

A Two-Pronged Defense against Adversarial Examples

Dongyu Meng

ShanghaiTech University, China

Hao Chen

University of California, Davis, USA

Neural networks in real-life applications

Neural networks as classifier

Adversarial examples

Examples carefully crafted to

- look like normal examples
- cause misclassification

p(x is gibbon) = 0.99

Х

Attacks

$$x' = x + \epsilon \cdot sign(\nabla_x Loss(x, l_x))$$

Fast gradient sign method(FGSM)

[Goodfellow, 2015]

Carlini's attack	minimize	$\ \delta\ _2 + c \cdot f(x+\delta)$	-			
Iterative gradient	such that	$x + \delta \in [0, 1]^n$	confidence			
[Kurakin, 2016]	$f(x') = \max(Z(x')_{l_x} - \max\{Z(x')_i : i \neq l_x\}, -\kappa)$					

Deeptool [Moosavi-Dezfooli, 2015]

....

Defenses

target specific attack modify classifier

Adversarial training [Goodfellow, 2015]	Yes	Yes
Defensive distillation [Papernot, 2016]		Yes
Detecting specific attacks [Metzen, 2017]	Yes	

....

Desirable properties

Does not modify target classifier.

- Can be deployed more easily as an add-on.

Does not rely on attack-specific properties.

- Generalizes to unknown attacks.

Possible inputs take up dense sample space. But inputs we care about lie on a low dimensional **manifold**.

Our hypothesis for adversarial examples

Some adversarial examples are **far away** from the manifold. Classifiers are not trained to work on these inputs.

Our hypothesis for adversarial examples

Other adversarial example are **close** to the manifold boundary where the classifier **generalizes poorly**.

Sanitize your inputs.

Our solution

Detector: Decides if the example is far from the manifold.

Reformer: Draws the example towards the manifold.

Autoencoder

- Neural nets.
- Learn to copy input to output.
- Trained with constraints.

Reconstruction error:

$$\|x - ae(x)\|_2$$

Autoencoder

Autoencoders

- learn to map inputs towards manifold.
- approximate input-manifold distance with reconstruction error.

Train autoencoders on normal examples only as building blocks.

Reformer

x'

MagNet returns Q as final classification result.

Threat model

target classifier

defense

blackbox defense

whitebox defense

Blackbox defense on MNIST dataset

accuracy on adversarial examples

Attack	Norm	Parameter	No Defense	With Defense
FGSM	L^{∞}	$\epsilon = 0.005$	96.8%	100.0%
FGSM	L^{∞}	$\epsilon = 0.010$	91.1%	100.0%
Iterative	L^{∞}	$\epsilon = 0.005$	95.2%	100.0%
Iterative	L^{∞}	$\epsilon = 0.010$	72.0%	100.0%
Iterative	L^2	$\epsilon = 0.5$	86.7%	99.2%
Iterative	L^2	$\epsilon = 1.0$	76.6%	100.0%
Deepfool	L^{∞}		19.1%	99.4%
Carlini	L^2		0.0%	99.5%
Carlini	L^{∞}		0.0%	99.8%
Carlini	L^0		0.0%	92.0%

Blackbox defense on CIFAR-10 dataset

accuracy on adversarial examples

Attack	Norm	Parameter	No Defense	With Defense
FGSM	L^{∞}	$\epsilon = 0.025$	46.0%	99.9%
FGSM	L^{∞}	$\epsilon = 0.050$	40.5%	100.0%
Iterative	L^{∞}	$\epsilon = 0.010$	28.6%	96.0%
Iterative	L^{∞}	$\epsilon = 0.025$	11.1%	99.9%
Iterative	L^2	$\epsilon = 0.25$	18.4%	76.3%
Iterative	L^2	$\epsilon = 0.50$	6.6%	83.3%
Deepfool	L^{∞}		4.5%	93.4%
Carlini	L^2		0.0%	93.7%
Carlini	L^{∞}		0.0%	83.0%
Carlini	L^0		0.0%	77.5%

Detector vs. reformer

Detector and reformer **complement each other**.

Whitebox defense is not practical

To defeat whitebox attacker, defender has to either

- make it impossible for attacker to find adversarial examples,
- or create a **perfect** classification network.

knows the parameters of...

classifier

graybox defense

whitebox defense

defense

- Attacker knows possible defenses.
- Exact defense is only known at run time.

Defense strategy

- Train diverse defenses.
- Randomly pick one for each session.

Train diverse defenses

With MagNet, this means training diverse autoencoders.

Our Method:

Train *n* autoencoders at the same time.

Minimize
$$L(x) = \sum_{i=1}^{n} MSE(x, ae_i(x)) - \alpha \sum_{i=1}^{n} MSE(ae_i(x), \frac{1}{n} \sum_{j=1}^{n} ae_j(x))$$

autoencoder diversity

Graybox classification accuracy

generate attack on --->

defend with	A	В	С	D	Е	F	G	Н
A	0.0	92.8	92.5	93.1	91.8	91.8	92.5	93.6
В	92.1	0.0	92.0	92.5	91.4	92.5	91.3	92.5
С	93.2	93.8	0.0	92.8	93.3	94.1	92.7	93.6
D	92.8	92.2	91.3	0.0	91.7	92.8	91.2	93.9
E	93.3	94.0	93.4	93.2	0.0	93.4	91.0	92.8
F	92.8	93.1	93.2	93.6	92.2	0.0	92.8	93.8
G	92.5	93.1	92.0	92.2	90.5	93.5	0.1	93.4
Н	92.3	92.0	91.8	92.6	91.4	92.3	92.4	0.0
Random	81.1	81.4	80.8	81.3	80.3	81.3	80.5	81.7

Limitations

The effectiveness of MagNet depends on assumptions that

- detector and reformer functions exist.
- we can approximate them with autoencoders.

We show empirically that these assumptions are likely correct.

Conclusion

We propose MagNet framework:

- **Detector** detects examples far from the manifold
- **Reformer** moves examples closer to the manifold

Instead of whitebox model, we advocate **graybox** model, where security rests on model diversity.

Thanks & Questions?

Find more about MagNet:

- https://arxiv.org/abs/1705.09064
- <u>https://github.com/Trevillie/MagNet</u>
- <u>mengdy.me</u>

Paper Demo code Author homepage

