
Journal of Computer Security 19 (2011) 869–893 869
DOI 10.3233/JCS-2011-0424
IOS Press

WebCallerID: Leveraging cellular networks for Web
authentication

Francis Hsu a, Hao Chen a,∗ and Sridhar Machiraju b

a University of California, Davis, CA, USA
b Google Inc., Mountain View, CA, USA

Web authentication that is both secure and usable remains a challenge. Passwords are vulnerable to
phishing attacks, while physical tokens face deployment obstacles. We propose to leverage the authenti-
cation infrastructure of cellular networks to enhance Web authentication. We design WebCallerID, a Web
authentication scheme that uses cell phones as physical tokens and uses cellular networks as trusted iden-
tity providers. Since WebCallerID requires no user participation during authentication, it prevents security
mistakes by users. WebCallerID also prevents rogue websites from replaying authentication assertions or
stealing users’ identities. We have implemented a prototype of WebCallerID using the OpenID framework.
The prototype shows that WebCallerID seamlessly integrates into OpenID-capable Web authentication
while avoiding phishing problems in OpenID and simplifying user participation.

Keywords: Authentication, cellular networks, mobile authentication, OpenID, phishing, single sign on,
usable security, Web authentication

1. Introduction

Identity is a necessary component of most security-sensitive computer interac-
tions. We assert and verify identity through authentication, where one party deter-
mines the identity of the other by verifying some evidence supporting the identity
assertion.

The simplest, oldest form of authentication is conducted with a shared secret, of-
ten a password. We continue to use password-based authentication even for modern
systems like the Web, because it is familiar to most users, even though it suffers
from well-known usability problems. Since passwords are vulnerable to brute-force
attacks, authentication systems require users to create strong passwords that are dif-
ficult for automated systems to guess. These strong passwords, however, are long
and difficult to memorize. When a user submits passwords to a remote server, the
web browser simply submits the plain text password directly to the remote side (but
at least encrypted in transport by TLS). Such an authentication process is vulnera-
ble to reply attacks. If this password is captured at either the browser or the Web

*Corresponding author: Hao Chen, Department of Computer Science, University of California, Davis,
CA 95616-8562, USA. Tel.: +1 530 754 5375; Fax: +1 530 752 4767; E-mail: hchen@cs.ucdavis.edu.

0926-227X/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved

870 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

server, it may be reused. Password-based Web authentication systems are especially
vulnerable to replay attacks because web users often reuse the same password across
different websites. If an attacker can capture a user’s password at one website, he
may use the password to log into the user’s accounts at many other websites. To
steal a user’s password, the attacker can either exploit vulnerabilities at poorly ad-
ministrated websites or launch a phishing attack on the user. Although techniques
are available to help users identify rogue websites, studies have found that ordinary
users fail miserably at such tasks [10].

Saltzer and Schroeder’s security design principle of Separation of Privilege [33]
suggests that critical systems protected by multiple mechanisms are more robust.
As a result, multi-factor authentication was proposed to make subverting an authen-
tication process more difficult since the attacker must obtain or forge more than
one piece of evidence. These factors are frequently categorized into “something you
know”, “something you have” and “something you are”. Passwords are an example
in the first category.

Physical tokens can provide an additional factor in the “something you have” cat-
egory. They may function individually as the single factor in an authentication pro-
cess, but are frequently paired with passwords so that loss or theft of the token is
not sufficient to compromise the authentication process. These tokens carry a secret
shared with the authenticating site, but only show the user a string to be sent to the
remote website. This string is derived from the secret and other sources such as a
clock [32]. Physical tokens, however, have not been widely used for Web authentica-
tion, mainly due to deployment barriers. First, this approach requires extra hardware
and incurs extra cost. Second, this approach requires the creation of token authori-
ties. If each website issues its own token, a user would have to carry a different token
for each website. On the other hand, if websites share a single token authority, the
authority has to register users and verify their identities, a substantial undertaking.
Finally, integrating physical tokens seamlessly into Web authentication may be a
challenge. If the token communicates directly with the browser during Web authen-
tication, it may require additional device drivers and browser plugins. In practice,
currently users have to relay challenges and responses between the browser and the
token. This step is vulnerable to some of the same weaknesses of passwords. Again,
a phishing attack could capture user’s token response with the user’s password and
then use them in a man-in-the middle attack. In this case, phishing attacks can still
be successful because they exploit the human element in the authentication process.

Phishing vulnerabilities suggest that removing humans from the authentication
process could reduce vulnerabilities of authentication systems. In fact, there is a large
infrastructure that authenticates billions of users every day without requiring their
active participation – the cellular networks. Cellular networks authenticate their users
through the hardware in their cell phones.1 Thus, cell phones serve as physical tokens

1As cell phones are highly personalized devices, cellular networks attribute all the services used on a
cell phone to its owner, just as banks attribute all the transactions initiated by an ATM card to the card’s
owner. Techniques exist to prevent the use of stolen cell phones, such as lock codes.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 871

to their networks and avoid all the problems of user involvement in the authentication
process.

In this paper, we propose using cell phones for Web authentication. This approach
leverages the authentication infrastructure inside cellular networks to enhance Web
authentication. Compared to other approaches based on traditional physical tokens,
our approach overcomes many deployment barriers. First, cell phones can be used
for Web authentication without incurring additional costs or burden to most people.
This is because most people who use the Web also own cell phones and carry the
phones with them wherever they go. Moreover, due to financial and privacy reasons,
they tend to diligently safeguard their cell phones. Second, cellular networks have al-
ready verified the identities of most users (exceptions include some pre-paid users).
Most countries have a few, well-established cellular networks. If a website trusts
these networks, it can leverage user authentication provided by these providers. For
example, SMS (text messaging) has been used for authorizing payment by financial
institutions, such as PayPal [28]. Finally, as more cell phones support data services,
we can leverage cellular data networks for Web authentication seamlessly, i.e., with-
out the need for additional hardware (e.g., physical tokens) or software (e.g., client
authentication programs or browser plugins), or for users to relay information to
and from browsers (e.g., manually copying authentication codes from an SMS into a
browser). Users can run commodity browsers either on their cell phones, or on PCs
that have network connections to their cell phones (Section 4.4).

As physical authentication tokens, cell phones are not only easy to deploy but
can also provide a unique piece of information: the locations of their users. In many
jurisdictions, cellular networks are required to identify the location of phones for
emergency response. Location information has been effectively used for detecting
financial fraud, such as ATM and credit card transactions. As a result, a card-present
transaction often incurs a lower cost than a card-absent transaction. Most Web trans-
actions are treated as card-absent, because the location of the browser cannot be
verified (e.g., due to the use of proxies). In contrast, if a website leverages cellular
networks for authentication, it can identify the location of the user.

1.1. Overview

We design WebCallerID, a scheme that leverages cellular networks for secure Web
authentication. WebCallerID involves the user, the relying party (the website that the
user wishes to authenticate to), and the cellular network, as shown in Fig. 1.

As a proof of concept, we implemented WebCallerID in the OpenID frame-
work [26]. OpenID is a single sign on (SSO) identity system, where the user au-
thenticates himself to a third-party instead of authenticating himself to a destination
website. This third-party is known as an identity provider, and verifies the user’s
identity. The identity provider then handles the subsequent authentication to other
sites. OpenID purposely leaves out how a user authenticates to his identity provider.
In practice, many OpenID identity providers use password authentication, which not

872 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

Fig. 1. Overview of the WebCallerID authentication scheme. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/JCS-2011-0424.)

only inherits all the vulnerabilities of password authentication, but also could make
phishing easier [42]. We propose to use the cellular network as an identity provider
by setting up an OpenID server within the cellular network, which authenticates
mobile devices using existing authentication mechanisms in cellular networks. Ad-
ditionally, in current OpenID systems, the user has to specify his identity provider.
By contrast, the user of our scheme need not specify his identity provider, because
the relying party (the website) can automatically detect the user’s cellular network
and his identity provider (Section 4.2).

Setup. The cellular network runs an OpenID identity server, which queries the ex-
isting AAA (Authentication, Authorization and Accounting) server for user profiles.
The relying party accepts OpenID authentication. The user chooses an identity at his
cellular provider for our scheme. An obvious choice is the user’s phone number, but
other choices can also be used to protect the user’s privacy better (Section 5.4). Then,
the user registers his identity at the relying parties that he plans to log in.

Authentication. The user can visit a relying party from a commodity browser run-
ning on one of the following devices:

• A cell phone with data services.
• A PC with cellular data services (e.g., via cellular data card).
• A PC that can initiate a connection with a cell phone (e.g., via Bluetooth, USB

or infrared). If the user prefers, the PC may choose to use the cellular network
just for handling authentication, and to use a non-cellular Internet connection
for traffic to the rest of the Web. (Section 4.4).

• A PC not connected to a cell phone. In this case the user assists the authentica-
tion process by acting as the “connection” and copying a single string from the
cell phone to the browser (Section 4.4).

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 873

After the user clicks an authentication button on the relying party’s website, the
website authenticates the user via his cellular network automatically.

1.2. Goals

WebCallerID has the following design goals:

• WebCallerID should be as secure as the authentication in cellular networks. In
other words, if an attacker can break WebCallerID, he would have been able
to break the cellular authentication. This implies that we do not consider such
threats as an attacker stealing a mobile device, or controlling software on a
mobile device.

• WebCallerID should not require users to participate in authentication. If users
do not participate, they cannot make security mistakes. Another benefit is that
users would get security for free – they do not have to perform any security
tasks.

• WebCallerID should prevent phishing attacks both for authentication and pri-
vacy. A phishing website should not be able to replay a user’s authentication
credentials, nor to gain additional knowledge about the user’s identity from the
credentials.

2. OpenID

OpenID is an identity system where an OpenID identity provider (OP) acts as a
trusted third party to authenticate a user to other relying parties (RPs). Using this
identity system, a user no longer has to maintain different passwords for different
relying parties, thereby avoiding security and usability problems with maintaining
multiple passwords. The relying party only needs to be “OpenID enabled”, but no
modification is needed to the user’s system software or Web browser. The identity
provider runs an OpenID server, which communicates with the relying party and the
browser to execute the authentication protocol. The popularity of OpenID is growing
with major web companies like Google and Yahoo planning offerings of OpenID
identity services for their users.

The OpenID authentication protocol follows these steps:

1. The user submits an OpenID identifier, a URI, at the login page of a relying
party. This URI normally takes the form of a URL (e.g., http://openid.example.
com/userid), though other forms are allowed in the protocol specification.

2. Based on the URI, the relying party discovers the user’s OpenID server. Then,
the relying party constructs an authentication request for the identity and re-
turns this to the user’s browser.

3. The browser forwards the authentication request to the OpenID server.

874 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

4. The OpenID server authenticates the user, signs a response, and returns the
response (authentication assertion) to the user’s browser.

5. The browser forwards the authentication assertion to the relying party.
6. The relying party verifies the assertion, by either forwarding it to the OpenID

server, or by using a shared secret that the relying party has established before-
hand with the OpenID server.

2.1. Security concerns

OpenID has become popular and trusted at many blogs, wikis, and social network-
ing sites. However, in its current form, it is unsuitable for high-value websites, such
as financial institutions, due to security and privacy concerns.

Phishing. Since relying parties no longer need to handle password authentication
of users, it may seem that they are no longer susceptible to phishing attacks. How-
ever, the problem is only offloaded to the OpenID server. The OpenID specification
purposely leaves out how the user authenticates to the OpenID server. Since pop-
ular OpenID systems authenticate users using passwords, they are still vulnerable
to phishing attacks. An attacker could lure a victim user to authenticate to a rogue
relying website, which then, by following the OpenID protocol, redirects the user
to a rogue OpenID server. A phishing attack on OpenID server would be more se-
rious than a phishing attack on individual websites, because the captured OpenID
credentials would allow the attacker to log into all its relying websites.

Privacy. In popular OpenID systems, a user presents a single identity in each au-
thentication with a relying party. This raises privacy concerns because multiple coop-
erating relying parties would be able to link a users activities to the same presented
identity. Moreover, OpenID offers a mode of authentication, where the request is
made without user interaction with the OpenID server. This authentication type is
known as an immediate request. If this authentication succeeds, the relying party can
learn the user’s OpenID identity automatically when a users visits the relying party
website. Simply visiting a website can harm the user’s privacy.

A directed identity is an identity chosen by the OpenID server for an authentica-
tion request by a relying party. Instead of authenticating an identity specified by the
relying party, the OpenID server selects an identity for the assertion response. In this
authentication process, a relying party only needs to know of the OpenID server to
construct an authentication request. A user does not need to give the relying party
any personal identifiers at the start. After the authentication request is received, the
OpenID server then allows the user to select and present different identities to relying
parties. Presenting unique identities specific to each relying party can break attempts
to track an identity across sites, however, this authentication process is supported
in some but not all popular OpenID systems. Moreover, this burdens the user with
managing multiple identities for different websites, which offsets some benefits of
the OpenID system.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 875

3. Design

WebCallerID uses the cellular network infrastructure as the trusted intermediary.
To use this infrastructure, a user needs to visit a website using his cellular data con-
nection. This can be done directly with a browser on a cell phone or from a PC using
the cellular data service for Internet access. After the user clicks the login button,
the website communicates with the identity server in the user’s cellular network to
authenticate the user. The authentication is transparent to the user – the user need not
enter any information for the authentication. For compatibility with phones that can-
not connect directly to a PC for data service, we also provide a scheme that allows
the user to serve as the connection by transferring information from the phone into
the browser.

3.1. Authentication protocol

Entities. Our authentication scheme involves a user and his cell phone, websites
(relying parties) that the user wishes to authenticate to, and an identity server inside
the user’s cellular network.

Setup. The user registers his directed identity at each relying party. Section 3.2
describes how directed identities are computed. We assume that all messages in the
protocol are encrypted and authenticated.

Authentication. When the user visits the relying party, authentication happens in
the following steps:

1. The relying party sends a nonce n to the user’s browser.
2. The browser discovers the identity server in the cellular network and forwards

n to the identity server. The details of this process are discussed in Section 4.2.
3. The identity server queries the cellular network for the user’s identity and com-

putes the user’s directed identity ID for this relying party. Then, it signs a tuple
t = (ID, n, RP) using its private key, where RP is the identity of the relying
party. The signed t is called an authentication assertion. The identity server
sends the authentication assertion to the browser, which then forwards it to the
relying party.

4. The relying party verifies n, RP, and the signature in the authentication asser-
tion. If the verification succeeds, the relying party has authenticated the identity
ID.

3.2. Identity

The identity server in the cellular network provides the user’s identity to relying
parties. Since OpenID was proposed to unify identity management, popular OpenID
servers provide only a single identity of each user to all relying parties. This causes

876 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

privacy concerns. Colluding relying parties could track a user’s activities. Moreover,
if a user is tricked into authenticating to a rogue relying party, even though the relying
party cannot replay the user’s authentication assertion, the relying party gets to know
the user’s identity, which could compromise the user’s privacy. The directed identity
feature of OpenID allows a user to select different identities for different relying
parties. However, maintaining multiple identities would be burdensome for both the
user and the identity provider.

In our scheme, the user selects a master identity, and the identity server computes
a unique directed identity for each relying party. It uses the same approach as Pwd-
Hash [30]. Let the user’s master identity be IDU , the relying party’s identity (e.g.,
its domain name) be RP, and PRF be a pseudo random function. Then the directed
identity of IDU at RP is PRFIDU (RP), where IDU is used as the key to PRF, and RP
is used as the input to PRF.

3.3. Security and privacy

Our scheme provides several security and privacy benefits:

1. The user need not remember or submit any passwords. Instead, the cell phone
serves as the user’s authentication token. Since our scheme uses no password,
it avoids all password-related problems.

2. A relying party cannot replay its received authentication assertion to log into
another relying party. The authentication assertion contains the relying party’s
identity signed by the identity server. As long as the relying party cannot forge
its identity, it cannot use its authentication assertion to log into other relying
parties. For example, the identity could be the relying party’s domain name,
or could come from credentials proving the relying party’s identity, such as a
signed public key certificate. We will describe how our scheme defeats both
passive and active replay attacks in detail in Section 5.2.

3. A rogue relying party cannot discover the user’s identity for other relying par-
ties, since the user’s identity at each relying party is the output of a PRF on the
relying party’s identity.

Thanks to the first benefit, Web authentication becomes transparent to the user.
Since the user does not participate in the authentication (other than possessing his
cell phone), he cannot mistakenly divulge his authentication credentials. Moreover,
the user does not have to worry about phishing attacks – he can freely log into any
website without security or privacy compromise during the authentication. This is
because the website cannot reuse his authentication assertion (due to the second ben-
efit), and cannot discover either his master identity or his directed identity at another
website (due to the third benefit).2

2However, our scheme cannot protect the user from disclosing confidential information after login.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 877

4. Implementation

As a proof of concept, we implemented WebCallerID based on the OpenID frame-
work. WebCallerID involves three components: relying parties, a cell phone, and an
OpenID server inside a cellular network. The OpenID server queries user profiles
from the AAA (Authentication, Authorization and Accounting) server, which han-
dles the authentication of the cellular device [8]. Sections 4.2–4.4 describe these
three components in details.

4.1. Protocol

Figure 2 shows the messages in the protocol for authenticating a user U to a relying
party RP:

1. The user U visits the login page of the relying party RP to initiate the authen-
tication process.

2. The relying party RP obtains the identifier of the user’s identity server IS via
the process described below in Section 4.2.

Fig. 2. Messages during authentication. (Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/JCS-2011-0424.)

878 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

3. The relying party RP redirects the user’s browser to the identity server IS with
an OpenID authentication request. The authentication request is an OpenID im-
mediate request and contains a return_to parameter with an https URL pointing
back to the relying party RP and a nonce.

4. Upon receiving an authentication request from the IP address IPU , the identity
server IS queries the cellular network’s AAA server for the user that is currently
assigned IPU .

5. The AAA server returns the user’s identity IDU and some other information in
his profile.

6. The identity server IS constructs an authentication assertion containing a di-
rected identity IDdirected computed from RP and IDU (Section 4.3), a response
nonce, other profile information, and a signature over the tuple of these values.
Then, the identity server IS returns this authentication assertion to the user’s
browser to be forwarded to the relying party RP.

7. The user’s browser forwards the authentication assertion to the relying party
RP. RP checks the authentication assertion by verifying if the parameters match
those of the authentication request, the response nonce has not been seen, and
the signature is valid.

4.2. Relying parties

A relying party is a website with an authentication component that accepts and
verifies OpenID identities. The relying party may completely use this component
as the sole piece of authenticating information or use it in conjunction with other
authentication systems in a multi-factor authentication scheme.

We have implemented two types of relying party authentication components. The
first is a standard OpenID authentication component, which requires the user to en-
ter his identifier. The other requires no extra user interaction and simply consists of
a JavaScript module that uses the cellular network connection to complete authenti-
cation when started. If it detects no cellular network connection, it can automatically
fall back to the first scheme.

Since the first relying party authentication component has the same interface for
entering an identifier as in OpenID, it is compatible with existing OpenID infrastruc-
ture. We use this component for cellular users who do not have browser access to the
internet via their cell phone. On the login page of the relying party, the user enters
his identifier, which is a URI. Based on this identifier, the relying party discovers the
OpenID server inside the cellular network by following standard OpenID protocols.
Figure 3(a) shows the screenshot of a login page.

The above approach, however, is not transparent to the user, as he needs to enter
his identifier. To remove this requirement, we implemented a second type of relying
party authentication, which requires no user input. The login page of such a relying
party simply ties authentication to the login button (Fig. 3(b)). After the user clicks
the button to login (possibly after entering the information necessary for another

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 879

(a) (b)

Fig. 3. Two types of login pages of relying parties. The login page using WebCallerID authenticates
the user automatically. Depending on the web application, this authentication may be sufficient to imply
authorization. In the case of security sensitive applications, additional authentication factors can be used to
verify user intent and authorization. (a) A login page that requires the user to enter his identity. (b) A login
page that automatically acquires the user identity from a WebCallerID server. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/JCS-2011-0424.)

authentication system), the page runs a JavaScript module. This module contains
a list of known OpenID servers inside the cellular networks that the relying party
trusts. The module tries to initiate an OpenID discovery process with these OpenID
servers until one of them succeeds.3 The OpenID server inside the cellular network
returns the user’s identity to the relying party upon successful authentication.

The above JavaScript module has 20 lines of code. To probe an OpenID server,
the module creates an iframe, and redirects the iframe to the OpenID server with an
authentication request that has a return_to parameter specifying the relying party. If
the authentication is successful, the OpenID server returns the authentication asser-
tion to the browser with a redirect to the return_to parameter provided. The module
then can allow the relying party’s Web application to proceed with the authenticated
user session.

4.3. OpenID server

We created our OpenID identity server on the test network of a major US cel-
lular provider. Our identity server is based on the OpenID 2.0 Draft specification
and is composed of less than 800 lines of Python code using the Python OpenID
Library [29]. The OpenID identity server authenticates users in the cellular network

3As an optimization, the module could use the IP address of the cell phone to narrow its list of OpenID
servers, or could use a standard name that resolves to a local identity server in all cellular networks. We
did not implement this optimization.

880 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

to relying parties. It services authentication requests from users as well as optional
association requests from relying parties.

The identity server receives authentication requests from the user’s cell phone via
the cellular network. The identity server fulfills these OpenID authentication requests
by leveraging the cellular network’s authentication infrastructure, the AAA (Authen-
tication, Authorization and Accounting) server, that is handling the authentication of
the cellular device. The AAA server authenticates clients requesting access to the
network and maintains session state for the duration of the client’s use of the net-
work. This state includes the MIN (mobile identification number) and the assigned
IP address for the client’s session.

Our identity server queries a Bridgewater Systems AAA Service Controller v.8.2.1
server inside the cellular network to obtain the user profile currently associated with
the source IP address of the authentication request. It makes one LDAP query of the
AAA server per authentication request. Based on the user profile, the identity server
derives the user’s identity at the relying party, creates an authentication assertion,
and sends the assertion back to the relying party.

Since the identity server derives the user’s identity from the IP address of his cell
phone, we must ensure that these IP addresses cannot be spoofed. Fortunately, to
obtain fraudulent authentication assertions, an attacker would have to not only spoof
the source IP of the authentication request, but also be able to receive the authen-
tication assertion at the spoofed IP address. Such spoofing is infeasible because of
the encrypted PPP sessions between the cell phone and the cellular switch, which is
often referred to as the Packet Data Serving Node (PDSN).

To provide a directed identity to the relying party (i.e., to provide different iden-
tities to different relying parties), for each user the server maintains a master iden-
tifier, IDU , that is not shared with any relying parties. Instead, the server constructs
a directed identity for each relying party RP as IDdirected = PRFIDU (RP), where
PRF is a pseudo random function. By constructing a directed identity on the fly, the
server need not maintain records per relying party per user. The server uses the do-
main name and, if available, the organizational name from the SSL certificate of the
relying party for RP. We leverage the existing SSL certificate infrastructure to au-
thenticate the identity of the relying party to prevent attacks by taking over expiring
domains.

Optionally, the server may send extended registration information obtained from
AAA’s user profile to relying parties. Such information may include the name, veri-
fied billing address, mobile phone number and email address of the user. The server
can also obtain the phone’s location from the cellular network’s Mobile Position-
ing Center (MPC) server. Combined with a mobility profile, a history of the user’s
previous locations, constructed by the cellular network, the identity server can even
identify anomalous authentication attempts and make this known to the relying party.
This location information could be processed in a manner similar to card-present
credit card transactions to identify authentication requests made when the phone is
lost or stolen. The relying party may use this additional information as part of its

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 881

authentication or authorization decisions, and regulate access to services based on
their values. For privacy concerns, the server should only release such information
to the websites that the user has consented to during the registration phase. Note that
in this case, the server would need to maintain a list of authorized websites per user.

4.4. Client software

Since OpenID requires no special capabilities in the user’s browser or extra soft-
ware on the client machine, our implementation entirely relies on the browser to
complete the authentication. We require the browser to have access to the cellular
network or the user to act as an intermediary between the browser and his cellu-
lar phone to complete an authentication transaction. We discuss how to satisfy this
requirement in various scenarios below:

Direct access to the cellular network. When the browser runs on a cell phone or on
a PC with a cellular card, it can directly access the cellular network.

Bridged access to the cellular network. When the browser runs on a PC without
a cellular card, the user can create a connection between the PC and his cell phone
(e.g., via Bluetooth or infrared). This way, the PC uses the cell phone as a wireless
modem.

Multihomed access to the cellular network. When the user wishes to access the In-
ternet via a non-cellular network (due to bandwidth, cost, or other considerations),
he can use the cellular network just to handle authentication requests. He can achieve
this by configuring the client device (where the browser runs) in a multihomed setup
with connections to both the non-cellular Internet provider and the cellular network
(Fig. 4). For example, a user may primarily use a WiFi connection on a laptop com-
puter, but can also tether a cellular phone for Internet access via the cellular network.
Such a multihomed user may wish to use the cellular network for authentication but
prefer to use the non-cellular network for subsequent Web sessions. To achieve this,
we set up the routing table on the laptop to send traffic to the identity server through
the cellular network and to use the non-cellular network for all other traffic. Such a
change could be automatically made by driver software for the phone.

No access to the cellular network from the browser. If the user is unable to con-
nect the phone to the computer, the browser running on the computer would have
no access to the cellular network. However, if the user can act as an intermediary
between the phone and browser, we can modify the authentication protocol in Fig. 2
as follows. The protocol starts when the user enters his identifier on the login page
of the relying party. After the relying party constructs the authentication request and
sends it to the identity server (Step 3), the identity server on the cellular network
authenticates the user via a separate channel on the cellular phone and the URL bar
of the browser, instead of via the AAA server (Steps 4 and 5) as normally done.
This separate channel can be messages sent over a secure short message service

882 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

Fig. 4. Multihomed setup for authentication. The browser runs on the PC, which connects to both a cellular
network and a non-cellular network. We configure the PC’s routing table to send traffic to the OpenID
server through the cellular network, and to send all the other traffic through the non-cellular network.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/JCS-2011-0424.)

(SMS), multimedia message service (MMS), or other messaging systems that guar-
antee that senders are unforgeable and that only the intended recipient can read the
message.

The identity server responds to the authentication request by constructing a unique
secure (https) URL associated with the authentication transaction and sends it to
the user via the messaging channel. The message instructs the user to navigate his
browser to this URL. This action authenticates the user to the identity server and
allows the identity server to respond with the authentication assertion.

The identity server authenticates the user in this manner since the secure URL is
a nonce that the user would only know if he possessed the cell phone. The cellular
network protects the security of the nonce from the identity server to the message on
the phone via the secure messaging system, and the browser protects it with SSL/TLS
when the user enters the secure URL in the URL bar.

There exist similar SMS authentication schemes that send the user a code via
SMS, which the user then enters into a login page [31]. However, those schemes
are vulnerable to the following man-in-the-middle attack. If the user visits the login
page of a phishing website, the phishing website could request the real website to
send a code via SMS to the user. When the user enters the code into the login page
controlled by the phishing website, the phishing website could immediately reuse the
code to log into the real website. By contrast, in our scheme, even if the user visited
the login page of a phishing website, the phishing website cannot capture the secure

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 883

URL sent to the user via SMS, because the user enters the secure URL directly into
the URL bar, which is not under the control of the visited website.4

5. Security evaluation

5.1. Security assumptions

The security of WebCallerID relies on the following:

• Secure authentication inside cellular networks. We assume that cellular net-
works can authenticate their phones securely. In other words, we assume that it
would be difficult for an attacker to impersonate another user without possess-
ing the user’s cell phone. Moreover, we assume that no cell phone can spoof its
IP address and receive packets at the spoofed address from the OpenID server
inside the cellular network. Such spoofing is infeasible because of the encrypted
PPP sessions between the cell phone and the PPP-gateway. Moreover, since the
MAC address of each cell phone is assigned by a base station and is not spoofa-
ble, the PPP-gateway can look up the allocated IP address of the MAC address
and perform ingress-filtering.

• Uncompromised cell phones. We assume that cell phones are under the con-
trol of their users, and their software has not been compromised. Once a user
chooses to use his cell phone for Web authentication, the cell phone becomes a
physical access token to his accounts. Users already have experience in protect-
ing physical access tokens, such as bank cards, and such experience will help
them protect their cell phones. In fact, many cell phone users already take steps
to protect their phones from unauthorized use, due to the risk of personal infor-
mation disclosure and the cost of unauthorized use. Some phones use passwords
or biometrics for controlling access to restrictive functions (such as blocking
outgoing numbers) [2,13]. We would apply similar techniques for restricting
access to the Web authentication function.
Malware could be a potential problem. We do not specifically address this prob-
lem in this work, but it is a well-researched area. As cellular phones become
more powerful, we could apply techniques from malware defense on PCs. Vir-
tual machines can securely separate trusted programs from untrusted ones. For
example, pocket hypervisors [7] can provide virtualization services for mobile
computing platforms like cellular phones. A secure operating system running
on such a platform can run the browser in one virtual machine, run other user

4Typosquatting could pose a risk. If the user mistypes the domain name the URL, an attacker squatting
at the mistyped domain name could capture the URL, replace the mistyped domain name with the correct
domain name, and use it to log into the real website. However, this attack works only if the user mistypes
the domain name and accurately types the rest of the secure URL (because the rest of the URL serves as
a nonce to be verified by the identity server).

884 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

applications in separate virtual machines, and allow only the browser’s virtual
machine to contact the identity server in the cellular network. Other work on
securing cell phones from malware can be found in [4,6,15,41].

• Secure channel between the relying party and the browser. We assume that an
authentication assertion can be read only by the relying party. If the attacker is
passive, we can satisfy this assumption by using end-to-end encryption, such as
SSL/TLS. However, if the attacker is active, we would need mechanisms, such
as PKI, for preventing man-in-the-middle attacks.

5.2. Security benefits

Compared to password-based authentication, WebCallerID provides the following
benefits:

• Users no longer participate in security decisions. They do not have to remember
passwords. This not only simplifies users’ tasks but also avoids bad passwords.
Since users do not have to submit credentials, they cannot make security mis-
takes, such as falling victim to phishing attacks.

• Users no longer have to worry about rogue relying parties. Phishing websites
with login pages indistinguishable from the real relying party cannot trick users
into incorrectly authenticating to them. Users do not need to correctly identify a
site by its URL. In WebCallerID, a user’s credentials are created by his OpenID
provider and are tied both to a specific relying party and a nonce selected by
the relying party. A user may send his credentials to a malicious relying party;
however:

– If the malicious relying party simply creates a rogue site to collect authenti-
cation credentials from visitors in an offline phishing attack, it cannot replay
credentials to authenticate to a target relying party because the latter would
expect the credentials to contain a new nonce.

– If the malicious relying party engages in a man-in-the-middle attack, e.g.,
by tricking the user into visiting a deceptive URL, it still cannot replay the
credentials to authenticate to a target relying party, because the credentials
include the domain name of the target relying party.

– If the malicious relying party is a man-in-the-middle and can compromise
routing and DNS, we may defend against replay attacks as follows. The rely-
ing party includes a fingerprint of its public key in its authentication request
(Message 2 in Fig. 2). The relying party also gives this public key to the user
for establishing a session key (the user picks a session key, encrypts it with
the public key, and sends the ciphertext to the relying party) for encrypting
messages between the user and relying party. The OpenID server will include
this fingerprint in the authentication credentials (Message 6 in Fig. 2), which
the user’s browser relays to the relying party (Message 7 in Fig. 2). The rely-
ing party then checks the credentials for the fingerprint of its public key.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 885

If a malicious relying party attempting a man-in-the middle attack sends his
public key to the user instead, the OpenID server will create credentials in-
cluding the fingerprint of the malicious party’s public key, which will be re-
jected by the target relying party. On the other hand, if the malicious relying
party sends the target relying party’s public key to the user, the malicious
relying party will be unable to eavesdrop on or modify subsequent messages
between the user and the target relying party because the messages are en-
crypted by a session key that has been picked by the user and encrypted by
the public key.
Currently, SSL/TLS with properly signed certificates from a PKI is used to
prevent these kinds of man-in-the-middle attacks. However, it still relies on
the user’s ability to identify the correct URL of the site and judge that a
certificate is valid. The browser still provides a mechanism for the user to by-
pass this security by accepting invalid certificates. By contrast, our proposed
scheme frees the user from having to do any work to verify the identity of
the relying party or to understand certificate warnings, and prevents the user
from accepting invalid certificates.

Compared to physical token-based authentication, WebCallerID provides the ben-
efits of easy deployment, as cell phones are becoming more ubiquitous. Moreover,
WebCallerID can be integrated into existing Web authentication infrastructure as
long as the user possesses a data capable cell phone.

We implemented WebCallerID in the OpenID framework. WebCallerID solves a
vexing weakness in typical OpenID systems, i.e., how to authenticate to OpenID
providers securely? We leverage the cell phones as physical authentication tokens,
and leverage existing authentication in cellular networks to provide OpenID authen-
tication. Another advantage of WebCallerID is that relying parties can probe our
OpenID providers automatically. This is in contrast to typical OpenID systems in
which the user has to provide such information.

5.3. Multi-factor authentication

Web applications with greater security requirements, such as online banking, rely
on a second authentication factor along with password authentication. Many of these
systems face shortcomings because they are vulnerable to the same man-in-the-
middle attacks as passwords [34,35]. WebCallerID can function as one component
of a multi-factor authentication system, but is not vulnerable to these man-in-the-
middle attacks. It does not preclude other schemes, and is in fact complimentary
to other authentication schemes. It introduces a “something you have” component
to an authentication process that currently in practice mostly relies on “something
you know”. Furthermore, adding this authentication scheme presents no additional
work for users in the authentication process if the user can pass data packets via his
mobile device. With cellular data services becoming more ubiquitous, WebCallerID
provides a more secure alternative to password authentication, and a more usable
alternative to physical token-based authentication.

886 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

5.3.1. Strengthening WebCallerID with other factors
The threat model of WebCallerID (Section 5.1) assumes that the mobile device

running WebCallerID is accessible only to its legitimate owner. In other words, We-
bCellerID assumes that the owner delegates her authority to her mobile device. If
the owner worries that her mobile device may fall outside her control at times, she
could use other authentication factors to protect her mobile device and WebCallerID
(This is analogous to using passphrases for protecting private keys in the public key
authentication method in SSH). These factors could include text or graphical pass-
words, biometrics, etc. The authentication process using these factors could happen
either locally on the mobile device or remotely at the identity server. In the former
case, the device would require necessary software to authenticate the user and to
mediate access to the identity server. In the latter case, the device would need to
collect user credentials and forward them to the identity server. These factors would
strengthen WebCallerID by protecting it against unauthorized access to mobile de-
vices.

5.4. Privacy

WebCallerID protects the user’s identity by sending his directed identity to rely-
ing parties (Section 3.2). Directed identities are unique to each relying party, and
it would be infeasible for one relying party to derive the user’s directed identity at
another relying party or the user’s master identity, barring a brute force or a dictio-
nary attack on the master identity. Therefore, users should choose master identities
that withstand these attacks. For example, users’ phone numbers are a bad choice for
their master identities, because they have insufficient entropy. Alternatively, since
users need not remember their master identities, our OpenID server could assign
strong master identities to users.

Even though a rogue website cannot steal the user’s master identity, the website
could compromise the user’s privacy if the user enters his confidential information
later in the Web session. This is out of the scope of this paper.

Generally, using a third-party identity service instead of authenticating to each
website directly collects a user’s authentication records at one location, the identity
server. As such, the user gives up the privacy of his authentication records at the
identity server. However, when the user accesses the Internet via a cellular network,
the cellular network already knows the websites that the user visits, so the user gives
up no additional privacy when he uses the identity server provided by the cellular
network.

5.5. Deployment

Web users. WebCallerID, like OpenID, requires no special capabilities in the user’s
browser or extra software on the client machine. It only requires that the user can
access a cellular network, either directly from his browser or by serving as an inter-
mediary between the browser and his cell phone (Section 4.4).

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 887

Relying parties. Relying parties, who are consumers of authentication assertions,
need to trust the cellular networks that run OpenID identity servers. Given the mod-
erate number of major cellular providers, we think that establishing this trust is ad-
ministratively feasible.

Cellular networks. By contrast, cellular networks do not need to trust relying par-
ties. As described in Section 5.2, an authentication assertion provided by the cellular
network for one relying party is not reusable at another relying party. Technically
speaking, a cellular network need no prior knowledge about a relying party before
providing authentication assertions for the relying party.5 There are apparent incen-
tives for cellular networks to provide this authentication service, such as increased
revenue from more data usage and more subscribers. On the other hand, cellular net-
works also need to assess risks associated with this service, such as legal liability
and inadvertent leak of users’ or networks’ private information to relying parties.

6. Performance evaluation

We evaluated the performance of WebCallerID. On the server, we measured the
throughput of authentication responses; on the client, we measured the duration of
authentication sessions.

Since our goal is to demonstrate the feasibility of WebCallerID rather than devel-
oping a production system, we compared the performance of WebCallerID to that of
popular Web authentication schemes running on the same stock desktop PC in our
lab. In a production system where WebCallerID is running on powerful servers, we
expect its performance to be far better.

6.1. Setup

Our test machine ran an Ubuntu 9.04 64-bit system, with an Intel Core 2 Duo
1.86 GHz CPU, 3 GB DDR3 RAM, and 1 GBps ethernet. We tested three authenti-
cation systems on this machine:

• WebCallerID identity server.
• Apache (2.2.11) HTTP Server’s basic password authentication.
• Django Web framework (1.0.2)’s user password authentication, served through

Apache’s mod_python (3.3.1).

The Apache HTTP Server [1] is the most popular web server [24] deployed to-
day. It provides a basic password authentication mechanism where authentication
credentials are provided to the server in an HTTP request. The server then verifies
the credentials against entries in a password file.

5Due to business and legal concerns, the cellular network might wish to enter into an agreement with
each relying party.

888 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

Django [11] is a popular web application framework for the Python language with
tens of thousands of users [17]. As part of the framework, it provides a user authen-
tication component. Web applications developed with Django allow users to submit
credentials to authenticate themselves to the web application. Credentials are then
checked by the Django authentication module against user records in a database.

A user authentication for WebCallerID identity server consists of two HTTP re-
quests for OpenID discovery and one HTTP request for the authentication request.
Password authentication for Apache and Django requires only a single HTTP request
to submit the authentication credentials to the server. For each of these authentication
systems, we preloaded 10,000 user profiles and measured its throughput separately.

6.2. Authentication server

We tested the performance of the WebCallerID identity server as it responded to
authentication requests from relying parties. Using Apache JMeter [21], we simu-
lated a workload of 10,000 client requests, with 1, 10 and 100 concurrent users on a
1 GBps local network.

Table 1 compares the authentication throughput of the WebCallerID identity server
to that of the Apache basic password authentication and that of the Django Web
framework’s user password authentication. Among the three servers, Apache has the
best throughput, which is 5.3 times the throughput of WebCallerID. This is mainly
because the WebCallerID identity server serves three HTTP requests during one au-
thentication session, while Apache serves only one HTTP request. Moreover, Apache
is written in C while we implemented the WebCallerID identity server in python.
Since Django is also written in python, comparing WebCallerID to Django is more
illustrating. The Django authentication process also only takes one HTTP request,
but the additional overhead of the extra work done in the framework slows it down.6

Table 1 shows that the throughput of WebCallerID is 2.3 times that of Django.

Table 1

Comparison of authentication server throughput

Apache Django WebCallerID

HTTP requests/authentication 1 1 3

Authentications/second 405 33 77

6We investigated the sources for Django’s slow performance. We extracted the authentication opera-
tion of Django and WebCallerID and tested them in isolation. For one authentication operation within the
server, Django spends 0.08 ms in the python MySQLdb query for user credentials, while WebCallerID
spends 0.14 ms in the python-LDAP query for user credentials. However, Django’s python MySQLdb
query accounts for only 9.6% of its execution time (Django spends the rest of its execution time in
its object-relational mapper, etc.), while WebCallerID’s python-LDAP query accounts for 83% of its
execution time. Therefore, overall one Django user authentication takes about 5 times longer than one
WebCallerID user authentication.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 889

6.3. Client

We wrote a client script to measure the duration of one WebCallerID authentica-
tion. We chose not to measure this duration directly in the browser because it is more
precisely to time our script and we wish to exclude other factors, such as parsing and
rendering, in the browser that may affect the timing measurement.

Figure 5 shows the duration of one authentication session with 10 concurrent
users. Figure 6 shows the average duration of one authentication session with 1, 10
and 100 concurrent users. Again, although the duration of the Apache basic authen-
tication is the shortest, the duration of the WebCallerID authentication is 2.49 times
shorter than the Django user password authentication. The average duration of a

Fig. 5. Duration of client authentication with 10 concurrent users.

Fig. 6. Average duration of client authentication with 1, 10 and 100 concurrent users.

890 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

WebCallerID authentication is 50, 118 and 1166 ms for 1, 10 and 100 concurrent
users, respectively, which imposes a small delay in the authentication process. By
comparison, it takes a typical users at least several seconds to enter a password dur-
ing password-based authentication.

7. Related work

The ideas behind Kerberos [25] are found in many of today’s Web authentication
services, such as OpenID [26] and CardSpace [5]. A Kerberos server acts as a trusted
party to verify a user’s identity and relays this claimed identity to other parties with
a secure protocol. We choose the OpenID framework to implement a prototype of
our authentication scheme, because of the advantage that this framework requires no
modification to a user’s system software or Web browser. We could implement our
scheme in other identity systems, such as Microsoft’s CardSpace. A disadvantage
of CardSpace is that it requires an operating system software client currently only
available on the Windows OS. Our implementation of directed identity borrows its
idea from PwdHash [30].

Authentication based on physical tokens overcomes some intrinsic problems with
password authentication. RSA SecurID is a typical example [32]. However, physical
tokens often face deployment obstacles, due to the cost and inconvenience of carry-
ing the tokens. By contrast, cell phones are becoming ubiquitous. Moreover, most
physical tokens either require additional software (device drivers or special applica-
tions) or require the user to relay data between them and the browser. By contrast, our
scheme requires no extra software on the user’s machine and no participation from
the user during authentication when his browser can access a cellular data network.

When physical tokens are unavailable, researchers have proposed alternatives to
standard password authentication, such as graphical passwords [9,20,39], secrets de-
rived from “personal entropy” [12], and human-executable computations [18]. They
authenticate users with a challenge, whose response the user can compute. While
these solutions break simple phishing attacks that steal passwords for replay, they
are still vulnerable to man-in-the-middle attacks. Also unlike our system, they re-
quire users to participate actively in the authentication. Experience shows that it is
difficult to design secure schemes that require humans to participate in a challenge
response protocol [14].

Several systems use a mobile phone to aid authentication. One class of solutions is
designed to protect against keyloggers on untrustworthy clients, such as an Internet
kiosk [19,23,40]. They require a separate trusted system to act as a secure proxy. The
SMS channel of the mobile phone serves as an out-of-band traffic channel via which
the user can obtain or submit secret information. These systems defend against a
different threat from our authentication scheme and require a user to participate in
security tasks with the cell phone for authentication.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 891

Another class uses an external trusted system to provide mutual authentication of
the user and the website. These systems use the mobile phone to store secrets and
verify the identity of the remote site [16,22,27]. Storing the user’s secrets on the mo-
bile phone prevents the users from inadvertently disclosing them in a phishing attack,
but still allows for user-friendly secure authentication when the phone can commu-
nicate with the browser. However, it requires browser modifications and additional
software.

Wangensteen et al. and Van Thanh et al. use secrets stored on the SIM card itself
as authentication credentials, and also leverage the authentication of the SIM for a
single sign on system [36–38]. Because they rely on the SIM as part of the trusted
platform, their scheme does not work on networks that do not use SIM cards. Also, it
either needs additional Java software to run directly on the mobile device or requires
the user to participate in the authentication process via SMS. Deploying additional
software to a heterogeneous set of devices can be difficult for a service provider.
By contrast, our approach requires no additional software beyond a basic browser,
which is becoming standard on modern cell phones. Additionally, our approach does
not require the user to participate in the authentication process when the browser can
access the cellular network directly, which is also becoming common.

As cell phones become more ubiquitous and powerful, banks have introduced
banking services using cell phones. For example, PayPal Mobile [28] allows users to
send payments using SMS. However, due to the inherent limitations of SMS, it can-
not support the rich, interactive functions that we enjoy in Web applications. SMS
has also been used as a secondary factor for strengthening Web authentication, but
it requires substantial user involvement. Banks have also deployed Internet banking
services for cell phones, which users access via either a browser or a special appli-
cation [3]. However, these services use the cellular network simply as an Internet
service provider, and fail to leverage the built-in authentication in the cellular net-
work for enhancing their security.

8. Conclusion

We designed WebCallerID, a Web authentication scheme that leverages the au-
thentication infrastructure inside cellular networks. WebCallerID uses cell phones
as physical tokens and uses cellular networks as trusted identity providers. Using
this scheme, a website authenticates a user with the help of an identity server inside
the cellular network. Since the authentication procedure is transparent to the user and
requires no user involvement, it prevents users from making security mistakes. More-
over, WebCallerID prevents rogue websites from replaying authentication assertions
or stealing user’s identities. Our prototype implementation shows that WebCallerID
not only seamlessly integrates into OpenID-capable authentication, but also prevents
phishing problems in OpenID and simplifies user participation in OpenID authenti-
cation.

892 F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication

Acknowledgments

This work was partially supported by the National Science Foundation through
grants CNS 0644450 and 1018964. We wish to thank Jean Bolot, Mukund Seshadri
and Hui Zang for their insightful suggestions.

References

[1] Apache http server project, http://httpd.apache.org/.
[2] Apple iPhone user guide, http://manuals.info.apple.com/en/iPhone_User_Guide.pdf.
[3] Bank of America mobile banking, http://www.bankofamerica.com/onlinebanking/index.cfm?

template=mobile_banking.
[4] A. Bose, X. Hu, K.G. Shin and T. Park, Behavioral detection of malware on mobile handsets, in:

MobiSys’08: Proceeding of the 6th International Conference on Mobile Systems, Applications, and
Services, New York, NY, USA, 2008, ACM, pp. 225–238.

[5] D. Chappell, CardSpace, 2006, available at: http://msdn2.microsoft.com/en-us/library/aa480189.
aspx.

[6] J. Cheng, S.H. Wong, H. Yang and S. Lu, Smartsiren: virus detection and alert for smartphones, in:
MobiSys’07: Proceedings of the 5th International Conference on Mobile Systems, Applications and
Services, New York, NY, USA, 2007, ACM, pp. 258–271.

[7] L. Cox and P. Chen, Pocket hypervisors: opportunities and challenges, in: Eighth IEEE Workshop on
Mobile Computing Systems and Applications, 2007, HotMobile 2007, March 8–9, 2007, pp. 46–50.

[8] C. de Laat, G. Gross, L. Gommans, J. Volbrecht and D. Spence, Generic AAA Architecture, August
2000, RFC 2903.

[9] R. Dhamija and A. Perrig, Déjà Vu: a user study using images for authentication, in: Proceedings of
the 9th USENIX Security Symposium, 2000.

[10] R. Dhamija, J.D. Tygar and M. Hearst, Why phishing works, in: CHI’06: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, New York, NY, USA, 2006, ACM, pp. 581–
590.

[11] Django, http://www.djangoproject.com/.
[12] C. Ellison, C. Hall, R. Milbert and B. Schneier, Protecting secret keys with personal entropy, Future

Generation Computer Systems 16(4) (2000), 311–318.
[13] Fujitsu f902i, http://www.fmworld.net/product/phone/f902i/.
[14] P. Golle and D. Wagner, Cryptanalysis of a cognitive authentication scheme (extended abstract), in:

SP’07: Proceedings of the 2007 IEEE Symposium on Security and Privacy, 2007, pp. 66–70.
[15] C. Guo, H.J. Wang and W. Zhu, Smart-phone attacks and defenses, in: Proceedings of the Third

Workshop on Hot Topics in Networks: HotNets III, November 2004.
[16] S. Hallsteinsen, I. Jorstad and D.V. Thanh, Using the mobile phone as a security token for unified

authentication, in: ICSNC’07: Proceedings of the Second International Conference on Systems and
Networks Communications, IEEE Computer Society, 2007, p. 68.

[17] A. Holovaty and J. Kaplan-Moss, The Django Book, 2009.
[18] N.J. Hopper and M. Blum, Secure human identification protocols, in: 7th International Conference

on the Theory and Application of Cryptology and Information Security, Lecture Notes in Computer
Science, Vol. 2248, 2001, pp. 52–66.

[19] R.C. Jammalamadaka, T.W. van der Horst, S. Mehrotra, K.E. Seamons and N. Venkasubrama-
nian, Delegate: a proxy based architecture for secure website access from an untrusted machine,
in: ACSAC’06: Proceedings of the 22nd Annual Computer Security Applications Conference on
Annual Computer Security Applications Conference, 2006, pp. 57–66.

F. Hsu et al. / WebCallerID: Leveraging cellular networks for Web authentication 893

[20] I. Jermyn, A. Mayer, F. Monrose, M.K. Reiter and A.D. Rubin, The design and analysis of graphical
passwords, in: Proceedings of the 8th USENIX Security Symposium, 1999.

[21] JMeter, http://jakarta.apache.org/jmeter/.
[22] M. Mannan and P.C. van Oorschot, Using a personal device to strengthen password authentication

from an untrusted computer, in: Financial Cryptography and Data Security (FC’07), 2007.
[23] R. McMillan, Mobile phones help secure online banking, 2007, available at: http://www.pcworld.

com/article/id,137057-c,onlinesecurity/article.html.
[24] Netcraft web server survey, http://news.netcraft.com/archives/web_server_survey.html.
[25] B.C. Neuman and T. Ts’o, Kerberos: an authentication service for computer networks, IEEE Com-

munications Magazine 32(9) (1994), 33–38.
[26] OpenID, http://openid.net.
[27] B. Parno, C. Kuo and A. Perrig, Phoolproof phishing prevention, in: Financial Cryptography, 2006,

pp. 1–19.
[28] PayPal Mobile, https://www.paypal.com/us/cgi-bin/webscr?cmd=xpt/cps/mobile/MobileOverview-

outside.
[29] Python OpenID library, http://openidenabled.com/python-openid/.
[30] B. Ross, C. Jackson, N. Miyake, D. Boneh and J.C. Mitchell, Stronger password authentication

using browser extensions, in: Proceedings of the 14th Usenix Security Symposium, 2005.
[31] RSA mobile, http://www.rsa.com/press_release.aspx?id=1370.
[32] RSA SecurID, http://www.rsa.com/node.aspx?id=1156.
[33] J. Saltzer and M. Schroeder, The protection of information in computer systems, Proceedings of the

IEEE 63(9) (1975), 1278–1308.
[34] S.E. Schechter, R. Dhamija, A. Ozment and I. Fischer, The emperor’s new security indicators, in:

SP’07: Proceedings of the 2007 IEEE Symposium on Security and Privacy, IEEE Computer Society,
2007, pp. 51–65.

[35] B. Schneier, Two-factor authentication: too little, too late, Commun. ACM 48(4) (2005), 136.
[36] D. van Thanh, T. Jonvik, B. Feng, D. van Thuan and I. Jorstad, Simple strong authentication for

internet applications using mobile phones, in: Global Telecommunications Conference, 2008, IEEE
GLOBECOM 2008, November 30–December 4, 2008, pp. 1–5.

[37] A. Wangensteen, L. Lunde, I. Jørstad and T. van Do, Secured enterprise access with strong SIM
authentication, in: EDOC, 2006, pp. 463–466.

[38] A. Wangensteen, L. Lunde, I. Jorstad and D. van Thanh, A generic authentication system based
on SIM, in: ICISP’06: Proceedings of the International Conference on Internet Surveillance and
Protection, IEEE Computer Society, 2006, p. 24.

[39] D. Weinshall, Cognitive authentication schemes safe against spyware (short paper), in: SP’06: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy (S&P’06), 2006, pp. 295–300.

[40] M. Wu, S. Garfinkel and R. Miller, Secure web authentication with mobile phones, in: DIMACS
Workshop on Usable Privacy and Security Software, 2004.

[41] L. Xie, X. Zhang, A. Chaugule, T. Jaeger and S. Zhu, Designing system-level defenses against
cellphone malware, in: SRDS’09: Proceedings of the 2009 28th IEEE International Symposium on
Reliable Distributed Systems, Washington, DC, USA, 2009, IEEE Computer Society, pp. 83–90.

[42] K.-P. Yee, Phishing and OpenID: bookmarks to the rescue?, available at: http://usablesecurity.com/
2007/01/20/phishing-and-openid/.

Copyright of Journal of Computer Security is the property of IOS Press and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

