
senDroid: Auditing Sensor Access
in Android System-Wide

Weili Han ,Member, IEEE, Chang Cao , Hao Chen, Dong Li , Zheran Fang,

Wenyuan Xu,Member, IEEE, and X. Sean Wang, Senior Member, IEEE

Abstract—Sensors are widely used in modern mobile devices (e.g., smartphones, watches) and may gather abundant information

from environments as well as about users, e.g., photos, sounds and locations. The rich set of sensor data enables various applications

(e.g., health monitoring) and personalized apps as well. However, the powerful sensing abilities provide opportunities for attackers to

steal both personal sensitive data and commercial secrets like never before. Unfortunately, the current design of smart devices only

provides a coarse access control on sensors and does not have the capability to audit sensing. We argue that knowing how often the

sensors are accessed and how much sensor data are collected is the first-line defense against sensor data breach. Such an ability is

yet to be designed. In this paper, we propose a framework that allows users to acquire sensor data usages. In particular, we leverage a

hook-based track method to track sensor accesses. Thus, with no need to change the source codes of the Android system and

applications, we can intercept sensing operations to graphic sensors, audio sensors, location sensors, and standard sensors, and audit

them from four aspects: flow audit, frequency audit, duration audit and invoker audit. Then, we implement a prototype, referred to as

senDroid, which visually shows the quantitative usages of these sensors in real time at a performance overhead of [0.04–8.05] percent.

senDroid allows Android users to audit the applications even when they bypass the Android framework via JNI invocations or when the

malicious codes are dynamically loaded from the server side. Our empirical study on 1,489 popular apps in three well-known Android

app markets shows that 26.32 percent apps access sensors when the apps are launched, and 11.01 percent apps access sensors

while the apps run in the background. Furthermore, we analyze the relevance between sensor usage patterns and third-party libraries,

and reverse-engineering on suspicious third-party libraries shows that 77.27 percent apps access sensors via third-party libraries.

Our results call attentions to address the users’ privacy concerns caused by sensor access.

Index Terms—Android security, sensor, audit, hooking, senDroid

Ç

1 INTRODUCTION

WITH the development of sensing technologies, smart-
phones are increasingly equipped with sensors, such

as cameras, microphones, GPS, motion sensors, etc. [1].
Already, a modern smartphone has more than ten high-
accuracy sensors, and these sensors enable novel and excit-
ing applications.

With the trend of environment-aware and user-oriented
apps, mobile applications tend to gather an increasing
amount of sensor data, and the users are facing a higher
risk than never before. At the beginning of 2016, it is
reported that Alipay silently took photos without informing
its users [2], although Alipay removed this function after
users become aware of it and showed their serious concerns.
Furthermore, many sensor data allow applications to infer
security-sensitive information, e.g., inferring keystrokes [3]
and voice [4] from motion sensors.

Smartphones can audit the network traffic, yet they
are incapable of measuring sensor accesses for identifying
malicious or suspicious usages of sensors. An application
could maliciously gather sensor data without users’ con-
sents, especially from the standard sensors (e.g., motion
sensors), because they are not under the control of the
Android permission mechanism. To investigate the legiti-
macy of an application’s access to sensor data, it is necessary
to monitor sensor accesses and raise an alert to the users. If
inappropriate usage is found, for instance, sensor access
monitoring can help to detect whether an application
accesses a sensorwhen a user is not expecting it (e.g., secretly
taking a photo), or whether it gathers an abnormally large
amount of sensor data.

To the best of our knowledge, we are not aware of any
framework that can comprehensively monitor the sensor
data access pattern of applications, e.g., measuring when an
application accesses sensors and how many data it has
acquired. Although taintDroid [5] can detect which
application is accessing a sensor, it does not measure how
many data the application is reading. Measuring the sensor
data access traffic is challenging, because it not only needs
to be efficient and imposes small overhead but also is able
to cope with circumvention by applications.

To audit the sensor access efficiently and effectively, we
propose a framework, referred to as senDroid, to quantitatively
measure sensor usages in Android. senDroid uses low-level

� W. Han, C. Cao, D. Li, Z. Fang, and X. S. Wang are with the Software
School, Fudan University and the Shanghai Key Laboratory of Data
Science, Shanghai 201203, China. E-mail: {wlhan, 16212010001,
14212010008, 13212010002, xywangCS}@fudan.edu.cn.

� H. Chen is with the Department of Computer Science University of
California, Davis, CA 95616-5270. E-mail: chen@ucdavis.edu.

� W. Xu is with the Department of Electronic Engineering, Zhejiang Univer-
sity, Hangzhou, Zhejiang 310000, China. E-mail: xuwenyuan@zju.edu.cn.

Manuscript received 6 Nov. 2016; revised 12 Oct. 2017; accepted 13 Oct.
2017. Date of publication 1 Nov. 2017; date of current version 18 Mar. 2020.
(Corresponding author: Weili Han.)
Digital Object Identifier no. 10.1109/TDSC.2017.2768536

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020 407

1545-5971� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8663-436X
https://orcid.org/0000-0001-8663-436X
https://orcid.org/0000-0001-8663-436X
https://orcid.org/0000-0001-8663-436X
https://orcid.org/0000-0001-8663-436X
https://orcid.org/0000-0003-1663-5919
https://orcid.org/0000-0003-1663-5919
https://orcid.org/0000-0003-1663-5919
https://orcid.org/0000-0003-1663-5919
https://orcid.org/0000-0003-1663-5919
https://orcid.org/0000-0001-6008-1410
https://orcid.org/0000-0001-6008-1410
https://orcid.org/0000-0001-6008-1410
https://orcid.org/0000-0001-6008-1410
https://orcid.org/0000-0001-6008-1410
mailto:
mailto:
mailto:
mailto:


hooks to intercept all sensor-related API calls so that it meas-
ures when an application reads a sensor and how many data
it reads. In summary, our contributions are listed as follows:

� We design a framework, referred to as senDroid,
which can audit all four categories of sensors: gra-
phics, audio, location, and standard sensors, in the
Android platform. senDroid can intercept all accesses
to sensors, including access via JNI (Java Native
Interface). Our performance evaluation shows that
senDroid incurs a moderate overhead of [0.04–8.05]
percent on Android smartphones. Moreover, because
senDroid hooks into the processes of both applications
and Android system to intercept sensor-related API
calls, it requires neither modification to the original
Android systems nor the source code of the app-
lications. Thus, senDroid can be widely deployed and
is capable of detecting potential attacks that bypass
theAndroid framework.

� Our experiments show that senDroid can report all
sensor accesses by any applications, even by the
dynamically loaded codes. We evaluate senDroid
over 1,489 popular applications in three well-known
Android application markets (two popular Chinese
App markets and Google Play Store) and study sen-
Droid in two running phases of applications—Launch
Phase and Silent Phase(i.e., in the background).
We observe the following:
� During the Launch Phase, 25.35, 11.92, 0.46, and

0.46 percent applications in Chinese Android
app markets access location sensors, standard
sensors, graphic sensors, and audio sensors,
respectively. These numbers are 12.70, 4.24, 0.46,
and 0.46 percent higher than those in Google Play
Store, respectively. When running in Silent Phase,
13.19 and 2.66 percent applications in Chinese
Android app markets access location sensors
and standard sensors, respectively, which is 8.55
and 1.54 percent higher than those in Google Play
Store. These results show that applications in
Chinese Android app markets access sensors
more than those in Google Play Store, especially
during the Silent Phase.

� We find that third-party library is one of the
main causes that leads to sensor access in Silent
Phase. We reverse-engineer the applications that
access sensors during Silent Phase, and find that
77.27 percent applications access sensors from
third-party libraries, but such accesses caused by
third-party libraries rarely appear in the apps’
descriptions. We recommend that developers
should disclose third-party libraries and their
sensor access in the app’s description.

The rest of paper is organized as follows. Section 2 intro-
duces the background knowledge and the motivated sce-
narios of our paper; Section 3 presents the design of
senDroid; Section 4 shows the details of senDroid implemen-
tation; Section 5 evaluates senDroid from accuracy and per-
formance overheads; Section 6 empirically studies the
popular applications in Wandoujia, 360 and Google Play Store
to show the usages of sensors in reality; Section 7 discusses

the potential issues; Section 8 investigates the related
research works; Section 9 summaries the paper and introdu-
ces our future work.

2 BACKGROUND AND MOTIVATION

2.1 Sensors in the Android Platform

Each Android enabled devices, including smartphones,
may contain more than ten sensors, such as cameras, micro-
phones. The sensors in an Android-enabled device could be
divided into four categories.

� Graphic Sensors. Graphic sensors refer to those sen-
sors that collect graphic data, e.g., photos, videos.
Android applications connect with graphic sensors
via CameraService and achieve related opera-
tions, e.g., starting preview, taking a picture, or
recording videos via Camera and MediaRecorder.
In the Android permission system, a developer can
request the permission of CAMERA to legally access
graphic sensors.

� Audio Sensors. Audio sensors, e.g., microphone in the
Android platform help devices to capture ambient
sounds. In Android, there exists two ways to access
the audio sensors. One is AudioRecord that pro-
vides raw sound streams to applications; and the
other is MediaRecorder that offers compressed
audio files. In the Android permission system, a
developer can request the permission of RECORD_

AUDIO to legally access audio sensors.
� Location Sensors. Location sensors primarily refer to

the GPS, which collects the location data of a smart-
phone. Android applications utilize LocationMan-

ager to request the latest location or to get location
periodically by registering LocationListener. In
the Android permission system, a developer can
request the permission of ACCESS_FINE_LOCATION
or ACCESS_COARSE_LOCATION to legally access
location sensors.

� Standard Sensors. The Android platform officially
defines the standard sensors. Some(e.g., acceler-
ometer and gyroscope) can monitor the motion of
phones’ users. Others can monitor various envi-
ronmental properties, e.g., humidity, illuminance,
pressure, temperature, and geomagnetic field. Sen-
sorService is the primary service of standard sen-
sors. Android applications obtain the list of standard
sensors that the platform supports, create connection
(SensorEventConnection) and poll the standard
sensors devices through SensorService.

Because the sensor data usually contains rich informa-
tion, the vendors of mobile applications tend to gather more
and more sensor data than never before. Many litera-
tures [6], [7], [8], [9] focus on detecting the user location via
standard sensors’ data instead of GPS, and on revealing
sound information with standard sensors data [4], [10].
Moreover, the standard sensors’ data can be utilized for
inferring user’s inputs [3], [11], [12], and for identifing a
device [13], [14] or even an individual [15].

Android permission system utilizes permissions to con-
trol accesses to sensors. However, many standard sensors
(e.g., accelerometer and gyroscope), are not under control.

408 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



To the best of our knowledge, it is yet to carry out the empir-
ical study to effectively evaluate the sensor usages of main-
stream application markets.

2.2 Communication Between Applications and
Sensors

2.2.1 Binder

Binder [16], originally named OpenBinder, is a system-level
architecture for IPC (Inter-Process Communication). Binder
inter-process communication framework follows a client-
server architecture, and consists of four components: client,
server, service manager, and Binder driver. Binder driver
communicates with a Binder device by using the system call
ioctl. Fig. 1 indicates the related data structures and API’s
arguments in ioctl, which consists of three parts: the file
description of a Binder device, a Binder driver command
code, and a data buffer. The major driver command code is
BINDER_WRITE_READ. A Binder driver uses this command
to read data from or write data to a Binder device. The data
read or to be written is organized in a structure named
binder_write_read, which comprises a series of pairs of
a target command and an argument. The target command
we concerned is BR_TRANSACTIONwhich is shown in Fig. 1.
This command is sent by the client, and its corresponding
argument is a request whose structure is named binder_

transaction_data. The variable code in the structure of
binder_transaction_data is the command code negoti-
ated by the sender and receiver. In general, the serial number
of public interface is defined in the service. The uid of an
Android application that initiates the transaction is shown in
the variable sender_euid, which can help us to identify
which Android application requests the sensor data. The
extra arguments, including the name of service which will
deal with the request, are stored in the field buffer.

2.2.2 Interaction with Sensor Devices

As described in Section 2.1, there can be more than ten sen-
sors in an Android enable device. After an application sends
a request to a corresponding service, the service will interact
with the corresponding sensor by calling the standard inter-
face defined in the HAL (Hardware Abstraction Layer),
which provides a standard interface for hardware vendors
to implement [17]. Each accessory, e.g., sensor, in Android
is treated as a file so that it can be accessed using standard
I/O system calls. The sensor driver that implements the

HAL interface opens the sensor devices and invokes read,
write or ioctl system call to interact with the sensor
devices. Android utilizes V4L2 (Video for Linux 2) as its
camera driver, ALSA (Advanced Linux Sound Architecture)
as its audio driver while no official GPS driver or standard
sensors driver.

2.3 Hooking

Hooking is a technique of inserting codes into a system call
for alteration. The typical hook works by replacing the func-
tion pointer to the call(s) a developer wants to intercept
with that. Once it is done, it will then call the original func-
tion pointer [18]. There are two steps, function substitution
and dynamic-link library injection, when we want to hook a
system call.

2.3.1 Function Substitution

In Android, share libraries are ELF (Executable and Linkable
Format) [19] files which are mapped into the memory space
of a process at runtime. The GOT (Global Offset Table) and
the PLT (Procedure Linkage Table) are two pivotal parts of
ELF file. A GOT is a table of addresses in the data section.
When an instruction in the code section refers a variable, it
looks up the entries in the GOT, which keeps the absolute
addresses of variables. Each entry of the PLT is a chunk of
instructions corresponding to an external function the shared
library calls [20]. When an instruction calls an external func-
tion, it calls an entry in the PLT, which then calls the actual
function. The address of the actual function is determined by
the corresponding entry in the GOT.1 The instructions to call
external function are essentially jump instructions pointing
to entries in the PLT. Then, the PLT entries retrieve the abso-
lute addresses of the functions, which are contained by the
GOT entries. Due to the indirection to function references,
the hooking can be achieved by substituting designate func-
tion pointers with the original ones in the GOT for each ELF
file that the target process loaded.

2.3.2 Dynamic-Link Library Injection

Dynamic-link library (DLL) injection is a technique that
allows a process to run codes in the address space of
another process by forcing it to load a dynamic-link
library [21]. In Android, an approach to realize DLL injec-
tion is to leverage the system call ptrace, which provides a
process with the capability of monitoring and controlling
the execution of another process [22].

2.4 Motivation Scenarios

Alice bought an Android phone with several applications
pre-installed. She might also want to install several applica-
tions herself. The recent news reported that applications
could steal information from on-board sensors in mobile
devices. Worried that the applications on her phone could
be malicious, she installed our senDroid on her phone. After
running senDroid for several days, she can check the reports

Fig. 1. Brief structures in ioctl called by Binder.

1. The address contained by the corresponding GOT entry points to
the PLT entry itself when first calling the function. It points to the actual
function only when the dynamic loader resolves it. This mechanism is
called lazy binding or lazy linking [20] while it is not adopted by the
current version of Android.

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 409

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



of senDroid, and judge whether the installed applications
stole sensors data. senDroid can help users to monitor and
analyze the usages of sensors on a mobile device, with only
negligible performance overhead but without the modifica-
tion of Android framework.

In another scenario, Bob, who is a bouncer of an applica-
tion market of Android, can use senDroid to detect suspi-
cious applications in the market. After installing senDroid,
he could install the suspicious applications on an Android
phone, and operate the applications with the help of test
tools. Then he may compare the log with the applications’
description either manually or automatically with the sup-
ports of natural language processing.

3 SENDROID: DESIGN

3.1 Threat Model

The security threats considered in our work come from
the third-party applications which access sensors data
surreptitiously. These applications can be divided into
two types:

� Malwares, e.g., applications implementing the
potential attacks proposed in prior work [4], [23],
[24], [25]. Some of them infer personal privacy from
the unrestrained sensors(e.g., accelerometer and
gyroscope), while the others access restrained sen-
sors by an undetectable approach, e.g., taking photos
or recording video by JNI without calling any
Android API. Even some applications dynamically
load remote codes to implement suspicious func-
tions bypass applications’ bouncers.

� Applications [26] using ad/analytics libraries that
collect sensor data for precision advertising and
improving user experience. But they do not declare
their accesses in their description.

Note that, both types of applications can be suspicious
but not vicious, which means that they would not require a
highly-escalated privilege or circumvent the Android sys-
tem(e.g., modifying or bypassing the SELinux policies on
the device). Targeted at these honest but curious applica-
tions, and motivated to mitigate the above threats, we

propose senDroid to counter these suspicious behaviors by
auditing the accesses to sensors on an Android device.

3.2 Framework Overview

Fig. 2 shows an overview of sensing audit in senDroid. Basi-
cally, senDroid consists of (1)Hook Module, a sentry deployed
in system or application processes that intercepts the
sensor-related traffic to reveal sensing usage; and (2) Sensing
Monitor, an Android application that visualizes the sensing
usages. The solid arrows in Fig. 2 represent the standard
access mode of sensors. In the standard access mode, sen-
sors applications send requests to corresponding services,
and the services handle the sensors’ data accesses. The
dashed arrows represent a deviant access mode in which
sensors applications directly access the sensor device or call
the interface defined in HAL in virtue of JNI. To handle
both standard and deviant access modes, the Hook Module is
embedded in both Android system processes that contain
sensors’ service and application processes that request sen-
sor data. Overall, senDroid interposes in the sensor data
flow to perform four types of audit.

� Flow Audit. Every time accessing a sensor, an appli-
cation gains the sensor data in various size. We mon-
itor the size of sensor data to report the amount of
sensor traffics the application requested the sensor.

� Frequency Audit. When accessing sensor data, an
application may send requests with different fre-
quencies. senDroid can reveal how often and what
time the application accessed the sensor data.

� Duration Audit. In the continuous sensing case, we
record the duration to profile the behavior of appli-
cations more comprehensively.

� Invoker Audit. senDroid audits which application ini-
tiates the sensor data access originally.

The audit capacities of senDroid for different categories of
sensors are shown in Table 1. We will discuss the reasons
why senDroid does not implement the flow audit of photo
and standard sensors in Section 4.

3.3 Hook Module

AHookModule consists of twomain components: a Parameter
Parser parses the data in intercepted system calls and aUsage
Generator generates the usage reports of sensors according to
the accessing time, data size and sensor accessor. Table 2
illustrates APIs that Hook Module intercepts, which parame-
ters of these APIs that Hook Module parses, and which audit
types the parsed parameters are leveraged to perform. The
details of hooking are described in Section 4.

Fig. 2. Design of senDroid framework. The shadowed blocks are
designed in senDroid.

TABLE 1
Audit capacities of senDroid for Four Categories Sensors

Sensor
Type

Sensor
Data

Flow
Audit

Frequency
Audit

Duration
Audit

Invoker
Audit

Graphic Sensors Preview
p p p p

Video
p p p p

Photo -
p

-
p

Audio Sensors Audio
p p p p

Location Sensors Location
p p p p

Standard Sensors Motion and
Environment

-
p p p

410 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



Parameter Parser. The submodule ofHook Module is a set of
functions that we implement to substitute the system calls
that are related to sensor accessing. These functions intercept
all the communication requests sent from an application to
sensor devices or Binder. When a system call is intercepted,
Parameter Parser parses the parameters carried by the system
call. According to the parsing result, the system calls are
delivered toUsage Generator for further analysis.

Usage Generator. Leverages a set of audit policies to gen-
erate the sensing usage reports. Each entry to report sensing
usage is defined as a vector, which includes the accessing
time, data size and sensor accessor. The information deliv-
ered from Parameter Parser is sporadic. So we need to gather
the information to create sensing usage reports, which are
stored in a local database. These reports are available to be
accessed by Sensing Monitor.

3.4 Sensing Monitor

SensingMonitor is an application that allows a user to analyze
the sensing usages generated by Hook Module. Sensing Moni-
tor can visualize the reports of the sensing usages by applica-
tions or by sensors in a comprehensive manner. Fig. 3 shows
one user interface of SensingMonitor. A graph of location sen-
sors usage is presented to the user, where the red curve
denotes the overall usage over the time. The usage of each
application is represented by curves in different colors.

4 SENDROID: IMPLEMENTATION

We leverage the graphic sensors as an example to illustrate
the implementation of senDroid:

Fig. 4 shows the interposition of senDroid in the data flow
of the camera’s APIs, e.g., startPreview. The application
process does not actually communicate with the camera
device. Instead, the interaction with the camera device is
implemented in the mediaserver process. The application
process informs the mediaserver process of its request
through Binder. When receiving the request sent by the
application process, the camera service and camera driver
pass the request to the camera device. The camera service
also returns the execution results via Binder.

The interaction between the mediaserver process and
Binder indicates that the request is sent by which applica-
tion and is delivered to which service. The interaction

between the mediaserver process and the camera device indi-
cates what and how many data the application obtains.
These two interactions are the choke points of the data flow
and are where senDroid interposes.

4.1 Interception Between Service and Binder

We leverage senDroid to intercept interactions between the
service and Binder. Concretely, the Hook Module hooks the
ioctl called by Binder. Then, the Parameter Parser parses
the read_buffer in the structure binder_write_read,
and finds out all the BR_TRANSACTION commands(illus-
trated in Section 2.2.1). Furthermore, we extract the receiver
and the requester from the first entry of buffer in the
structure binder_transaction_data and the field
sender_euid, respectively. Finally, we identify the opera-
tion according to the field code.

4.2 Interception Between Service and Devices

4.2.1 Graphic Sensors

senDroid intercepts the ioctl calls with the commands
VIDIOC_STREAMON and VIDIOC_STREAMOFF to learn
when an application opens and closes cameras. When start-
ing preview, the camera driver calls ioctl with the com-
mand VIDIOC_DQBUF, and the corresponding data buffer

TABLE 2
APIs and Parameters Related to the Sensing Analysis

in senDroid

Fig. 3. Visual demonstration of sensing usages. The report includes the
total usages for all applications, and the individual usage of each
application.

Fig. 4. Interposition of senDroid in the data flow of startPreview. The
shadowed blocks are designed in senDroid.

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 411

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



is a structure named v4l2_buffer. This structure contains
variables, from which we can infer the size of a graphic
frame. At the driver layer, the preview, the photo, and the
video are all graphic frames so that we cannot pick out a
photo or a piece of video from the stream of graphic frames.
Fortunately, we can demarcate the stream according to the
Binder requests sent by the applications. The ioctl calls
called by Binder sending request to ICamera with the code
TAKE_PICTURE indicates that an application is taking pho-
tos. Similarly, Binder request sent to ICamera or IMe-

diaRecorder with the code START/STOP_RECORDING

extracts a piece of video from the stream of frames. It is
noteworthy that an application can take pictures or record
videos using PreviewCallback instead of takePicture
or MediaRecorder. senDroid monitors Binder request sent
to ICamera with the code SET_PREVIEW_CALLBACK_

FLAG to learn whether a PreviewCallback is registered
before the preview starts or during previewing.

4.2.2 Audio Sensors

senDroid intercepts the ioctl calls invoked by the audio
driver with the command SNDRV_PCM_IOCTL_READI_

FRAMES. We calculate the size of audio record from the cor-
responding data buffer named snd_xferi. ALSA only has
the command SNDRV_PCM_IOCTL_START, with no com-
mand SNDRV_PCM_IOCTL_STOP. So we obtain the start and
end time of the audio record by the approach described in
Section 4.1. Concretely, we capture the ioctl calls called by
Binder where the service name is android.media.IAu-

dioRecord or android.media.IMediaRecorder with
the code either START or STOP. We use the time of these calls
as the start and end time of the audio record.

Considering that the MediaRecorder can be utilized to
record audio as well as video, and before using MediaRe-

corder to record audio or video, applications are required
to invoke setAudioSource and setVideoSource

respectively, we distinguish these two usages by monitoring
the invocation of setAudioSource and setVideo-

Source. The corresponding codes in the ioctl called by
Binder are SET_AUDIO_SOURCE and SET_VIDEO_SOURCE

respectively.

4.2.3 Location Sensors

When the location information is sent via the message queue
mechanism, which is illustrated in Section 2.2.2, senDroid
hooks the message receiving calls called by the GPS driver
and parses the message received from the GPS device. We
determine the operation specified by the message according
to the message id. senDroid intercepts the messages with the
message id REPORT_POSITION, which indicates that the
received data are geographic positions reported to a location
requester. We intercept the ioctl calls where the service
name is android.location.ILocationManager to
determine the start and end time of the tracking of GPS
according to the code REQUEST_LOCATION_UPDATES and
REMOVE_UPDATES.

4.2.4 Standard Sensors

As mentioned in Section 2.2.2, standard sensors have no
open source driver on Nexus 4. So we cannot learn how

standard sensors driver communicates with corresponding
device. However, senDroid can intercept the ioctl calls
called by Binder that sending request to SensorEvent-

Connectionwith the code ENABLE_DISABLE. This Binder
request carries two parameters: a standard sensor handle
and a Boolean (TRUE presents enabling and FALSE presents
disenabling). So we can know which standard sensor is acti-
vated and when it is activated or deactivated. Moreover,
Binder request with code SET_EVENT_RATE contains a
parameter that indicates the access frequency of standard
sensors application. Because the data size of one standard
sensor record is negligible. So although we cannot obtain
the exact data of standard sensors, we argue that activated
time interval and access frequency of standard sensors are
crucial and sufficient to audit the sensing based on the stan-
dard sensors.

4.3 Prototype Setup

We use the Nexus 4 with Android 4.2.2 as our experiment
platform. When we set up our prototype, we need to root
the device first, and then leverage the existing DLL injection
approach2 to inject into the target processes (mediaserver,
system_server and application processes that access sen-
sors3), load the function substitution codes into the target
processes and execute the function substitution. Then, we
leverage the implementation in [27] to accomplish the func-
tion substitution. The function substitution code goes
through the memory map of the target processes and load
each ELF file to substitute the functions we concerned, e.g.,
ioctl for our own functions. After deploying senDroid, all
four categories of sensors, including camera, microphone,
GPS, and standard sensors, will be audited. The sensing
usage is logged in XML format for subsequent analysis in
Sensing Monitor.

5 SENDROID: EVALUATION

In order to evaluate the accuracy and overhead of sen-
Droid, we set up the application dataset which consists of
540 applications downloaded from the top free chart of
Google Play Store in April, 2016. We only keep the applica-
tions which require access to sensors monitored by sen-
Droid while remove the others. Of the 540 applications,
429 applications require access to one or more of the four
categories of sensors. Further, We ignore applications
which have internal failure or whose sensor related func-
tionalities cannot be reached due to geological or system
version restriction. For camera, microphone and GPS, we
determine whether an application requires access to these
three categories of sensor information based on the per-
missions it requests. For standard sensors, we determine
that an application requires access to standard sensor
data if it declares <uses-feature> tag for android.

hardware.sensor.*.
We randomly select three ones for each type of sensors

under the auditing of senDroid. All evaluation experiments

2. https://github.com/shutup/libinject2
3. The camera service and audio service are launched in mediaserver,

the location service and sensors service are launched in system_server.
We cannot guarantee whether an application directly accesses sensors
via JNI, so we inject into every application process.

412 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/shutup/libinject2


are run on a Nexus 4 with 2 GB RAM running Android
4.2.2.4

5.1 Deviation of Data Reported by senDroid

5.1.1 Experiment Results

Table 3 shows the experiment results for applications which
use camera to take pictures or take videos, use microphone
to record audio, use GPS or network to request locations,
and access standard sensors. We record the start time and
end time of each Action on each App. We repeat the above
operation three times. Then, in Table 3, Mean start time jDj
refers to the average value of start time difference between
the value recorded by a tester and by senDroid. And Mean
stop time jDj refers to the average value of end time differ-
ence between the value recorded by a tester and by
senDroid.

Applications listed in Table 3 respectively provide
users with the functions of taking pictures, taking videos,
recording audios, requesting locations, and reading stan-
dard sensors. We record the time when we trigger the
actions and the time when senDroid detects that the appli-
cation executes the actions. Considering the time from UI
operations to the time the application actually executes
the actions, the deviation is acceptable. As is shown
Table 3, senDroid’s deviation for detecting access to stan-
dard sensor data is larger than that of other sensors.
Because games will usually play animations before and
after the game starts or ends, so it is more difficult to infer
the time when applications start or stop requesting stan-
dard sensor data.

5.1.2 Accuracy of Recorded Video & Audio Length

We developed an evaluation application to measure the
length of videos and audios which senDroid records, and
compared them with the actual lengths. We leveraged the
setMaxDuration API of the class android.media.

MediaRecorder to set the length of the videos and audios.
After the recording reaches the length we set, MediaRe-
cord will stop the recording. Here, we deploy senDroid on
three different Nexus 4 in order to explore whether the devi-
ation differs on different devices. For each value of length,
we ran the test for five times and calculated the average
length recorded by senDroid.

As is shown in Table 4, the lengths which senDroid record
are about 1.3 seconds and 0.2 second more than the actual
lengths of the video and audio, respectively, and the devia-
tion is almost the same on different devices. Moreover, as
the lengths of the video and audio increase, the deviation
almost remains unchanged. According to our investigation,
the deviation may be caused by the overhead of inter-
process communication or the preprocessing and postpro-
cessing of the record. Since the deviation is consistent for
the same type of sensor across different devices and differ-
ent lengths of recordings, we ignore the deviation in the
length of recordings reported by senDroid.

5.2 Audit of Taking Pictures from Preview Frames

As we described in Section 4.2.1, an application can process
the provided preview data in the onPreviewFrame call-
back. This means that applications can take pictures or
record videos without calling the takePicture or
MediaRecorder API by starting camera preview and tak-
ing screenshot programmatically.

To better evaluate the effectiveness of senDroid with this
case, we evaluated senDroid with an application called Spy
Camera HD.5 According to Spy Camera HD’s description
on Google Play Store, it allows users to secretly take photos
without any shutter sound and camera preview on the
phone screen. Users can instruct Spy Camera HD to take
pictures by shaking the phone, whistling or setting a timer.
After reverse-engineering Spy Camera HD, we confirm
that Spy Camera HD actually takes pictures in the

TABLE 3
Comparison Between the Time of Accessing Sensors

Observed Manually and the Time of Accessing
Sensors Recorded by senDroid

Action App Mean start
time jDj (s)

Mean stop
time jDj (s)

Taking
pictures

PicsArt 0.00 -
Poshmark 2.00 -
Perfect365 0.66 -

Taking
video

Zoosk 1.00 0.50
Tango 0.50 0.50
ooVoo 1.00 0.50

Recording
audio

Tom Loves Angela 0.00 0.00
Tango 0.00 0.00

Talking Tom 0.00 0.00

Requesting
location

CM Security 0.50 0.00
Expedia 0.00 0.00

360 Security 0.00 0.00

Reading standard
sensors

Temple Run 2 4.00 2.50
Bowling Kings 2.00 2.50
Traffic Racer 3.00 3.00

TABLE 4
Comparison Between the Actual Length of Videos and Audios

and the Length Which senDroid Records

Lengths(s)

Actual Average recorded by senDroid(Differences)

Device 1 Device 2 Device 3

10.00 11.30(1.30) 11.31(1.31) 11.34(1.34)
video 30.00 31.32(1.32) 31.28(1.28) 31.31(1.31)

60.00 61.31(1.31) 61.38(1.38) 61.33(1.33)
120.00 121.24(1.24) 121.31(1.31) 121.31(1.31)

10.00 10.21(0.21) 10.21(0.21) 10.20(0.20)
audio 30.00 30.19(0.19) 30.19(0.19) 30.21(0.21)

60.00 60.21(0.21) 60.25(0.25) 60.23(0.23)
120.00 120.23(0.23) 120.24(0.24) 120.23(0.23)

4. Although the new version of Android has many new features, the
technical details of sensor access are almost same. We, thus, use this
version as our experiment platform. Furthermore, these popular appli-
cations may run this version of Android, and be empirical studied
according to sensor usages in the next section.

5. https://play.google.com/store/apps/details?id=com.
usefullapps.spycamera

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 413

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 

https://play.google.com/store/apps/details?id=com.usefullapps.spycamera
https://play.google.com/store/apps/details?id=com.usefullapps.spycamera


onPreviewFrame callback it registers by processing the
content data of the preview frame which is provided as an
argument when the onPreviewFrame callback is called.
Even on devices which shutter sound is enabled forcibly,
capturing the provided preview data in onPreviewFrame

instead of calling takePicture directly will not trigger
any shutter sound. In this way, Spy Camera HD can take
pictures without people’s awareness.

We used Spy Camera HD to take several pictures by
shaking the phone and matched the time when the pictures
were taken based on the pictures’ timestamps with the
duration of camera preview and the duration of application
requesting standard sensor data which senDroid records.
The result is shown in Fig. 5. The first row shows the time
which Spy Camera HD took a picture based on the time-
stamp of the saved picture file. For example, the first picture
was taken at the 18th second. The second and third rows
show the time duration when Spy Camera HD started the
camera preview and requested standard sensor data respec-
tively. For example, the first duration of camera preview
started at the 9th second and ended at the 30th second,
which also matches the first duration of Spy Camera HD’s
requesting for standard sensor data. During the test, we
took five pictures, and there were three durations when Spy
Camera HD started camera preview and requested stan-
dard sensor data at the same time. We can conclude from
Fig. 5 that all pictures taken with Spy Camera HD fall in the
camera preview duration and standard sensor data request
duration which senDroid records.

Since senDroid will not only record applications’ calling
the takePicture API, it will also detect applications
which override the onPreviewFrame callback and record
the duration which applications start the camera preview,
these two tricky methods of taking pictures can be detected
by senDroid. With senDroid, users can have a complete over-
view of how applications access the camera and be aware of
potential suspicious usage of camera and other sensors.

5.3 Audit of Dynamically Loaded APK

In February 2016, Alipay, backed by Chinese e-commerce
giant Alibaba, was accused of taking pictures and recording
audios secretly with its Android client [2]. As discovered by
Twitter user typcn [28], the code logic of Alipay for
Android’s suspicious behavior consists of a file with the
extension .so downloaded from a remote server via the
Internet. The .so file is actually an executable APK file,
which will be run as a plugin inside Alipay for Android.
Since the .so file will be checked for updates periodically,
the suspicious behavior was quickly removed quietly after
the incident became popular on the Internet without users’
updating the host Alipay for Android application itself.

We built an application which emulates the dynamic
APK loading feature of Alipay for Android based on the
open source project ACDD [29]. This application can down-
load APK files as plugins from a remote server, extract DEX
files from the APK files and finally run the code logic in the
APK files using DexClassLoader, which is similar to the
claimed mechanism leveraged by Alipay for Android. Plu-
gins are compiled with a patched aapt tool, so the resource
IDs of plugins will not conflict with those of the host appli-
cation, and the host application can distinguish resources
from different plugins by reading the first byte of the
resource ID. The mInstrumentation variable of the
android.app.ActivityThread class is also hooked, so
that when components such as activities and services in the
plugins are launched, corresponding resources are loaded.
The host application which we built is a dummy application
which only loads and runs APK files from a remote server,
while a dynamically loaded APK file contains the logic of
taking pictures and recording audios. As we tested, sen-
Droid successfully detected the usage of camera and micro-
phone in the dynamically loaded APK.

5.4 Performance Evaluation

5.4.1 Performance of Sensor Operations

To measure the performance overhead of calling the sensor
APIs incurred by senDroid, we built a test application to take
pictures, record videos, and record audios successively, and
compared the time which it takes to perform the same opera-
tions with senDroid installed or not. For the operation of tak-
ing pictures, we takes 10 pictures successively. The
measurement includes the time from executing the first tak-
ing picture action by calling the takePicureAPI to the call-
ing of the onPictureTaken callback for the last picture.
Note that, to better reflect the actual overhead of calling the
camera APIs incurred by senDroid, all pictures are dropped
without saving to the disk, so the time of disk I/O is elimi-
nated. For the operation of recording video and audio, the
customized application records 10 pieces of video/audio
with a length of 10 seconds. This measurement includes the
time from preparing recording the first video/audio to the
calling of the onInfo callback with a “what” code of
MEDIA_RECORDER_INFO_MAX_DURATION_REACHED for
the last video/audio. Due to restriction of the MediaRecor-
derAPI, video and audio cannot be recorded by MediaRe-

corder without saving, so the results include the time of
disk I/O. Since both the takePicure API and the
MediaRecorder API are IPC-based APIs which requires
senDroid to extract information from the ioctl system call,
the evaluation results can truly reflect senDroid’s perfor-
mance overhead in theworst cases.

All tests were performed on a same newly flashed Nexus
4 with 2 GB RAM running Android 4.2.2 after a reboot in the
same environment. Table 5 shows the results. The numbers

Fig. 5. The timestamps of pictures taken by Spy Camera HD and the
time durations of Spy Camera HD’s usage of sensors detected by
senDroid.

TABLE 5
Macrobenchmark Results

Action w/o senDroid (s) w/ senDroid (s) Overhead

Picture 2.38(0.09) 2.58(0.14) 8.05%
Video 115.80(0.46) 115.84(0.14) 0.04%
Audio 103.32(0.07) 103.37(0.08) 0.04%

414 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



in parentheses indicate the expected range of values with a
confidence interval of 95 percent. senDroid adds approxi-
mately 8.05, 0.04 and 0.04 percent overhead to taking pic-
tures, recording videos and recording audios, respectively.
The additional overhead can be attributed to storing the sen-
sor usage to database. Thus, we can conclude that the perfor-
mance overhead imposed by senDroid is negligible.

5.4.2 AnTuTu Benchmark

Further, we want to know whether senDroid will also intro-
duce negligible overhead to the overall system or not. We
use a popular Android benchmarking tool: AnTuTu [30] to
compare the system performance with and without sen-
Droid. The average benchmark results of five tests for a
Nexus 4 running Android 4.2.2 with and without senDroid
respectively are shown in Table 6. Similarly, the number in
parentheses indicating the expected range of values with a
confidence interval of 95 percent. We can conclude from
Table 6 that senDroid also imposes negligible overhead with
only 1.28 percent on the overall system performance.

6 SENDROID: EMPIRICAL STUDY

6.1 Experiment Setup

In this section, we conducted an extensive, empirical study
on the sensor usage in real applications from popular mar-
kets. Before the study, we collected applications from Wan-
doujia, 360 and Google Play Store in September and October

2016, among which Wandoujia and 360 are predominant
application markets in China. We mainly picked top free
applications of each category, and the category distributions
of applications in each application market are shown in
Tables 7, 8 and Table 9 respectively. Note that, there exists
an applications’ overlap between these three markets,
which means that a same application can be tested twice or
three times. Especially, there are 119 applications being
tested both in Wandoujia and 360. Basically, we focus our
study on the accesses to sensors of the applications in the
following two phases:

� Launch Phase: Once an application is launched, it may
detect the availability of the concerned sensors or
gather sensors data for initialization and cause a
large amount of accesses to sensors. We install and
start all applications in dataset on a smartphone one
by one. Here, we define a Launch Phase interval for
2 minutes just after each application started, and sen-
Droid will audit the accesses to sensors during this
interval and write the report in a log file.

� Silent Phase: We also evaluate the accesses to sensors
when an application is running in the background.
The study for Silent Phase can help to reveal the

TABLE 6
AnTuTu Benchmark Results (Larger Numbers in Cells Imply

More Efficient Performance for Test Cases)

Without
senDroid

With
senDroid

Overhead

RAM 5058.4(218.9) 5040.6(167.7) 0.35%
CPU mathematics 3600.4(58.8) 3558(25.4) 1.18%
CPU common use 3692.8(305.0) 3442.6(116.3) 6.78%
CPU multi-core
performance

2511.8(67.7) 2526(30.5) -0.57%

UX data security 1270.4(72.5) 1291.4(8.3) -1.65%
UX data processing 549.6(12.2) 541.4(7.9) 1.49%
UX strategy games 754.8(20.1) 750.4(11.5) 0.58%
UX image process 259.4(5.7) 260.2(3.9) -0.31%
UX I/O performance 1487(19.5) 1527.6(33.6) -2.73%

Overall 19184.6(212.985) 18938.2(200.3) 1.28%

TABLE 7
Application Category Composition ofWandoujia Dataset

Category Number Category Number

COMMUNICATION 30 UTILITY 29
EDUCATION 30 GAMES 28
BEAUTY&BABY 30 TRANSPORTATION 28
MUSIC 30 TOOLS 28
LIFESTYLE 30 SHOPPING 27
PHOTOGRAPHY 30 PRODUCTIVITY 25
NEWS&MAGAZINES 30 VIDEO 23
PERSONALIZATION 29 SOCIAL 15
FINANCE 29 HEALTH&FITNESS 3
TRAVEL 29

There are 503 Applications from 19 Categories.

TABLE 8
Application Category Composition of 360 Dataset

Category Number Category Number

FINANCE 30 COMMUNICATION
&SOCIAL

28

PHOTOGRAPHY 30 WALLPAPER 27
LIFESTYLE 30 BUSSINESS 27
GAMES 30 EDUCATION 22
NEWS&

MAGAZINES
29 SYSTEM SECURITY 21

SHOPPING 29 HEALTH&MEDICAL 15
MAPS&TRAVEL 29 MUSIC&VIDEO 14

There are 361 Applications from 14 Categories.

TABLE 9
Application Category Composition of Google Play Store Dataset

Category Number Category Number

TOOLS 35 NEWS_AND_
MAGAZINES

25

COMICS 34 PRODUCTIVITY 23
PERSONALIZATION 34 HEALTH_AND_

FITNESS
22

BOOKS_AND_
REFERENCE

32 MEDICAL 22

WEATHER 31 GAMES 20
BUSINESS 29 LIFESTYLE 20
SOCIAL 29 TRAVEL_AND_LOCAL 20
COMMUNICATION 27 ENTERTAINMENT 19
EDUCATION 27 LIBRARIES_AND_

DEMO
19

PHOTOGRAPHY 27 MEDIA_AND_VIDEO 19
MUSIC_AND_AUDIO 26 SPORTS 17
SHOPPING 26 FINANCE 16
TRANSPORTATION 26

There are 625 Applications from 25 Categories.

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 415

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



applications’ malicious use or abuse of sensors in cur-
rent prevailing applicationmarkets. In this phase, any
sensor usage recorded by senDroidwill be regarded as
suspicious usage. Due to the memory limitation of the
tested Android device, we run 16 applications in the
background at the same time for about 24 hours, thus
to make sure that we would get accurate and enough
information about sensor usages.

Note that, although it should be more efficient to run
evaluation tests on emulators, audio sensors and standard
sensors are unfortunately disabled and cannot be emulated
on emulators [31], [32]. Thus we must conduct the experi-
ments manually on real devices.

6.2 Experiment Results of Empirical Study

Westudied applications downloaded fromWandoujia, 360 and
Google Play Store respectively from October, 2016 to January,
2017. Because the numbers of applications in differentmarkets
and categories are not uniform, to eliminate the interference,
we calculate the percentage of applications in the results.

6.2.1 Launch Phase

For Wandoujia, we got 2,209 records of sensor accesses,
among which 396 records were generated during Launch
Phase. The accesses mainly concentrate on GPS and stan-
dard sensors: There are 117 (23.3 percent) applications
under 18 different categories out of 503 valid samples access
location sensors in Launch Phase. The accesses to location
sensors are very widespread. As is shown in Fig. 6, the

applications under the categories of Lifestyle, Travel and
Shopping are most active to access location sensors in this
phase. Besides,about 12.3 percent of applications try to
access various kinds of standard sensors during the Launch
Phase. Differing from location sensors, standard sensors are
typically accessed by applications of Health&Sports, Games
and Videos. We also have an inspection into the accessing
frequency of each kind of standard sensors during this
phase. Among all the six types of standard sensors, acceler-
ometer is the most popular one and the number of its
related records is far more than the records of other types of
standard sensors. Note that, few application try to fetch the
graphic sensors data or audio sensors data in this phase,
and the only four applications are basically scan tools or
shooting tools, which depends their main functions on the
use of camera preview.

For 360, there are 103 and 42 applications accessed loca-
tion sensors and standard sensors respectively, while only
one accessed graphic sensors and one accessed audio sen-
sors. Comparing with Wandoujia, the ratio of location sen-
sors usages in 360 is a little bit higher while the ratio of
standard sensor usage is lower. We calculate the average
access times to each type of sensors in each category respec-
tively as shown in Fig. 7. Similarly, the applications in Shop-
ping and Lifestyle categories still behave actively not only on
accessing location sensors but also on accessing standard
sensors. Over 55 percent of the applications in Shopping cat-
egory triggered location sensors access, and 51.7 percent of
Shopping applications accessed standard sensors.

At last, for the applications in Google Play Store, the over-
all accessing during Launch Phase is relatively less than
applications from the above two markets. During the Launch
Phase, only 79 out of 625 applications accessed location sen-
sors, and 56 applications were recorded with standard
sensors’ accessing history. Similarly, the accesses to acceler-
ometer are the most frequently among all types of standard
sensors, while there are no access record for light and prox-
imity sensor data. An overall distribution of categories that
accessed sensors during Launch Phase is shown in Fig. 8.

6.2.2 Silent Phase

We carefully reviewed all the records and filtered out the
applications which accessed sensors during the Silent Phase
for each markets respectively, since any usage in this phase

Fig. 6. The average access times during Launch Phase to each type of
sensors in each category ofWandoujiamarket.

Fig. 7. The average access times during Launch Phase to each type of
sensors in each category of 360market.

Fig. 8. The average access times during Launch Phase to each type of
sensors in each category of Google Play Storemarket.

416 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



can be regarded as suspicious usages. Still, no matter in
which one of the markets, accesses to location sensors
prevail and the next is standard sensors. There are 13.9
percent applications in Wandoujia accessing sensors dur-
ing Silent Phase while for 360 the ratio is 16.6 percent.
However, for Google Play Store, the ratio is far more lower.
Only 5.4 percent of applications in it tried to access sen-
sors. Interestingly, we find that quite a portion of applica-
tions access the sensors with a certain time interval and a
fixed accessing period. This interval can be one hour, or
two hours and the access may last for 2 seconds or even
longer. We further study the reason why it happens and
we would give a deeper discussion about suspicious
usages in Silent Phase in Section 6.3.

6.2.3 Comparison and Summary

After the data collection and statistics, we analyze the
results of both Launch Phase and Silent Phase, and make a
comparison of the overall sensor usages in these three mar-
kets in Table 10. We can read from the table that sensors are
used widely in Wandoujia and 360, even in Silent Phase. And
the usages of location sensors and standard sensors in dif-
ferent stages are also given in Table 11. Besides, both the
usage of graphic sensors and the usage of audio sensors are
less frequent, and the percentages are less than 1.0 percent,
no matter in Launch Phase or Silent Phase. For Google Play
Store, there is an observable gap between its usage ratio and
the ratio of the other two markets. Considering that the
applications we collected are applications on the top free
charts, and the dominant user group of these three markets
are different, we can reasonably conclude that the users of
Google Play Store may be more likely to download the
sensor-friendly applications.

Sensors are widely used in various categories of applica-
tions. In Wandoujia, over 60 percent of the applications in
Travel and Lifestyle ever accessed sensors during our experi-
ments, no matter in Launch Phase or Silent Phase. While nearly
half of the applications under Shopping,Video and Games used
sensorsmore or less. In 360,Health&Medical, Shopping, Lifestyle
and Games are in the front rank. At last, in Google Play Store,
applications in Lifestyle, Social and Travel&Local behaved
actively. Although the category lists of each application mar-
ket are not totally the same, we can still find that certain cate-
gories of applications behave more actively than the others.
For example, Lifestyle and Games are two representative cate-
gories inwhich sensors are extensively accessed.

6.3 Analysis and Case Study

As we mentioned above, any sensor access in Silent Phase is
regarded as suspicious usage. In order to find out the

applications which generated a huge amount of sensor data
in our experiment, especially during Silent Phase, and how
the sensor data would be used, we drill down into every
application that accesses sensors in Silent Phase. Specifically,
we reverse-engineer the APK files and explore the source
codes to figure out what the accessed sensor data are used
for. Then we compare the usages with the description and
privacy policy of applications.

6.3.1 Sensor Access Patterns and Third-Party Libraries

After reverse-engineering the APK files, we find that most
of them access location sensors by third-party ad libraries or
analytic libraries. In order to trace the data flow, we first
scan the source codes for the sensor-related API and record
the third-party package names if any. Next, combining with
the access records and the applications’ basic information
we collected beforehand, we judge if there is any abuse or
misuse of sensor data.

Among all applications in Wandoujia, there are 70 appli-
cations which accessed sensors during Silent Phase, and 53
of them accessed in a relatively high frequency. Because
part of the applications applied anti-reverse engineering
technologies or the tools we used to reverse-engineer exist
deficiencies, we can only get the source codes of 42 applica-
tions. Most of the applications accessed sensors according
to an obvious pattern. For example, there are 16 applications
accessed location service every 4,850 seconds. This is
because all of them contain a third-party library named cn.
jpush.android, which includes the codes that will call the
location sensors related services. In other cases, there are 6
applications contain the location sensor calling methods
both in themselves and the third-party libraries they
employ, and only one application’s sensor related codes are
not contained in third-party libraries. Therefore, the overall
percentage of sensor accessing in third-party libraries is
83.33 percent.

For 360market, there are 48 applications accessed sensors
frequently during Silent Phase. After successfully reverse-
engineering 28 of them, we find that, similarly to the case in
Wandoujia, 6 applications present an accessing pattern with a
fixed accessing interval of 4,850 seconds, which is caused by
cn.jpush.android as well. 75 percent of the applications are
found containing the sensor accessing codes in their third-
party libraries. This phenomenon further verifies the fact
that third-party libraries are blamed for the frequent suspi-
cious accessing of sensors during Silent Phase.

While in Google Play Store, we do not find a uniform pat-
tern since the accesses during Silent Phase are fewer than

TABLE 10
Percentages of Sensor Usages in Three Different Markets

Overall Launch Phase Silent Phase

Wandoujia 33.40% 28.82% 13.92%
360 37.67% 34.90% 16.62%
GooglePlay Store 22.40% 19.36% 5.44%

Total 29.82% 26.32% 11.01%

TABLE 11
Percentage of Location Sensors and Standard Sensors

in Different Markets in Different Stages

GPS Standard Sensors

Wandoujia 23.26% / 12.33% 12.13% / 1.99%
360 28.25% / 14.40% 11.63% / 3.60%
Google Play Store 12.64% / 4.64% 7.68% / 2.66%

Chinese App Markets 25.35% / 13.19% 11.92% / 2.66%

Overall 20.01% / 9.60% 10.14% / 2.01%

The data is presented in the format of usage percentage in Launch Phase/
usage percentage in Silent Phase.

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 417

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



that of the above two markets. There are 34 applications
accessed sensors during Silent Phase and only 18 of them
accessed in a relatively high frequency. However, we still
find that 12 applications accessed sensors because of the
related codes in third-party libraries’ packages, which
account for 66.67 percent of the total. And the other 6 appli-
cations contain the sensor accessing codes both in them-
selves and their containing third-party libraries.

From all the studies above, we find that 77.27 percent of
the accessing records are caused by the third-party libraries.
Table 12 shows the top third-party libraries which are used
in our experiments. It reasonably explains the reason why
the applications belongs to Finance and other categories,
which seems to have no need to access sensors frequently,
would generate so many accessing records in our experi-
ment: although the applications themselves may have
no intention to fetch any sensor data while running in
the background, the third-party libraries call the sensor
related service, which disobey the original motivation of the
applications’ developers. This possibility of sensor usages
in third-party libraries can hardly be noticed by the devel-
opers and thus they would not mentioned in applications’
descriptions, which would mislead the users and bring
about the risk of privacy leakage. As a result, we argue that
a responsible application should not only give a detailed
description of the application’s functionalities, but also list
the sensor permissions required by both the application and
its contained third-party libraries if any. Moreover, the
description should clarify that which kind of sensor will be
used under what circumstances, thus to eliminate the
worries about privacy information leakage from users.

6.3.2 Suspicious Case Study

We further traced the data flow and summarized the concrete
usage scenarios of the sensor data. Basically, we focus on the
applications themselves how to use the data rather than
the third-party libraries. After the analysis, we summarize
the usage scenarios of location sensors’ data as following:

1) Sending the collected sensor data to a specific server,
but the further use can not be traced.

2) Using the collected data as a keyword for other infor-
mation, e.g., pulling down the local weather infor-
mation after accessing the location sensor and
getting the location information.

3) Storing the collected data locally on device for the
possible future use.

4) Exporting the sensor data to the system logs.
5) Doing nothing at all.
Based on the different usage scenarios, we categorize the

application packages according to their usage in Table 13.
Besides, we also have an insight into the usages of standard
sensor data. Basically, we can divide the ways they are used
into as following: (1) Testing the device’s rotation angle; (2)
Testing the device’s shaking; (3) Testing the brightness sur-
rounding. And a detailed result is shown in Table 14.

At last, we investigated all the descriptions displayed on
the application markets of applications mentioned above,
and found that none of them notices the possible sensor
usage. Thus we want to emphasize the importance of
application’s description, and insist that the developers
should be responsible for clarifying the third-party libraries
used in the application and which of them would possibly
cause the use of sensors.

7 DISCUSSION

7.1 Coverage

senDroid can implement sensing audit by (1) intercepting
the IPC between applications and services or (2) intercept-
ing the communication with sensor drivers. Considered in
terms of generality, all four categories sensors can be aud-
ited by the first approach because the IPC mechanisms are
uniform in different version of Android. The first approach
can be detoured by attacks that directly access sensor driv-
ers without communicating with the sensor service. So with
respect to robustness, senDroid can intercept the communi-
cation with sensor drivers to defense the attacks or detect
suspicious accesses to sensors.

TABLE 12
Top Third-Party Libraries Which Appears the Most

Frequently in Our Experiments

Market Package Name of
Third-Party Libraries

Times

Wandoujia cn.jpush.android 22
com.tencent.map 14
com.baidu.location 9
com.qq.e.comm.managers.status 8
com.loc 7
com.amap.api.location 7
com.aps 7
com.alipay.mobilesecuritysdk.model 6
com.tencent.mm.sdk.platformtools 6

360 cn.jpush.android 13
com.baidu.location 12
com.tencent.map 7

Google Play Store com.flurry.sdk 9
gms 9

TABLE 13
The Application Packages Which Access the Location

Sensor Data During Silent Phase and Their
Corresponding Usage Scenario

package name scenario package name scenario

com.letv.android.client 4 com.nd.android.pandahome2 5
cn.ledongli.ldl 3 viva.reader 1
com.jsmcc 2 com.cmcm.whatscall 1
com.vlocker.locker 2 com.handmark.expressweather 3
com.cleanmaster.mguard_cn 3 com.pingenie.screenlocker 2

TABLE 14
The Application Packages Which Access the

Standard Sensor Data During Silent Phase and
Their Corresponding Usage Scenario

package name usage scenario

com.cleanmaster.mguard_cn 3
cld.navi.mainframe 1
com.lashou.groupurchasing 2
com.taobao.ju.android 1
com.ubercab 1

418 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



The coverage of the second approach depends on the
source code of sensor drivers we can analyze. For graphic
sensors and audio sensors, Linux kernel provides standard
device drivers. Thus, by making the interception according
to the standard invocation mode, senDroid is capable of
auditing all accesses to graphic and audio sensors. For loca-
tion sensors, with no device driver provided by Linux ker-
nel, senDroid only supports sensing audit on devices that
use Qualcomm GPS driver. Because the driver of standard
sensors on Nexus 4 is close-source, senDroid only imple-
ments the sensing audit by intercepting the IPC between
applications and services. We argue that, with the support
of manufacturers of sensors, the location sensors and stan-
dard sensors can be audited by intercepting the communi-
cation with sensor drivers.

7.2 Suspicious Usage Patterns

senDroid provides users with the detailed and visual sensing
usage reports. Users can infer from the usage reports which
stealthy application is accessing sensors at an unexpected
time or with an abnormal data size. For professional users,
the reports of senDroidmay offer more technical details, and
help the professional users find more suspicious accesses to
sensors. However, senDroid does not support the suspicious
usage pattern recognition now. This absence could bring up
a burden on common users, especially, when the sensing
relevant applications are widely used.

A possible solution is to collect plenty of sensor data
usage patterns of malwares. Then we can mine classification
rules by applying machine learning on the usage patterns.
Based on the suspicious usage patterns, we can then
improve Sensing Monitor to be an application which can
automatically identify the suspicious usage of running
applications, and alert users if the alert rules are applied.

7.3 Bypassing senDroid

senDroid implements the sensing audit by intercepting the
data flow and the interception relies on substituting func-
tion pointers in the ELF file of a target process. A malicious
application can apply the similar interception to bypass sen-
Droid either by substituting the sensor-related system calls
for its own implementation, or by breaking down senDroid
completely.

However, it is challenging for the attacker because the
malicious application must call ptrace to attach to the
target process before function substitution. So if senDroid is
attached to the target process before the attacker, according
to the documentation of ptrace [33], the later attaching will
cause error and thus fail. senDroid is attached to target pro-
cesses as soon as the system is launched. Even when attacker
makes the attachment before senDroid, we can be informed
of the abnormal behavior and give the user a warning.

8 RELATED WORK

Hooking is a technique for inserting codes into a system
call for alteration, and it can be used to intercept the
applications’ requests, thus to realize the sensor-related
behavior check. Xu et al. developed Aurasium in [27].
Aurasium can keep on monitoring any security or privacy
violations in Android OS. Basically, Aurasium realizes
the enforcement of its security policies by hooking into

applications processes. FireDroid [34] is another work
that relies on hooks. It intercepts the system calls to identify
if an application is executing dangerous actions at runtime.
Similarly, FireDroid performs security checks on applica-
tions and enforces security policies. DeepDroid [35], a
dynamic enterprise security policy enforcement scheme on
Android devices, also dynamically hooks system processes
in order to find details of applications’ requests for a fine-
grained access control. Boxify [36] presents a concept for
full-fledged app sandboxing on stock Android and it also
aims at enforcing established security policies. Although
the core technique used in these works are similar to ours,
however, no matter in Aurasium, FireDroid, DeepDroid or
Boxify, they aim at realizing a policy-based security, which
means they design the system with hooks in order to apply
some specific security policies to prevent users from attacks,
while our work is different from others by focusing on
auditing sensor access in Android system-wide.

Besides hooking, another technique is to modify the
existing Android sensor framework to intercept the sensor
data flow. Xu et al. [37] proposed a sensor management
framework, called SemaDroid, based on the SemaHooks,
which are not real hooks but are codes embedded within
the existing components in the Android framework. Sema-
Droid provides the users with capacity of monitoring the
sensor usage of installed applications and also provides a
fine-grained and context-aware access control. Basically,
SemaDroid focuses on supporting of context-aware and
quality-of-sensing based access control policies though it
offers the possibility of auditing the sensor usage by giving
a sensor usage report as an individual application as well.

ipShield [38] is a framework that monitors sensor
accessed by an application and assesses the privacy risk of
the sensor access. Besides, it also gives recommendations of
sensor configurations to users and supports sensor related
access control actions. Scippa [39], an extension to the
Android IPC mechanism, provides provenance information
required to effectively prevent recent attacks such as con-
fused deputy attacks. Heuser et al. [40] proposed the
Android Security Modules (ASM) framework, which pro-
vides a programmable interface for defining new reference
monitors for Android. Particular reference monitor can be
developed to monitor sensor access. These designs can be
bypassed in the access mode of JNI, where the accesses to
sensors do not pass the Android framework layer. Different
from these works, senDroid implements the interception at
the device driver layer without any modification to the
Android framework. So senDroid can be widely deployed
and is capable of detecting potential attacks that bypass the
Android framework. senDroid can not only detect which
application is accessing which sensor but also quantify how
many data the application accessed. Furthermore, the hook-
based method can audit applications even when they
bypass the Android framework via JNI invocations. The
implementation and evaluation show that senDroid is effec-
tive and efficient to audit sensing in the Android platform.

Enck et al. [5] proposed a dynamic taint tracking and
analysis system, named TaintDroid, that is capable of simul-
taneously tracking multiple sources of sensitive data. Droid-
Track is a method proposed in [41] for tracking and
visualizing the transmission of privacy information and

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 419

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 



preventing its leakage. AppIntent [42], a framework analyzes
data diffusion to help an analyst to determine whether the
data diffusion is user intended or not. These mechanisms
can track the target data, including personal privacy. The
tracking reports of them are very limited while senDroid
reveals more details of the sensing operations.

Wijesekeraet al. [43] did a field study to find how often
applications access protected resources when users are not
expecting it on Android platform and they hooked the
permission-checking APIs in data collection step. However,
in their study, they focus on the permissions or resources
of connectivity, location, view, and so on. In senDroid, we
implement a meticulous study focusing on sensors on the
Android platform.

9 CONCLUSION AND FUTURE WORK

This paper proposes senDroid, which may be used to monitor
and analyze the sensing operations in the Android platform.
To the best of our knowledge, it is the first work to design a
tool to audit the sensing in the Android platform without the
changes of the source codes of the Android framework. sen-
Droid leverages a hook-based method to implement the inter-
ception of the sensor related API calls. According to the
results of our conducted experiments, senDroid can efficiently
gather the data of all four categories of sensors in the Android
platform, i.e., graphic sensors, audio sensors, location sensors,
and standard sensors, with high accuracy. In addition, sen-
Droid can work even when suspicious or malicious codes are
dynamically loaded from server sides or bypass the middle-
ware of Android via JNI calls. Next, senDroid can monitor
the suspicious behaviors where an application extracts the
graphic data from the preview frames of a camera to silently
take photos. This behavior can bypass the alert of the shutter
voice which is mandatorily open in some countries, such as
China. The performance report shows that the [0.04-8.05] per-
cent overheads for different operations are promising. Finally,
our empirical study on applications from real markets shows
that it is very high-frequent for popular applications in Wan-
doujia, 360 andGoogle Play Store to access sensors.We also find
that many applications access location sensors and standard
sensors when applications are running in the background and
third-party libraries are blamed for the continuous accesses,
but the developers do not declare the usage in the description
or privacy policy of the application. To the best of our knowl-
edge, it is also the first empirical study on the dynamic usages
of sensors of Android applications.

In our future work, we plan to conduct more experi-
ments for a large scale applications to discover more cases
of suspicious and malicious usages of sensors. In addition,
we will improve our analysis tool to automatically report
the malicious usages based on our gathered data and other
relevant data of applications, such as application descrip-
tions. Last but not least, we will support the further sensing
audit under the supports of device manufactures.

ACKNOWLEDGMENTS

This paper is supported by NSFC (Grant No. 61572136,
61472358, 61370080), the National Program on Key Basic
Research (2015CB358800), and the Shanghai Innovation
Action Project (Grant No. 16DZ1100200, 18511103600).

We thanks all anonymous reviewers for their insightful
comments. We are now sharing all source codes of senDroid
on GitHub (https://github.com/letitb/senDroid).

REFERENCES

[1] L. Atzoria, A. Ierab, and G. Morabitoc, “The internet of things: A
survey,” Comput. Netw., vol. 54, pp. 2787–2805, 2010.

[2] R. Liu, “Alipay dismisses accusation it violated user-privacy by
snapping photos.” [Online]. Available: http://www.allchinatech.
com/alipaydismisses-accusation-it-violated-user-privacy-by-
snappingphotos/, Accessed on: 2016.

[3] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch
screen from smartphone motion,” in Proc. 6th USENIX Workshop
Hot Topics Security, 2011, vol. 11, pp. 9–9.

[4] Y. Michalevsky, D. Boneh, and G. Nakibly, “GyropPhone: Recog-
nizing speech from gyroscope signals,” in Proc. 23rd USENIX
Security Symp., 2014, pp. 1053–1067.

[5] W. Enck, et al., “TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones,” ACM Trans.
Comput. Syst., vol. 32, no. 2, 2014, Art. no. 5.

[6] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang,
“Accomplice: Location inference using accelerometers on
smartphones,” in Proc. 4th Int. Conf. Commun. Syst. Netw., 2012,
pp. 1–9.

[7] S.-W. Lee and K. Mase, “Activity and location recognition using
wearable sensors,” IEEE Pervasive Comput., vol. 1, no. 3, pp. 24–32,
2002.

[8] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: Rich
monitoring of road and traffic conditions using mobile
smartphones,” in Proc. 6th ACM Conf. Embedded Netw. Sensor Syst.,
2008, pp. 323–336.

[9] T. Watanabe, M. Akiyama, and T. Mori, “Routedetector: Sensor-
based positioning system that exploits spatio-temporal regularity of
humanmobilty,” inProc. Usenix Conf. Offensive Technol., 2015, p. 6.

[10] D. Currie, “Shedding some light on voice authentication,” 2009.
[11] A. Al-Haiqi, M. Ismail, and R. Nordin, “On the best sensor for

keystrokes inference attack on android,” Procedia Technol., vol. 11,
pp. 989–995, 2013.

[12] R. Spreitzer, “Pin skimming: Exploiting the ambient-light sensor
in mobile devices,” in Proc. 4th ACM Workshop Security Privacy
Smartphones Mobile Devices, 2014, pp. 51–62.

[13] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile
device identification via sensor fingerprinting,” CoRR, vol. abs/
1408.1416, 2014, [Online]. Available: http://arxiv.org/abs/
1408.1416

[14] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi,
“AccelPrint: Imperfections of accelerometers make smartphones
trackable,” in Network and Distributed System Security Symposium.
New York, NY, USA: Citeseer, 2014.

[15] H. Wang, D. Lymberopoulos, and J. Liu, “Sensor-based user
authentication,” in Wireless Sensor Networks. Berlin, Germany:
Springer, 2015, pp. 168–185.

[16] T. Schreiber, “Android binder,” A Shorter, More General Work, but
Good for an Overview Binder. 2011. [Online]. Available: http://www.
nds. rub.de/media/attachments/files/2012/03/binder. pdf

[17] Android, “Android interface and architecture.” [Online]. Avail-
able: https://source.android.com/devices/, Accessed on: 2015

[18] B. Nguyen, “Linux dictionary,” 2003.
[19] eLinux.org, “Executable and linkable format (elf).” [Online].

Available: http://elinux.org/Executable_and_Linkable_Format_
(ELF), Accessed on: 2015

[20] E. Bendersky, “Position independent code (PIC) in shared
libraries.” [Online]. Available: http://eli.thegreenplace.net/2011/
11/03/positionindependent-code-pic-in-shared-libraries/,
Accessed on: 2015

[21] J. Shewmaker, “Analyzing DLL injection,” GSM Presentation, 2006.
[22] P. Padala, “Playing with ptrace, part II,” Linux J, vol. 104, 2002,

Art. no. 4.
[23] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-

phone touchscreens using on-board motion sensors,” in Proc. 5th
ACMConf. Security PrivacyWirelessMobile Netw., 2012, pp. 113–124.

[24] R. Schlegel, K. Zhang, X.-Y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound tro-
jan for smartphones,” in Proc. 2nd Netw. Distrib. Syst. Security
Symp., 2011, vol. 11, pp. 17–33.

420 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/letitb/senDroid
http://www.allchinatech.com/alipaydismisses-accusation-it-violated-user-privacy-by-snappingphotos/
http://www.allchinatech.com/alipaydismisses-accusation-it-violated-user-privacy-by-snappingphotos/
http://www.allchinatech.com/alipaydismisses-accusation-it-violated-user-privacy-by-snappingphotos/
http://arxiv.org/abs/1408.1416
http://arxiv.org/abs/1408.1416
http://www. nds. rub.de/media/attachments/files/2012/03/binder. pdf
http://www. nds. rub.de/media/attachments/files/2012/03/binder. pdf
https://source.android.com/devices/, Accessed on: 2015
http://elinux.org/Executable_and_Linkable_Format_(ELF)
http://elinux.org/Executable_and_Linkable_Format_(ELF)
http://eli.thegreenplace.net/2011/11/03/positionindependent-code-pic-in-shared-libraries/
http://eli.thegreenplace.net/2011/11/03/positionindependent-code-pic-in-shared-libraries/


[25] Z. Zhang, P. Liu, J. Xiang, J. Jing, and L. Lei, “How your phone
camera can be used to stealthily spy on you: Transplantation
attacks against android camera service,” in Proc. 5th ACM Conf.
Data Appl. Security Privacy, 2015, pp. 99–110.

[26] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in Proc. USENIX Security Symp.,
2011, vol. 2, Art. no. 2.

[27] R. Xu, H. Sa€ıdi, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in Proc. Presented Part 21st
USENIX Security Symp., 2012, pp. 539–552.

[28] typcn, “typcn on twitter.” [Online]. Available: https://twitter.
com/typcn_com/status/701706390218231808, Accessed On:
2016–05-10.

[29] bunnyblue, “Acdd,” [Online]. Available: https://github.com/
bunnyblue/ACDD, accessed: 10-May-2016

[30] AnTuTu, “Antutu benchmark 3d- android apps on google play.”
[Online]. Available: https://play.google.com/store/apps/
details?id=com.antutu.benchmark.full, Accessed on: 10-May-2016

[31] Android, “Audio capture.” [Online]. Available: https://developer.
android.com/guide/topics/media/audio-capture.html, Accessed
on: 2016

[32] Android, “Sensors overview.” [Online]. Available: https://
developer.android.com/guide/topics/sensors/sensors_overview.
html#sensors-practices, Accessed on: 2016

[33] M. Kerrisk, “ptrace(2).” [Online]. Available: http://man7.org/
linux/man-pages/man2/ptrace.2.html, Accessed on: 2016

[34] G. Russello, A. B. Jimenez, H. Naderi, and V. D. M. Wannes,
“Firedroid: Hardening security in almost-stock android,” in Proc.
Comput. Security Appl. Conf., 2013, pp. 319–328.

[35] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically
enforcing enterprise policy on android devices,” in 22nd Ann.
Netw. Distrib. Syst. Secur. Symp., NDSS 2015, San Diego, California,
USA, Feb. 8–11, 2015.

[36] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. Von
Styp-Rekowsky, “Boxify: Full-fledged app sandboxing for stock
android,” in Proc. Usenix Security Symp., 2015, pp. 691–706.

[37] Z. Xu and S. Zhu, “SemaDroid: A privacy-aware sensor manage-
ment framework for smartphones,” in Proc. 5th ACM Conf. Data
Appl. Security Privacy, 2015, pp. 61–72.

[38] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar,
and M. Srivastava, “ipShield: A framework for enforcing context-
aware privacy,” in Proc. 12th USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2014, pp. 143–156.

[39] M. Backes, S. Bugiel, and S. Gerling, “Scippa: System-centric IPC
provenance on android,” in Proc. Comput. Security Appl. Conf.,
2014, pp. 36–45.

[40] S. Heuser, A. Nadkarni, W. Enck, and A. R. Sadeghi, “ASM:
A programmable interface for extending android security,” in
Proc. 23rd USENIX Conf. Security Symp. 2014, pp. 1005–1019.

[41] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi,
“DroidTrack: Tracking and visualizing information diffusion for
preventing information leakage on android,” J. Internet Serv. Inf.
Security, vol. 4, no. 2, pp. 55–69, 2014.

[42] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for
privacy leakage detection,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2013, pp. 1043–1054.

[43] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on
contextual integrity,” in Proc. Usenix Conf. Security Symp., 2015,
pp. 499–514.

Weili Han (M’08) is a full professor in the Soft-
ware School at Fudan University. His research
interests are mainly in the fields of data systems
security, access control, digital identity manage-
ment. He is now a member of the ACM, SIGSAC,
IEEE, and CCF. He received his Ph.D. degree at
Zhejiang University in 2003. Then, he joined the
faculty of the Software School at Fudan Univer-
sity. From 2008 to 2009, he visited Purdue
University as a visiting professor funded by China
Scholarship Council and Purdue University.

He serves in several leading conferences and journals as PC members,
reviewers, and an associate editor. He is a member of the IEEE.

Chang Cao is a graduate student majored in
Computer Software and Theory at Fudan Univer-
sity. She received her B.S. degree from Fudan
University in 2016. She is currently a member of
the Laboratory for Data Analytics and Security.
Her research interest mainly includes sensor-
related access control on mobile devices.

Hao Chen is a full professor in the Department of
Computer Science at the University of California,
Davis. He received his Ph.D. degree at the Com-
puter Science Division at the University of Califor-
nia, Berkeley, and his BS and MS from Southeast
University. His research interests are computer
security, machine learning, andmobile computing.

Dong Li is currently a software engineer in Works
Applications Co., Ltd. He received his B.S. degree
in Computer Science from Beijing Institute of
Technology in 2014 and the M.S. degree in Com-
puter Software and Theory from Fudan University
in 2017. His research interests are mainly in the
fields of access control on Android.

Zheran Fang is currently a software engineer
at Microsoft. He received his M. S. degree in Com-
puter Science from Fudan University. He was a
member of the Laboratory of Cryptography and
Information Security, Software School, Fudan Uni-
versity. His research interests mainly included infor-
mation security and policy basedmanagement.

Wenyuan Xu (M’07) is a full professor in the
College of Electrical Engineering at Zhejiang
University. She received her B.S. degree in
Electrical Engineering from Zhejiang University
in 1998, her M.S. degree in Computer Science
and Engineering from Zhejiang University in 2001,
and the Ph.D. degree in Electrical and Computer
Engineering from Rutgers University in 2007. Her
research interests include wireless networking,
smart systems security, and IoT security. Dr. Xu
received the NSF Career Award in 2009 and was

selected as a young professional of the thousand talents plan in China in
2012. Shewas granted tenure (an associate professor) in theDepartment
of Computer Science and Engineering at the University of South Carolina
in the U.S. She has served on the technical program committees for
several IEEE/ACM conferences on wireless networking and security.
She has published over 60 papers and her papers have been cited over
3000 times (Google Scholar). She is amember of the IEEE.

X. Sean Wang is a full professor in the School of
Compute Science at Fudan University, Shanghai,
China. He received his Ph.D. degree in Computer
Science from the University of Southern California
in 1992. Before joining Fudan University in 2011,
he was the Dorothean Chair Professor in
Computer Science at the University of Vermont.
His research interests include data systems and
data security. He is a member of ACM and senior
member IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HAN ETAL.: SENDROID: AUDITING SENSOR ACCESS IN ANDROID SYSTEM-WIDE 421

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on March 30,2020 at 05:50:34 UTC from IEEE Xplore.  Restrictions apply. 

https://twitter.com/typcn_com/status/701706390218231808
https://twitter.com/typcn_com/status/701706390218231808
https://github.com/bunnyblue/ACDD
https://github.com/bunnyblue/ACDD
https://play.google.com/store/apps/details?id=com.antutu.benchmark.full
https://play.google.com/store/apps/details?id=com.antutu.benchmark.full
https://developer.android.com/guide/topics/media/audio-capture.html
https://developer.android.com/guide/topics/media/audio-capture.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-practices
https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-practices
https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-practices
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


