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Abstract - E-mail reading is one of the most important commercial

applications of text-to-speech synthesis (T'TS). Yet e-mail is one of the
most difficult types of text to deal with, since it is both highly structured
— frequently containing elements such as tables, signatures, “artwork”
and quotations from previous messages; and at the same time often lacks
any reliable unambiguous indicators for such structure. This paper de-
scribes Emu, an e-mail mark-up and rendering program that preprocesses
e-mail for TTS. We discuss algorithms for detecting regions of interest in
the input text; for “normalizing” the input; and for actually rendering
the input through the Bell Labs TTS system.

INTRODUCTION

Audio rendering of e-mail is one of the most important commercial ap-
plications of text-to-speech synthesis (T'TS), and is a central component of
multimedia messaging. Yet e-mail is one of the most difficult types of text to
deal with, since it is both highly structured — frequently containing elements
such as tables, signatures, “artwork” and quotations from previous messages;
and at the same time often lacks any reliable unambiguous indicators for
such structure. This paper describes Emu, an e-mail mark-up and rendering
program that preprocesses e-mail for TTS.

It is useful to draw an analogy between the process of converting an elec-
tronic document into a printed rendering of that document, and the process
of converting a document into speech — what T. V. Raman [1] terms an au-
dio rendering. Consider first a printed document: the printed version of this
paper was produced by first preparing a document with various structural
properties marked up using ATEX commands; second a device independent
rendering was computed from which a variety of different output formats can
be derived; and third, the device-independent representation was converted
into Postscript. This final form can then be displayed or printed on any
postscript device.

The model assumed by Emu is similar. An e-mail message is first parsed
into different regions (headers, quoted material, signature blocks ...), and
these regions are marked with tags that indicate the regions’ properties. Sec-
ond a normalization of the text is computed. The normalization performed



in this second phase largely involves the expansion of unusual “words”, in-
cluding “acronyms” (WinNT), as well as e-mail addresses, URL’s and other
non-standard material. The output of the normalization phase is “device in-
dependent” in the sense that the normalizations performed produce text that
is appropriate as input to any (English) TTS system. Finally, in the third
phase, the marked-up and normalized text is rendered by converting it into
text interspersed with control sequences for the Bell Labs American English
TTS system [2].

ALGORITHMS FOR TEXT-REGION DETECTION

The first phase of analysis performed by Emu is the detection and markup
of significant portions of the input text. Emu assumes that the input text is
blocked into regions, where a region is defined to be a block of contiguous lines
separated from other regions by either: (i) one or more blank lines; or (ii) a
clearly defined separator, such as a forwarded message delimiter. Each region
is assumed to be of the same type. So, for example, a region may be tagged
as plain text (PTEXT) or as a table (TABLE), but not both. This uniformity
assumption, while not absolutely correct, is nonetheless correct often enough
to be useful. Note that if one were not to make this assumption, analyzing the
input text would become significantly more computationally expensive, since
one would have to consider every block of contiguous lines to be a potential
region.

In some cases the detection of a region is straightforward. For example,
it is relatively easy to detect e-mail headers since they are readily identifi-
able by the existence of certain line-initial tags, such as From:, To:, Subject:
and so forth. Detection of other region types requires more sophisticated
analysis. Emu distinguishes among eight basic text-region types: plain text
(PTEXT), “artwork” (GRAPHIC), quoted regions (QUOTED), itemized lists
(ITEM), signatures (SIG), headlines (HEADL), addresses (ADDRESS) and
tables (TABLE).!

The initial detection of these regions starts with the following intuition:
for many types of regions, one does not need to be able to see the text clearly
in order to decide that the region is of a particular type. So, imagine that one
were looking at a page from a distance, so that it is impossible to read what
is on the page. Nonetheless one could clearly detect tables, many signatures,
addresses, headlines and graphics by the mere appearance of the text. Each
of these region types has a fairly reliable distribution of real text material
and whitespace. So headlines tend to be short regions of text where the
material is centered on the page. Tables and many signatures tend to have
the text arranged in columns with the columns separated by a fair amount
of whitespace. Addresses tend to consist of a series of short lines. Finally

IThis particular 8-way classification was suggested to us by David Yarowsky, who also
kindly provided us with some initial hand-tagged training data.



graphics tend to have a lot of whitespace and only sparsely distributed non-
whitespace material. Plain text, quoted text and itemized list elements are
of course more difficult to detect by such coarse means, and more special-
purpose techniques are needed in these cases. For example, quoted regions
are frequently marked with one of a handful of distinguished characters (often
>’) at the beginning of each line.

The basic intuition outlined above is implemented as follows. First each
character in the input is deterministically mapped to one of a set of prede-
fined character classes. The character classes currently used include: SPACE,
DIGIT, ALPHABETIC, ‘>’ and ‘’ (common indicators of quoted messages),
and PUNCTUATION. Second, the individual character-class-encoded lines of
each block are matched against a set of eight character class pentagram mod-
els, one for each text region type. These models are trained on 5,590 lines of
hand-tagged netnews text. Applied to each line, the models give a measure,
for each text region type, of how strongly the given line matches that par-
ticular type. Formally, the models are implemented as weighted finite-state
acceptors — WFSA’s [3], and each of the models is intersected with the input
line, itself represented as an unweighted acceptor. This gives us a weight for
each of the class assignments for each line. Of course, what we want is a
unique classification for each line, and a uniform classification for the block.
The third phase of the analysis accomplishes this. The block is represented as
a weighted finite-state automaton with n + 1 states, where n is the number of
lines in the block. There are eight arcs between each pair of adjacent states i
and ¢ + 1, each labeled with one of the eight character classes, and weighted
according to the pentagram score for the ith line for that class. An example
of such an automaton is given in Figure 1. This automaton — henceforth B
for block automaton — is then combined with a set of finite-state acceptors
— G — implementing grammatical restrictions, such as the restriction that
all elements of a block must be of the same type. Also implemented are some
length restrictions: for example, ADDRESS fields are rarely shorter than two
lines; and SIG fields are rarely longer than ten lines. The analysis A of the
block is obtained by intersecting B with G, and then computing the lowest
cost path. Formally: A = BestPath(B N G).

The performance of the algorithm just described was measured on a test
corpus of 2543 lines of netnews text. Overall performance, counting by cor-
rectly classified lines (ignoring blanks), had an error rate of 7%. The largest
class of errors involves SIG fields that are misclassified as PTEXT. As we shall
see momentarily, potential SIG fields — including material near the end of
the message initially classified as PTEXT — undergo a more rigorous analysis
that corrects some of the errors.

Once the classification phase is complete, the tagged blocks are parsed into
a document tree, with the node dominating each block tagged with the class
computed for that block: the model of document structure assumed by Emu
follows closely that of SGML [4].

Two types of blocks then receive further treatment: QUOTED regions
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Figure 1: Block automaton and its associated SIG region. Arcs exiting state ¢
correspond to input line 7.
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Figure 2: A block with two connected components.

are recursively subjected to the classification and parsing algorithm just de-
scribed; and potential signature blocks undergo the finer-grained analysis
described next. The signature block analysis starts with a two-dimensional
geometrical analysis that attempts to find connected components. For exam-
ple, the signature block in Figure 2 consists of two connected components,
corresponding to the two columns. The geometrical analysis yields a set of
reading blocks corresponding to the discovered connected components: in gen-
eral, it is assumed that when reading the text in the signature, elements that
are part of the same reading block belong more naturally together than ele-
ments in different reading blocks. But within a reading block there may be
several functional blocks. For example, in Figure 2, the righthand reading
block contains an e-mail address, some WWW contact information, a phone
number and a fax number. Each of these constitutes a separate functional
block. Functional blocks are detected using language analysis of the text ma-
terial within each reading block. If the signature-block analysis algorithms
detect certain required components — e-mail addresses, web addresses, phone
or fax numbers, names or postal addresses — then the algorithms proceed



with the complete analysis and mark the signature region as “verified”. Oth-
erwise they mark the region as unverified and return it to the parsing phase
of Emu. Emu will then revert the region to its original analysis, or if it was
originally assigned to SIG, it will be reverted to PTEXT. Further details of
the signature block analysis algorithms can be found in [5].

DEVICE-INDEPENDENT RENDERING

The function of Emu’s device-independent rendering phase is to “normal-
ize” various elements in the marked up document to improve the final ren-
dering into speech. Among the functions that this phase performs are:

e Detect and mark “separator” lines, such as the “--” commonly found

at the beginning of SIG fields.
e Expand [Rr]e: in the Subject: line into regarding.

e Detect various conventions for marking emphasis: conventions include
capitalization, and delimiting the word with asterisks ( *require*). Em-
phatic words are marked with the tag <emph>.

e Expand emoticons (smileys) into words.

e Decide whether capitalized words should be read as words (LOS AN-
GELES, UNESCO) or as sequences of letters (CIA, WABC).

e Expand electronic addresses, pathnames, and URL’s appropriately.

e Expand non-conventional words such as WinNT into appropriate ren-
derings.

For reasons of space, we cannot describe how all of these types of analysis
are performed. Instead we describe the handling of one problem, namely the
treatment of capitalized words. We use a simple, but surprisingly effective
algorithm to determine whether or not to read a capitalized word as a word,
or as a sequence of letters:

o If the capitalized sequence is longer than 5 letters, read it as a word.

o If the capitalized sequence is 5 letters or shorter, check the word against
a dictionary of known words of 5 letters or shorter. If it is in this
dictionary read it as a word. Otherwise read it as a sequence of letters.

The current dictionary, derived from words in the 1994 Associated Press (AP)
newswire, 5 letters or shorter, contains about 11,000 entries. For words longer
than five letters, for example, the algorithm is correct over 99% of the time,
as measured on the January 1994 AP.

Naturally, such disambiguation cannot always reliably be done in a context-
independent fashion: one cannot tell whether ADA should be read as a word



(i.e., the name Ada) or as a sequence of letters (i.e., as an abbreviation for
the American Dental Association), without considering the context in which
the word occurs. Given time, disambiguation methods discussed in [6] could
be brought to bear on this problem. But as a first-pass model, the present
one is quite effective.

AUDIO RENDERING

Audio rendering is the phase in which Emu performs its final formatting
of the input text, and passes it off to the TTS system for conversion into
speech. As noted above, the marked-up and normalized text is rendered
by converting it into text interspersed with controls for the Bell Labs TTS
system. The most important function of the controls in this application are
to change the voice used by the synthesizer as a means of indicating the
document structure. Thus, when the system renders an embedded quotation,
for example, it changes to a different voice, staying in that voice until the
end of the quotation, at which point it reverts to the previously used voice.
(The user is also explicitly informed that the system has entered a new level
of structure. For example, by default a top-level quoted message will result in
the system informing the user: “this is a level 1 quoted message”.) For some
types of text element Emu does little more than inform the user that there
is a region of that type present. For a GRAPHIC, for example, Emu informs
the listener that “there is a region of non-text of type ascii-graphic here.”

A demo example showing the behavior of Emu can be found at the following
URL: http://www.bell-labs.com/project/tts/emu.html.
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