Hei-
delberg, 2005, pp. 319–335.

[11] Sean Gallagher. “Snapchat images stolen from third-
party Web app using hacked API”. In: Ars Technica
(Oct. 2014). url: http://arstechnica.com/security/
2014/10/snapchat- images- stolen- from- third-party-
web-app-using-hacked-api/.

[12] John Gamble. MaClickFraud: Counterfeit Clicks and
Search Queries. 2013. url: https://blog.lookout.com/
blog/2013/11/01/maclickfraud - counterfeit - clicks -
and-search-queries/.

[13] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and
Hao Chen.“AndroidLeaks: Automatically detecting po-
tential privacy leaks in Android applications on a large
scale”. In: Trust and Trustworthy Computing. Springer,
2012, pp. 291–307.

[14] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-
Reza Sadeghi. “Unsafe exposure analysis of mobile in-
app advertisements”. In: Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and
Mobile Networks. ACM. 2012, pp. 101–112.

[15] Kristen Kennedy, Eric Gustafson, and Hao Chen.“Quan-
tifying the Effects of Removing Permissions from An-
droid Applications”. In: Workshop on Mobile Security
Technologies. 2013.

[16] Anne van Kesteren.“Cross-Origin Resoucrce Sharing”.
In: World Wide Web Consortium W3C (Jan. 2014).
url: http://www.w3.org/TR/cors/.

[17] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia.
“AdAttester: Secure Online Mobile Advertisement At-
testation Using TrustZone”. In: Proceedings of the 13th
Annual International Conference on Mobile Systems,
Applications, and Services. ACM. 2015, pp. 75–88.

[18] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.
“DECAF: Detecting and Characterizing Ad Fraud in
Mobile Apps”. In: Presented as part of the 11th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 14). Seattle, WA: USENIX, 2014.

[19] Alexander Moshchuk, Helen J Wang, and Yunxin Liu.
“Content-based isolation: rethinking isolation policy
design on client systems”. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & communi-
cations security. ACM. 2013, pp. 1167–1180.

[20] Franziska Roesner, James Fogarty, and Tadayoshi Kohno.
“User Interface Toolkit Mechanisms for Securing In-
terface Elements”. In: Symposium on User Interface
Software and Technology (2012).

[21] Franziska Roesner and Tadayoshi Kohno. “Securing
Embedded User Interfaces: Android and Beyond”. In:
Proceedings of the 22nd USENIX Security Symposium
(2013).

[22] Shashi Shekhar, Michael Dietz, and Dan S. Wallach.
“AdSplit: Separating smartphone advertising from ap-
plications”. In: Proceedings of the 21st USENIX Secu-
rity Symposium. 2012.

[23] Ryan Stevens, Clint Gibler, Jonathan Crussell, Jeremy
Erickson, and Hao Chen. “Investigating User Privacy
in Android Ad Libraries”. In: Workshop on Mobile Se-
curity Technologies. 2012.

[24] Brett Stone-Gross et al.“Understanding fraudulent ac-
tivities in online ad exchanges”. In: Proceedings of the
2011 ACM SIGCOMM conference on Internet mea-
surement conference. ACM. 2011, pp. 279–294.

[25] Gianluca Stringhini, Oliver Hohlfeld, Christopher Krue-
gel, and Giovanni Vigna. “The Harvester, the Bot-
master, and the Spammer: On the Relations Between
the Different Actors in the Spam Landscape”. In: Pro-
ceedings of the 9th ACM Symposium on Information,
Computer, and Communication Security. ACM. 2014.

[26] Nicolas Viennot, Edward Garcia, and Jason Nieh. “A
measurement study of Google Play”. In: The 2014 ACM
international conference on Measurement and model-
ing of computer systems. ACM. 2014, pp. 221–233.

[27] Xiao Zhang, Amit Ahlawat, andWenliang Du.“AFrame:
isolating advertisements from mobile applications in
Android”. In: Proceedings of the 29th Annual Com-
puter Security Applications Conference. ACM. 2013,
pp. 9–18.

APPENDIX

POST // NuclearCoreWeb // NuclearCoreServlet HTTP /1.1
Content -Type: text/plain; charset=ISO -8859 -1
Host: core.nucleardroid.com :8080
User -Agent: Apache -HttpClient/UNAVAILABLE (java 1.4)

{" namespace ":"com.pixcel.MorzeDroid ","request ":" getAd"}
HTTP /1.1 200 OK
Server: Apache -Coyote /1.1
X-Powered -By: Servlet /3.0; JBossAS -6
Date: Thu , 13 Feb 2014 23:04:34 GMT

{" countperday ":5," items ":[{" countfake ":5," counttry ":2," name ":" Madvertise -1"," enable ":true ," namespacelist ":[" com.
pixcel.MorzeDroid "]," siteid ":" QCPWyzAF"," publisherid ":""," countsuccess ":3," adname ":" Madvertise ","namespace ":"com
.pixcel.MorzeDroid "},{" countfake ":5," counttry ":2," name ":"MobFox -1"," enable ":true ," namespacelist ":[" com.pixcel.Mo
rzeDroid "]," siteid ":"84 baac85e1f8a3092bd7cd4847dd0483 "," publisherid ":""," countsuccess ":1," adname ":" MobFox","name
space ":"com.pixcel.MorzeDroid "},{" countfake ":5," counttry ":2," name ":"Tapjoy -1"," enable ":true ," namespacelist ":["co
m.pixcel.MorzeDroid "]," siteid ":" c9e2a2f6 -fb99 -4131-bba0 -944 be954493d"," publisherid ":" IQAnj1JzUVHSFvRqja1R ","coun
tsuccess ":3," adname ":" Tapjoy"," namespace ":"com.pixcel.MorzeDroid "}]," enable ":true ," namespace ":"com.pixcel.MorzeD
roid"}

Figure 3: Example Nucleardroid query.

1 Iterator localIterator = localJSONAd.getAdItems (). iterator ();
2 while (localIterator.hasNext ()) {
3 JSONAdItem localJSONAdItem = (JSONAdItem)localIterator.next ();
4 if (localJSONAdItem.isEnable ()) {
5 LogHelper.log("processingAd: ad item: " + localJSONAdItem.getName () + " processing");
6 BaseGenerator localBaseGenerator = GeneratorFactory.getGenerator(getApplicationContext (), localJSONAdItem);
7 if (localBaseGenerator != null)
8 try {
9 localBaseGenerator.fakeRequest ();

10 waiteOne ();
11 localBaseGenerator.clickRequest ();
12 } catch (Exception localException2) { }
13 } else {
14 LogHelper.log("processingAd: ad item: " + localJSONAdItem.getName () + " disabled");
15 }
16 }

Figure 4: De-compiled Java for Pixcel’s ad fraud service.

1 setTimeout(function() {
2 var i=1;
3 var frames=document["body"]["getElementsByTagName"]("iframe");
4 for(var j=0; j<frames["length"]; j++) {
5 var content =
6 frames[j]["contentWindow"] ? frames[j]["contentWindow"]["document"] : frames[j]["contentDocument"];
7 i f (content) {
8 var atags= content["body"]["getElementsByTagName"]("a");
9 i f (atags["length"]) {

10 _0x432cx7(atags [0]["href"], clickUrls[Math["min"](i, clickUrls["length"]-1)]);
11 i++;
12 } } }
13 function _0x432cx7(href , clickUrl) {
14 var div=document["createElement"]("div");
15 div["innerHTML"]="<iframe src =\" javascript:‘<!doctype html ><html ><head ><meta charset=\‘utf -8\’></head ><body

>’ + decodeURIComponent(‘" + encodeURIComponent("")+"’) + ‘</body ></html >’\"></
iframe >";

16 div["style"]["width"]="1px"; div["style"]["height"]="1px";
17 div["style"]["visibility"]="hidden";
18 document["body"]["appendChild"](div["firstChild"]);
19 i f (clickUrl) {
20 var img=document["createElement"]("img");
21 img["setAttribute"]("src", clickUrl);
22 img["style"]["width"]="1px"; img["style"]["height"]="1px";
23 img["style"]["visibility"]="hidden";
24 document["body"]["appendChild"](img)
25 } } }, 3000);

Figure 5: De-obfuscated Javascript from postupdate.info/carousel/ad_track.js.

