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ABSTRACT
Dynamic revocation of permissions of installed Android ap-
plications has been gaining popularity, because of the in-
creasing concern of security and privacy in the Android
platform. However, applications often crash or misbehave
when their permissions are revoked, rendering applications
completely unusable. Even though Google has officially in-
troduced the new permission mechanism in Android 6.0 to
explicitly support dynamic permission revocation, the issue
still exists. In this paper, we conduct an empirical study
to understand the latest application practice post Android
6.0. Specifically, we design a practical tool, referred to as
revDroid, to help us to empirically analyze how often the un-
desirable side effects, especially application crash, can occur
in off-the-shelf Android applications. From the analysis of
248 popular applications from Google Play Store, revDroid
finds out that 70% applications and 46% permission-relevant
calls do not appropriately catch exceptions caused by per-
mission revocation, while third-party libraries pay much more
attention to permission revocation. We also use revDroid to
analyze 132 recent malware samples. The result shows that
only 27% malwares and 36% permission-relevant API calls of
malwares fail to consider the permission revocation. In fact,
many of them perform specialized handling of permission
revocation to keep the core malicious logic running. Finally,
revDroid can be used to help developers uncover the unhan-
dled permission revocations during development time and
greatly improve the application quality.

Keywords
Android Security, Permission Over-claim, Permission Revo-
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1. INTRODUCTION
The security of Android devices heavily depends on the
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effectiveness of the permission mechanism [5, 19, 20]. The
permission mechanism of Android is often considered a se-
vere design flaw of the main-stream Android platform on
the current market, because users usually have to approve
all the permission requests during the application installa-
tion process. Specifically, the over-claim of permission is
a common issue in the ecosystem of Android applications.
Many reasons, including poor documentations [21], coarse-
grained permissions [9], even irresponsible developers [9], all
contribute to this issue. Unfortunately, users are basically
given the all-or-nothing model.

A practical solution is to revoke permissions separately
after an application is installed. Android 4.3 introduces an
experimental system service called AppOps [14], which can
help users to revoke a subset of permissions after applica-
tions are installed. This functionality of permission revoca-
tion has been provided officially in Android 6.0 [4]. For ap-
plications targeted at Android 6.0, an Android user does not
need to grant any permissions at install-time. The applica-
tion will request the permissions when it actually needs them
at run-time by showing a dialog to ask for the permission.
Users can also grant or revoke permissions after installa-
tion. Besides these, researchers proposed many frameworks
and mechanisms in the framework layer or the kernel layer
by allowing users to selectively grant permissions to an ap-
plication, e.g., Android Permission Extension (Apex) [31],
MockDroid [11] and AppFence [28].

However, after the permission revocation, applications would
typically crash if they are not written to support permission
revocation, resulting in undesirable user experience. This
issue could be more serious when the new platform of An-
droid 6.0 explicitly enables the dynamic permission revoca-
tion. Based on log analysis of application crash, the tool
Pyandrazzi [29] reports that around 5.8% applications crash
after a permission is removed (which we believe is a signifi-
cant underestimate).

There are a few existing and practical methods to mitigate
the side effects. Firstly, researchers attempt to forge the
data [11, 28, 39, 38] that the applications request. Secondly,
system status, e.g., enabling airplane mode, can be forged
when the applications access corresponding data or perform
corresponding operations [28]. Some of these optimization
methods are adopted in Android 6.0, but we find that they
only eliminate application crashes for certain APIs.

We are curious about the real possibilities of application
crashes under Android 6.0. We find that the real situation
is worse than previously believed, because Pyandrazzi only



analyzed the log reported by logcat [3] when running the
applications dynamically, which suffers from coverage issues,
because many program paths which lead to the crash are not
run.

In this paper, we show that static code analysis can pro-
vide a much more accurate estimation.

The main contributions of this paper are as follows:

• To analyze the side effects after dynamic permission
revocation of Android applications, we design a prac-
tical tool, referred to as revDroid, based on Soot [34]
and FlowDroid [7]. revDroid can automatically count
the reachable but unhandled SecurityException in
an Android application as the cause of side effects of
permission revocation. revDroid counts an unhandled
permission-relevant invocation, if the invocation does
not belong to either one of the following types: i) the
invocation itself or ancestral call methods are wrapped
by a try and catch block which handles the Securi-

tyException; or ii) the invocation itself or ancestral
call methods are wrapped by a proactive permission
check block which calls permission check methods such
as checkPermission and checkSelfPermission.

• After using revDroid to successfully analyze 248 top
popular applications from Google Play Store, we are
surprised to find that 70% applications and 46% permission-
relevant API calls fail to consider permission revoca-
tion. We did experiments to confirm that the uncaught
SecurityException is bound to cause crash. When
we analyze the unhandled SecurityExceptions in four
categories of third-party libraries of Android applica-
tion, we find that third-party libraries pay more at-
tention to correctly invoke permission relevant APIs.
These results show that the problem is much more se-
vere than previously concern [29]. This high rate of
unhandled SecurityException also implies that there
is still much work needed from application develop-
ers to meet the new requirement and a tool such as
revDroid can help significantly to ease the transition.

• We also use revDroid to analyze 132 recent malware
samples from the M0Droid project [18] by Damshenas
et al. The result shows that 27% malwares and 36%
permission-relevant API calls of malwares fail to con-
sider the permission revocation, which is surprisingly
better compared to top regular applications. After
careful inspection, we believe that malware samples
in fact do deal with permission revocation in order to
keep as much malicious logic running as possible.

In summary, we believe the tool and analysis results are
valuable after Android 6.0 is released, as they can tell how
serious this issue of dynamic permission revocation is when
the developers migrate the state-of-the-art applications to
the new platform. The tool can also help developers and
markets identify unconforming applications.

The rest of this paper is organized as follows: Section 2
introduces the background knowledge and motivation of this
paper. Section 3 designs our code analysis framework. Sec-
tion 4 presents our analysis experiments and results. Sec-
tion 5 discusses the remaining issues. Section 6 introduces
the related work. Section 7 summarizes the paper and in-
troduces our future work.

2. BACKGROUND AND MOTIVATION

2.1 Over-claim of Permissions and Its Coun-
termeasures

Over-claim of permissions is very popular in the current
Android platform [19, 33], because developers and applica-
tion users might have conflict of interest [27]. Developers
tend to declare more permissions than necessary because
more permissions will make the development process eas-
ier, allow applications to access more private information
and perform more critical operations. However, application
users who tend to protect their privacy may not know what
the requested permissions mean [23]. Further, before An-
droid 6.0, users have no other choice but to approve all the
permission requests. The issue is made even more severe by
the coarse-grained permissions and insufficient documenta-
tions [20].

The over-claim of permissions breaks the principle of least
privilege (PLP) [32]. This violation of PLP exposes users
to potential privacy leakage and financial losses directly or
indirectly. For example, if a standalone game application
requests the SEND_SMS permission which could be unneces-
sary, the permission can be exploited to send premium rate
messages without users’ acknowledgment. As discovered by
Felt et al., about one-third of 940 applications analyzed were
over-privileged, and the most common unnecessary permis-
sions include ACCESS_NETWORK_STATE, READ_PHONE_STATE, AC-
CESS_WIFI_STATE, WRITE_EXTERNAL_STORAGE, and
CALL_PHONE [21]. Au et al. also identified that 543 out of
1,260 applications required at least one over-claimed permis-
sion [8]. In the new permission mechanism of Android 6.0,
28 permissions falling under PROTECTION_DANGEROUS are di-
vided into 9 permission groups according to their function-
alities, and permissions in the same permission group are
managed as a whole, which makes the permission granular-
ity much coarser [4]. This would lead to the issue of the
over-claim of permissions as well.

A major category of countermeasures to the issue is to
allow users to revoke over-claimed permissions at install-
time or run-time. Researchers have proposed several ways
to achieve this goal. For example, Android Permission Ex-
tension (Apex) [31] and Flex-P [30] augmented the Android
application installer to allow users to selectively grant or
revoke permissions, instead of granting or revoking permis-
sions all together. In addition, a permission editor was also
provided to allow users to grant more permissions or revoke
some of the granted permissions even after the application
has been installed. This approach required heavy modifi-
cation to the Android operating system itself, but yielded
a flexible solution [29]. In Android 6.0, Google introduced
a new permission mechanism, where users can deny per-
mission requests at run-time and still continue to use the
application [25].

2.2 Side Effects of Permission Revocation and
Fake Data Methods

Before Android 6.0, Google suggests that the dynamic
permission mechanism would be too much of a burden on
the user, so the Android documentation does not explicitly
instruct application developers to handle cases of permission
revocation [29], and even suggests that application develop-
ers not to worry about run-time failures caused by missing
permissions [5]. In almost all cases the revocation of permis-



sions will result in a Java SecurityException being thrown
back to the application, although it is not guaranteed ev-
erywhere (for example, the sendBroadcast(Intent) method
checks permissions after the method call has returned and
no exception will be thrown even if there are permission
failures) [5]. Although some of the application developers
will handle the exceptions gracefully, most developers typ-
ically develop applications according to the stock Android
permission mechanism before Android 6.0 and assume that
all the permissions which his or her application requests are
granted when the application is running on users’ devices.
If the SecurityException is not handled, applications are
likely to malfunction, resulting in undesirable user experi-
ence, such as UI freezing, data corruption, or even complete
crash.

As evaluated by Kennedy et al., 39 (5.9%) of the 662 appli-
cations crashed due to permission revocation overall but not
all permissions were equal. Removing the READ_CONTACTS

and ACCESS_FINE_LOCATION permissions had the greatest
impact which caused 20 and 13 applications to crash re-
spectively, while removing the CAMERA, RECORD_AUDIO and
WRITE_SMS permissions respectively never caused crash [29].

To prevent SecurityException from being thrown, many
previous studies, such as MockDroid [11], AppFence [28] and
TISSA [39], leveraged the idea of fake data. That is, when
the user revokes a permission, the Android operating sys-
tem returns fake data to the application, instead of simply
denying the access. For example, the unique identifiers of
an Android device (IMEI or IMSI) can be substituted with
fake ones, and the geographic coordinate of a fixed place
can replace that of the device’s real location. This method
attempted to protect the user’s privacy while maintaining
usability.

After Android 6.0 is released, although Google changes
the Android documentation to explicitly instruct applica-
tion developers to handle cases of permission revocation,
it will take application developers a lot of time and effort
to manually examine and modify their applications to sup-
port the new permission mechanism. Moreover, even in the
new permission mechanism, if the user revokes a permis-
sion and the application tries to use a functionality that
requires that permission, the Android operating system will
also throw a SecurityException to the application for some
APIs, for example, the getDeviceId() method of the an-

droid.telephony.TelephonyManager class which is protected
by the READ_PHONE_STATE permission.

2.3 Soot and FlowDroid
revDroid is designed and implemented based on Soot [34]

and FlowDroid [7]. Soot is an analysis and transformation
framework developed by McGill University, which supports
input formats including Java byte-code, Java source code
and Android byte-code. Soot can also produce transformed
code in output formats such as Java byte-code and An-
droid byte-code. Soot provides powerful analysis function-
alities including call graph construction, dead code elimi-
nation, point-to analysis, def/use chain analysis and data
flow dominator analysis. FlowDroid is a context-sensitive,
flow-sensitive, object sensitive and lifecycle-ware static anal-
ysis for Android applications based on Soot. Compared with
Soot, FlowDroid provides functionalities specific to Android
applications, including resource file parsing, UI mapping,
callback calculation and entry point generation based on

the application components. FlowDroid aims for an anal-
ysis with very high recall and precision [7].

2.4 Application Scenarios
Application developers and markets, e.g., Google, may

benefit from tools and frameworks based on revDroid to pro-
vide better user experience when Android permissions are
revoked by the user. In this section, we envision a variety of
scenarios where revDroid could work.

2.4.1 Application Development
As described in Section 2.2, most application developers

are not accustomed to handling SecurityExceptions grace-
fully because the Android development documentation be-
fore Android 6.0 does not explicitly instruct application de-
velopers to handle cases of permission revocation and appli-
cation developers need time to learn the new documentation.
This issue can be mitigated by providing developers a de-
velopment tool based on the revDroid analysis framework.
During the application development process, application de-
velopers can conveniently find out the cases where their code
does not handle permission revocation correctly and fix the
issues instantly based on the analysis report of the revDroid
analysis framework. Moreover, this development tool can
be further improved as a plug-in installed right into devel-
opers’ development environment. In this way, programming
issues which may lead to application crash when permissions
are revoked can be fixed before the application packages are
shipped to application markets and end users.

2.4.2 Application Distribution
Application markets such as Google Play Store typically

scan applications automatically when they are first pub-
lished (e.g., Bouncer [26] scans for malicious applications).
They can piggyback the test to detect potential crashes
caused by permission revocation with the revDroid analysis
framework. Then, application markets can notify develop-
ers if any potential issue is found, and application develop-
ers can upload a revised version to application markets for
review. Thus application markets can guarantee that appli-
cations provided by them for downloading generally have a
higher quality and better user experience, especially when
they are running on devices allowing users to selectively
grant or revoke permissions of applications.

3. ANALYSIS FRAMEWORK OF REVDROID
We define that a permission-relevant API call is not cor-

rectly handled if all methods in one of the call stacks of
the API call are not wrapped by an exception handler or
a proactive permission check block which calls permission
check methods such as checkPermission and checkUidPer-

mission. If the permission-relevant API call is not correctly
handled, we define this usage as a mis-usage of the API.

In the analysis framework, revDroid firstly leverages apk-
tool [6] to unpack the input APK file, and decode resource
files including the manifest file and the UI XML files, to
nearly original form [6]. After revDroid obtains the man-
ifest file, it calculates the set of API calls which the ap-
plication may invoke based on the permissions requested
by the application and the result of PScout [8] which is a
mapping between a permission and a set of API calls if the



permission is required on execution of the API1. Note that
in Android 6.0, permissions which are classified as PROTEC-

TION_NORMAL, including widely used permissions such as the
INTERNET permission and the ACCCESS_NETWORK_STATE per-
mission will be automatically granted by system at install-
time and cannot be revoked by users. Thus, we will ignore
APIs which are only protected by permissions classified as
PROTECTION_NORMAL in Android 6.0.

Secondly, revDroid leverages FlowDroid to generate a dummy
main class and a dummy main method as the analysis entry
point. The dummy main class and dummy main method is
generated by combining the lifecycle methods of the applica-
tion component classes, such as the void onCreate(Bundle)

method of the android.app.Activity class. Moreover, the
callback methods for system-event, handling UI interaction
and others, including callback methods declared in the XML
resource files, such as the callback methods of the callback
classes and interfaces shown in Table 1, are also included in
the dummy main method by parsing the decoded resource
files [7].

Table 1: Examples of callback class or interface [7]
Class or Interface Name

android.bluetooth.BluetoothProfile$ServiceListener

android.content.DialogInterface$OnClickListener

android.database.sqlite.SQLiteTransactionListener

android.hardware.Camera$ShutterCallback

android.location.LocationListener

android.view.View$OnClickListener

android.widget.PopupMenu$OnMenuItemClickListener

Next, revDroid passes the generated dummy main class
and dummy main method to Soot. Soot generates the whole
call graph of the application, and starting from the dummy
main method, examines bodies of every reachable method,
looks for the method invocations which belong to the set
of API calls calculated in the first step, and finally checks
whether these API calls are wrapped in an exception han-
dler which handles SecurityException or a proactive per-
mission check block which calls permission check methods
such as checkPermission and checkSelfPermission. If not,
revDroid searches their callers, recursively. In one iteration
of the recursive process, revDroid searches the caller of the
method which current invocation locates at, checks all the
invocations of the callee, and moves to next iteration by
treating every caller as callee if the invocation is not cor-
rectly handled. The search terminates when the analyzer
cannot find any caller of the current callee or a method call
cycle is found.

3.1 Mis-usage Detection Algorithm
The mis-usage detection algorithm shown in Algorithm 1

checks whether the API call is a mis-usage. The algorithm
takes an API call as input, then leverages Soot to obtain all
call stacks of this API call. For every call stack we check
whether there exists an invocation in this call stack which
is wrapped by an exception handler, or dealt with proactive
permission check (described in detail in Section 3.2.2). If
any one of the call stacks of the API call is neither wrapped
by an exception handler nor dealt with proactive permission

1PScout is a tool which extracts the permission specification
from the Android operating system source code using static
analysis and generates a mapping [8]

check, the API call is judged as a mis-usage. Note that, if the
exception which is handled is a more general one than the
SecurityException, i.e., super classes of SecurityExcep-

tion, we also consider that the developer correctly handles
the invocation of the permission-relevant API.

Our algorithm checks all the reachable statements for the
API call recursively, so the complexity of the algorithm de-
pends on the number of statements and size of the call
stacks. If there are N statements in the application and
the average size of the call stacks is M, the complexity of
the algorithm is O(N*M ).

Algorithm 1 Mis-usage Detection

Require: APICall : a permission-relevant API usage to be
checked

Ensure: checkResult
: whether the usage of APICall is correct
————————————————————–

1: checkResult← true
2: for all callStack generate by Soot do
3: checkTempResult ← false
4: for all statement ∈ callStack do
5: if statement is wrapped by exception handler or

dealt with proactive permission check then
6: checkTempResult = true
7: end if
8: end for
9: if checkTempResult == false then

10: checkResult = false
11: end if
12: end for

3.2 Technical Issues in the Framework

3.2.1 Recursion
revDroid checks whether the potential SecurityExcep-

tion is handled along a call stack in depth-first order. To
prevent recursion from resulting in an infinite loop, we keep
track of the history of invocations which have been checked
along a call stack. If the invocation which should be checked
next is already present in the history, we stop the check and
judge the root invocation of the call stack as a mis-usage.

3.2.2 Proactive Permission Checks
Many applications, especially third-party libraries, will

proactively check if the application is granted with the corre-
sponding permissions by calling methods such as checkPer-
mission, checkUidPermission and checkSelfPermission

before invoking APIs which require permissions. revDroid
takes this kind of handling into consideration by checking
whether the API call depends on the return value of the
permission check methods by leveraging the SimpleDomina-

torsFinder class of Soot which finds dominators of a given
flow graph using the simple LT algorithm [15]. If that is
the case, revDroid will judge these API calls as correctly
handled.

3.2.3 Dead Code
Dead code is the code which exists in the application but

will never be executed. Not considering the effect of the
dead code will lead to false positives, so revDroid leverages



Soot to eliminate dead code first and only analyzes methods
which are reachable [12].

4. EXPERIMENTS

4.1 Collections of Android Applications
The experiments are based on two datasets. The first

dataset consists of 540 regular Android applications. We
denote this as regular applications. This dataset is obtained
by downloading the top 540 applications on the top free
chart of the US Google Play Store in late September 2015,
four months after Android 6.0 was released to developers
in May 28th, 2015 [24]. The second dataset consists of 200
malware samples from the M0Droid project by Damshenas
et al., which was last updated in December 2014 [18]. The
experiments are conducted on a virtual machine with 4-core
CPU and 12GB RAM running CentOS 6.5 and OpenJDK
7.

4.2 Results
We run revDroid with the two datasets mentioned in Sec-

tion 4.1 and obtain a preliminary report. For each appli-
cation, the preliminary report shows the permissions which
the application requests and potential SecurityExceptions
which the application handles and does not handle. Further,
we analyze the preliminary report and obtain more impor-
tant and interesting insights.

Table 2 lists the top 10 most used APIs in the two datasets.
We can see that the top 10 most used APIs in the two
datasets almost overlap, so applications’ usages of the ap-
plications in the two datasets are similar.

4.2.1 Results by Application
Figure 1 shows the overall distribution of regular applica-

tions’ handling of potential side effects. Of the 540 applica-
tions in the regular application dataset, revDroid analyzes
420 applications successfully. Among them, 172 applications
do not call APIs which require permissions except permis-
sions classified as PROTECTION_NORMAL in Android 6.0. For
the rest 248 regular applications, 70% of them fail to han-
dle one or more cases where the exception is supposed to be
thrown. Only 30% of them handle all cases. This low rate
of correct exception handling indicates that application de-
velopers worrisomely fail to handle potential side effects of
permission revocations. Figure 2 shows the distribution of
regular applications’ handling of potential side effects cate-
gorized by the rate of handled potential side effects. We can
see that 48% of applications handle less than 60% of their
potential side effects.

By contrast, Figure 3 and Figure 4 show the overall dis-
tribution of malwares’ handling of potential side effects. Of
the 200 applications in the malware dataset, revDroid an-
alyzes 155 malwares successfully. 23 malwares do not re-
quest permissions except permissions classified as PROTEC-

TION_NORMAL in Android 6.0. We can conclude from the
comparison between Figure 2 and Figure 4 that malwares
put more attention to the side effects of permission revoca-
tion because 73% malwares handle all potential side effects.
A possible reason for this difference between the results for
regular applications and malwares is that the developers of
malwares tend to take end users’ revocation of permissions
into consideration and handle potential side effects of per-
mission revocation so that their malwares can survive on

more devices, including those which allow users to revoke
permissions, to keep the core malicious logic running. As we
discover in Section 4.2.6, when trying retrieving the unique
identifier string of the device, some malwares will return
string “invalid” instead if the READ_PHONE_STATE permission
is revoked to prevent itself from crashing.

Regular applications 
handling all 

potential side effects, 
75 (30%)

Regular applications 
not handling all 

potential side effects, 
173 (70%)

Figure 1: Distribution of regular applications’ handling of
potential side effects. 70% of regular applications do not
handle all occurrences of potential side effects, while only
30% of applications handle all.
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Figure 2: Distribution of regular applications’ handling of
potential side effects categorized by correct usage rate. 48%
of regular applications handle less than 60% of their poten-
tial side effects.

4.2.2 Results by API
We group the results by the API calls which are invoked

by the applications. Figure 5 shows the overall distribution
of regular applications’ handling of potential side effects by
API calls. 46% of API calls which require permissions are
not correctly handled by regular applications, while the rest
54% API calls are correctly handled. Table 3 lists the top 10
most mis-used APIs by regular application developers. We
can conclude from Table 3 that the API calls which require
the ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION

permissions are widely used by application developers but
not handled well, which is also supported by the result shown
in Table 5.

Since Android 6.0 allows users to revoke permissions af-
ter installing applications, we wonder if removing permis-
sions will still crash applications. To answer this question,
we developed a test application that invokes APIs that re-
quest permissions including those listed in Table 3, without



Table 2: Top 10 most used APIs of applications in the two datasets
Rank Regular Application Malware

1 android.telephony.TelephonyManager:

java.lang.String getDeviceId()

android.telephony.TelephonyManager:

java.lang.String getDeviceId()

2 android.location.LocationManager: an-

droid.location.Location getLastKnownLoca-

tion(java.lang.String)

android.location.LocationManager: an-

droid.location.Location getLastKnownLoca-

tion(java.lang.String)

3 android.location.LocationManager: boolean is-

ProviderEnabled(java.lang.String)

android.location.LocationManager:

java.lang.String getBest-

Provider(android.location.Criteria,boolean)

4 android.accounts.AccountManager: an-

droid.accounts.Account[] getAccountsBy-

Type(java.lang.String)

android.telephony.TelephonyManager:

java.lang.String getLine1Number()

5 android.location.LocationManager: void request-

LocationUpdates(java.lang.String,long,float,

android.location.LocationListener)

android.location.LocationManager: void request-

LocationUpdates(java.lang.String,long,float,

android.location.LocationListener)

6 android.location.LocationManager: an-

droid.location.LocationProvider get-

Provider(java.lang.String)

android.accounts.AccountManager: an-

droid.accounts.Account[] getAccounts()

7 android.telephony.TelephonyManager: void lis-

ten(android.telephony.PhoneStateListener,int)

android.telephony.SmsManager: void send-

TextMessage(java.lang.String,java.lang.String,

java.lang.String, android.app.PendingIntent,

android.app.PendingIntent)

8 android.hardware.Camera: an-

droid.hardware.Camera open()

android.telephony.TelephonyManager:

java.lang.String getSubscriberId()

9 android.telephony.TelephonyManager:

java.lang.String getSubscriberId()

android.location.LocationManager: boolean is-

ProviderEnabled(java.lang.String)

10 android.accounts.AccountManager:

java.lang.String getUser-

Data(android.accounts.Account,java.lang.String)

android.location.LocationManager: void request-

LocationUpdates(java.lang.String,long,float, an-

droid.location.LocationListener,android.os.Looper)

Table 3: Top 10 most mis-used APIs of regular applications
API Permission Mis-usage Count
android.location.LocationManager: android.location.Location get-

LastKnownLocation (java.lang.String)

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

77

android.accounts.AccountManager: android.accounts.Account[]

getAccountsByType(java.lang.String)

GET_ACCOUNTS 76

android.telephony.TelephonyManager: java.lang.String getDevi-

ceId()

READ_PHONE_STATE 70

android.location.LocationManager: boolean isProviderEn-

abled(java.lang.String)

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

58

android.location.LocationManager: void requestLocationUp-

dates(java.lang.String,long,float,android.location.LocationListener)

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

43

android.telephony.TelephonyManager: void lis-

ten(android.telephony.PhoneStateListener,int)

ACCESS_COARSE_LOCATION

READ_PHONE_STATE

42

android.location.LocationManager: android.location.LocationProvider

getProvider(java.lang.String)

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

36

android.accounts.AccountManager: java.lang.String getUser-

Data(android.accounts.Account,java.lang.String)

AUTHENTICATE_ACCOUNTS 28

android.accounts.AccountManager: android.accounts.Account[]

getAccounts()

GET_ACCOUNTS 28

android.location.LocationManager: java.util.List get-

Providers(boolean)

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

27
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Malwares not 
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Figure 3: Distribution of malwares’ handling of potential
side effects. 27% of malwares do not handle all occurrences
of potential side effects, while 73% of malwares handle all.
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Figure 4: Distribution of malwares’ handling of potential
side effects categorized by correct usage rate

Correct usages, 
965 (54%)

Mis-usages, 806
(46%)

Figure 5: Distribution of regular applications’ handling of
potential side effects by API calls. 46% of API calls which
require permissions are not correctly handled by regular ap-
plications.

handling SecurityException. We ran the application on
Android 6.0 and observed that it crashed after we revoked
several permissions. Table 4 shows examples of these APIs
and their corresponding mis-usage count in the regular ap-
plication dataset. What is worse, we find out that for the
android.telephony.TelephonyManager:

java.lang.String getDeviceId() API, which is widely used
by applications to get the unique device identifier, there is
no warning about potential side effects either in the official
documentation or from the Android Studio IDE. Google’s
official documentation should specially instruct application
developers to correctly handle permission failure when they
are using these APIs.

Table 4: Examples of APIs which will cause crash even in
Android 6.0 if not correct used

API Mis-
usage
Count

android.location.LocationManager: an-

droid.location.Location getLastKnownLoca-

tion(java.lang.String)

77

android.telephony.TelephonyManager:

java.lang.String getDeviceId()

70

android.location.LocationManager: boolean

isProviderEnabled(java.lang.String)

58

android.location.LocationManager: an-

droid.location.LocationProvider get-

Provider(java.lang.String)

36

On the other hand, as shown in Figure 6, 36% API calls in
malwares which require permissions are not correctly han-
dled. The percentage is smaller than that of regular appli-
cations, which echoes the conclusion in Section 4.2.1 that
developers of malwares handle potential side effects better
than those of regular applications.

Correct usages, 
219 (64%)

Mis-usages, 125
(36%)

Figure 6: Distribution of malwares’ handling of potential
side effects by API calls. 36% of API calls which require
permissions are not correctly handled by malwares.

4.2.3 Results by Permission
For regular applications, we group the results by permis-

sions to see how many occurrences of unhandled Securi-

tyExceptions there are for API calls which require to work
with one or more permissions. If an API call requires mul-



tiple permissions, the API call will be counted as the occur-
rences of mis-usages for multiple permissions.

Table 5 shows the correct usage rates for the permissions
used by regular applications in our dataset. We can see
from the table that except the permissions with low usage,
the CAMERA permission has the highest correct usage rate of
94.83%. On the other hand, the GET_ACCOUNTS permission is
frequently used but its correct usage rate of 24.35% is low.

The Android documentation and the code lint check func-
tionality in the IDEs for Android [1] partially lead to the
difference between the correct usage rates of different per-
missions. For example, we discover that in the API guides
for the camera functionality, Google explicitly asks devel-
opers to always check for exceptions when using the cam-
era and gives a code example which wraps the invocation
of camera API with an exception handler [2]. In addi-
tion, the code lint check functionality which is provided by
Google and built in the IDEs for Android, e.g., Android
Studio and Eclipse, will show warnings to instruct develop-
ers to handle permission revocation for revocable permis-
sions in Android 6.0 [1]. However, as we test in Android
Studio, this functionality has two issues: i) this function-
ality is only available for Android Studio 1.4 or later and
not provided on previous versions of Android Studio; ii)
not all APIs which require revocable permissions in An-
droid 6.0 are checked. For example, the code lint check
functionality will warn developers about permission revo-
cation for the android.location.LocationManager: an-

droid.location.Location getLastKnownLocation

(java.lang.String) API, while will not warn developers
about permission revocation for the android.accounts.Account-
Manager: android.accounts.Account[] getAccountsBy-

Type(java.lang.String) API.

4.2.4 Source of Mis-usages in Regular Applications
Many regular applications include third-party libraries,

such as the AdMob ad library2 and the Facebook SDK3,
which are not written by the developers of the applica-
tions but share all the permissions with the hosting applica-
tions [13]. Third-party libraries tend to have common pack-
age name prefixes, like com.google.ads or com.facebook.

android [16]. These libraries could unfortunately be the
source of mis-usages, even when the libraries are written by
Google itself, such as Google’s Google Play Services4 which
is an API package for Android applications providing access
to a variety of Google services.

Therefore, it is necessary to find out the actual source
of mis-usages. We divide the mis-usages in regular appli-
cations into two categories: one is mis-usages which are
caused by the application developers themselves, and the
other is mis-usages which are caused by third-party libraries.
Our set of third-party libraries contains 86 common libraries
which are widely used by Android applications, especially
popular Android applications on the Google Play Store. We
distinguish the code from third-party libraries from develop-
ers’ own code by matching package name prefixes. The set of
third-party libraries are further classified into the following
four categories:

• Ad libraries. Ad libraries allow developers to embed

2https://www.google.com/admob/
3https://developers.facebook.com/docs/android
4https://developers.google.com/android/guides/overview

ads into their applications to achieve monetization, for
example, Google AdMob, StartApp5 and Tapjoy6.

• Analytics libraries. Analytics libraries help develop-
ers collect data about the usage of their applications,
including running logs, performance metrics, crash re-
port and users’ characteristic, for example, New Relic7,
Splunk8 and HockeyApp9.

• Social libraries. Social libraries, such as Facebook
SDK, provide developers with the ability to integrate
social features, including third-party login, social shar-
ing and user experience personalization, into their ap-
plications.

• Other libraries. This category of libraries include
libraries which do not belong to any of the aforemen-
tioned three categories, including Android Support Li-
brary10, Apache Cordova11 and Apache Thrift12.

As is shown in Figure 7, in the regular application dataset,
developers’ own code accounts for the large majority (96%)
of occurrences of unhandled potential side effects, while third-
party libraries account for only 4%. We can see that third-
party libraries account for much less mis-usages than appli-
cation developers’ own code. As for different categories of
third-party libraries, analytics libraries and social libraries
have no mis-usages, while ad libraries and other libraries
both make up the 2% of mis-usages. Note that for ad li-
braries, after careful examination, we find out that the 16
(2%) mis-usages are false-positives, so actually ad libraries
also have no mis-usages.

For each category, we also calculate the correct usage rate.
The result is shown in Table 6. Note that for ad libraries,
as we describe in the last paragraph, actually the correct
usage rate for ad libraries is 100%. As the fifth row and
sixth rows in the table show, third-party libraries as a whole
handle 90.72% of potential side effects, while the case for
developers’ own code is worse, with a correct usage rate of
46.07%.

In conclusion, third-party libraries handle potential side
effects of permission revocation much better than develop-
ers’ own code. One possible explanation is that third-party
libraries may be run inside a large number of hosting ap-
plications with diverse permissions so they should be more
robust as we describe in Section 3.2.2. However, this result
also shows the possible awful situation when the developed
applications based on these third-party libraries run on the
new platform of Android 6.0.

4.2.5 Type of Handled Exceptions
For regular applications which handle the potential side

effects of permission revocation, we manually examine the
type of exceptions which are handled. Most of the exceptions

5http://www.startapp.com/
6http://home.tapjoy.com/
7http://newrelic.com/
8http://www.splunk.com/
9http://hockeyapp.net/features/

10http://developer.android.com/tools/support-library/
index.html

11https://cordova.apache.org/
12https://thrift.apache.org/



Table 5: Correct usage rates for permissions of regular applications
Permission Correct Usage Mis-usage Correct Usage Rate
BATTERY_STATS 3 0 100.00%
CAMERA 55 3 94.83%
READ_PHONE_STATE 319 126 71.69%
SEND_SMS 5 2 71.43%
ACCESS_FINE_LOCATION 426 304 58.36%
ACCESS_COARSE_LOCATION 444 346 56.20%
RECORD_AUDIO 10 8 55.56%
WRITE_EXTERNAL_STORAGE 12 10 54.55%
GET_TASKS 24 21 53.33%
AUTHENTICATE_ACCOUNTS 50 49 50.51%
RESTART_PACKAGES 6 15 28.57%
USE_CREDENTIALS 12 30 28.57%
MANAGE_ACCOUNTS 14 43 24.56%
GET_ACCOUNTS 47 146 24.35%
READ_CALENDAR 2 29 6.45%
WRITE_SETTINGS 1 15 6.25%
READ_SOCIAL_STREAM 0 73 0.00%
READ_USER_DICTIONARY 0 72 0.00%
READ_CONTACTS 0 73 0.00%
WRITE_CONTACTS 0 73 0.00%
WRITE_CALENDAR 0 10 0.00%

Developers' own 
code, 775 (96%)

Ad, 16 (2%)

Other, 15 (2%)

Third-party 
libraries, 31 (4%)

Figure 7: Distribution of unhandled potential side effects of regular applications. Third-party libraries account for much less
occurrences of unhandled potential side effects than application developers’ own code.

Table 6: Correct usage rates for different categories of third-party libraries in regular applications. Third-party libraries’ code
has a higher correct usage rate than developers’ own code.

Category Correct Usage Mis-usage Correct Usage Rate
Ad 150 16 90.36%
Analytics 110 0 100.00%
Social 4 0 100.00%
Other 39 15 72.22%
Third-party Libraries Subtotal 303 31 90.72%
Developers’ Own Code 662 775 46.07%
Total 965 806 54.49%



handled by applications are general RuntimeException, Ex-
ception, or even Throwable, which are super classes of Se-
curityException. Handling super classes of SecurityEx-

ception can also prevent the side effects of permission revo-
cation. The reasons why application developers handle the
super classes of SecurityException instead of SecurityEx-
ception are three-fold: i) developers need to handle other
exceptions besides SecurityException. For example, when
using the camera API, developers will need to handle not
only permission revocation, but also cases where the camera
is in use or does not exist, so all these cases are handled to-
gether with an exception handler for the general Exception
class. ii) developers are intended to handle other exceptions,
and SecurityException is handled incidentally. iii) infor-
mation is lost when the application is reverse-engineered and
Soot fails to infer the specific type of exceptions which are
caught.

4.2.6 Content of Exception Handler
In addition, we also examine the content of the excep-

tion handler. The operations which applications execute in
the exception handler can be divided into three categories.
Firstly, most of the regular applications which catch the ex-
ception do not make anything meaningful in the exception
handler, or even provide an empty exception handler. Sec-
ondly, there are applications which simply log the error or
show a simple dialog informing the user that there occurs
a failed permission check. Lastly, a small portion of appli-
cations will return fake data in the exception handler. For
example, we discover that when trying retrieving the unique
identifier string of the device, some families of malwares will
return string “invalid” in the exception handler instead. In
this way, these malwares can avoid crash caused by unhan-
dled SecurityException, as well as NullPointerException,
so their core malicious logic can keep running.

5. DISCUSSIONS

5.1 Limitations of Analysis Completeness and
Success Rates

Native code: The completeness of the revDroid analysis
result will be reduced if applications use native code. Us-
ing native code in Android applications will make it difficult
to reverse-engineer the application. Our analysis tool de-
pends on the Soot and FlowDroid frameworks which do not
handle native modules. Because native code may contain
mis-usages as well, the situation can be even more severe.

Limitations of Soot and FlowDroid : There are sev-
eral other limitations in the Soot and FlowDroid frameworks
which will lead to completeness issue and decrease the suc-
cess rate of analysis. For example, Soot leverages SPARK
algorithm to generate the call graph. To build a call graph
edge, the algorithm must know the type of the base object
on which the method is invoked. If the base object is null

or comes out of a factory method inside the Android SDK,
there will not be an edge from the base object. A typical ex-
ample of this case in Android is the findViewById method of
the android.app.Activity class. As a result, method call
invoked on objects returned by the findViewById method
will not be analyzed, which will lead to completeness issue.
On the other hand, some applications in our dataset some-
how contain byte-code which is not valid according to the
specification of the Dalvik byte-code. For example, some

APK files contain classes implementing interfaces which are
not actually interfaces, and some other APK files contain
inner classes located inside of an outer class, but the outer
class itself is missing. Soot and FlowDroid will fail to an-
alyze or instrument these applications completely or even
crash. We will assist the maintainers of Soot and FlowDroid
with handling these strange cases in the future.

5.2 Limitations of Our Measure on Side Ef-
fects

Although the code analysis of the side effects after permis-
sion revocation can cover more cases of users’ mis-usages of
permission-relevant APIs, the mis-behavior of applications
caused by the exception handler, is not measured in our
analysis tool. When we look into the content of exception
handlers, many developers simply catch the SecurityEx-

ception or general Exception but do nothing else. This
could explain why sometimes an application hangs rather
than crashes after the permission is revoked. Moreover, we
do not differentiate exception handlers for SecurityExcep-

tion and the general Exception. As a result, the real situa-
tion where the developers consider the permission revocation
during their developers should be more severe.

5.3 Accuracy of Third-party Library Match-
ing

As we described in Section 4.2.4, we use package name
prefix matching to identify third-party libraries. Since ap-
plication developers can specify package names for their code
arbitrarily, which means application developers can even as-
sign package names of other third-party libraries to his or
her own applications, this third-party library matching ap-
proach may not be very accurate. In the future, we can
leverage application similarity detection techniques such as
AnDarwin [17] to mitigate this issue.

6. RELATED WORK
The issue of over-claim of permissions is one of the most

popular security issues of Android [20]. Thus, many re-
searchers [31, 11, 28] contributed a number of studies to
analyze and mitigate this issue.

Barrera et al. analyzed the permissions requested by 1,100
free Android applications to investigate how the Android
permission mechanism was used in practice and to deter-
mine its strengths and weaknesses [9]. Felt et al. performed
a case study on Android platform by reviewing the top
free and top paid applications from 18 Google Play cate-
gories [22]. For each of the reviewed applications, Felt et
al. compared its functionalities with the permissions which
it requested by manually exercising the user interface. The
result showed that four out of 36 applications were over-
privileged, and unnecessary INTERNET permission accounted
for three of the over-privileged applications. Moreover, Felt
et al. built Stowaway, an automatic tool to detect over-claim
of permissions in Android applications [21]. Felt et al. ap-
plied automated testing techniques to Android 2.2 to deter-
mine the permissions required to invoke each API method
and leveraged Stowaway to analyze a set of 940 applica-
tions. About one-third of these applications were identified
to have unnecessary permissions. Wei et al. also applied
Stowaway to a set of 237 evolving third-party applications
covering 1,703 versions and found that the overall tendency
was towards over-claim of permission [36].



To mitigate the issue of permission over-claim, Nauman
et al. proposed Apex, which allowed users to grant or revoke
a subset of permissions requested by the application using a
simple and easy-to-use interface provided by an augmented
application installer [31]. Similarly, Zhou et al. and Mueller
et al. also developed TISSA [39] and Flex-P [30] respectively
to provide finer-grained permission administration tools for
Android.

However, in the meantime some of these countermeasures
led to the side effect of applications crashing when one or
more permissions was revoked. Kennedy et al. quantita-
tively measured the effects of removing permissions from
Android applications by developing Pyandrazzi, a system for
automated testing and measurement of the fatal exception
behaviors [29]. Our work differs from theirs in that we detect
application crash caused by permission revocation before the
application is installed. Thus both users and developers can
be notified whether the application will crash with certain
permission revoked.

Static analysis for Android application usually involves
reverse-engineering APK files and doing analysis without
actually running the applications. This method has been
widely adopted by researchers. Batyuk et al. designed a
static analysis service which allowed users to gain deep in-
sight into applications’ internals including a list of included
third-party advertising and analytics libraries, potential pri-
vacy leaks and native executable usage [10]. Wei et al. ana-
lyzed APK files statically to identify permissions that appli-
cations requested and identify intents, i.e., indirect resource
access via deputy applications [37]. Wang et al. decompiled
Android applications to analyze their program logic related
to the mobile channels and showed that the lack of origin-
based protection opened the door to a wide spectrum of
cross-origin attacks [35]. These works share similar method-
ologies with ours but our goals are different.

7. CONCLUSION AND FUTURE WORK
In this paper, we build an automatic tool, revDroid, to

analyze the potential side effects of permission revocation
on both popular applications from Google Play Store and
malwares. The results show that only 30% of regular ap-
plications from Google Play Store handle all potential side
effects and only 54% of occurrences of potential side effects
are handled. In addition, 73% of malwares handle all poten-
tial side effects and 64% of occurrences of potential side ef-
fects are handled. Thirdly, third-party libraries occupy only
4% of all the mis-usages in the regular application dataset
and have a higher correct usage rate than applications’ orig-
inal developer. According to these results, we can conclude
that: i) when the Android 6.0 introduces the new permission
mechanism which supports dynamic permission revocation,
the ecosystem of Android applications is unprepared to han-
dle this new technique; ii) malwares have higher chances to
survive in dynamic permission revocation; iii) although the
third-party libraries deal with the permission revocation bet-
ter than regular applications, they could still be improved
by their developers, including Google itself.

In our further work, we will enlarge our experiments, and
implement our solution as a web service which can detect the
mis-usages of permission revocation in APK files. In addi-
tion, we will analyze the reason of application crash when
the platform of Android adopt some optimization methods,
e.g., fake data, to mitigate the side effects. Last but not

least, we will optimize and extend revDroid to support to
automatically patch Android applications (APK files) with-
out the support of developers.
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