
Quantifying the Effects of Removing Permissions from Android
Applications

Kristen Kennedy, Eric Gustafson, Hao Chen
University of California, Davis

Abstract

With the growing popularity of Android
smart phones, it is increasingly important to
ensure the security of sensitive user informa-
tion. A recent study found that approximately
26% of Android applications in Google Play
can access personal data, such as contacts
and email, and 42 percent, GPS location
data [6]. While Android is known for giving
the user control, it falls short when it comes
to enabling and disabling the permissions
on applications. Currently, the user is given
the option to either give the application ev-
ery permission it desires or not install it.
While researchers have proposed approaches
for allowing users to modify the permissions
granted to applications, it is unclear how
removing permissions would affect the be-
havior of current applications. At present,
developers expect all requested permissions
to be granted.
In this paper, we take the first step to quan-

tify the impact of enabling users to statically
remove permissions on Android applications
post-installation. We developed Pyandrazzi, a
system for evaluating the effect of removing
individual permissions from applications. Us-
ing Pyandrazzi, we evaluated how removing
seven common permissions affect a set of
randomly selected applications that request
them. We found that approximately 5.8% of
the 700 applications we tested crash after a
permission is removed and investigated how

the lack of certain permissions are handled
more gracefully than others. Our results will
help users make more informed decisions
when removing permissions and help devel-
opers make their applications more robust to
permission revocation.

Index Terms

Android, Mobile, Permission, Apps.

1. Introduction

Android is by far the most popular smart-
phone operating system at the time of this
writing. With around 75% of the global smart-
phone market [10], its application ecosystem
has grown along with it. According to a recent
Google press release, Google Play now has
around 700,000 applications [11]. Unlike the
Apple iOS ecosystem whose applications are
centrally verified before becoming available,
Android applications are more lightly vetted.
This puts more responsibility on the user to
make the important decision of which appli-
cations they trust. The permissions architec-
ture employed by Android, however, makes
these trust decisions more difficult.

1.1. Mobile Device Permission Mod-
els

In the current implementation, application
developers are responsible for defining the

set of permissions their application asks for
independent of what their application’s code
actually uses [4]. The list is presented to
the user at install-time whether installing an
application obtained through the Google Play
market or elsewhere. This list contains the
canonical names given to each permission
object, but provides little context as to what
the permission is being used for. Users have
no choice but to accept the permissions list
as presented to them, or not install the appli-
cation.
While all smartphone applications are sus-

ceptible to being over permissioned, Apple's
iOS and Blackberry's OS both give the user
the ability to revoke an applications per-
missions. iOS uses a "dynamic" permissions
model; the user is prompted once per ap-
plication to use phone features such as the
GPS receiver. The user then has the option of
changing their decision through the system's
settings menu.
Blackberry OS uses a "static" approach

similar to that of Android. Application de-
velopers declare the set of permissions they
would like their program to have, and this list
is presented to the user at installation. How-
ever, unlike Android, the user has the option
to edit the list and revoke any permission.
This approach adds a degree of granularity to
an otherwise binary trust decision and is the
approach we explore in this paper.

1.2. Removing Permissions from
Android Apps

Shown in Figure 1, is the application per-
missions listing for a Flashlight app obtained
through the Play market. While one could
reason this app would only need the hardware
controls necessary to turn on the phone's light,
due to the large quantities of ad network
libraries and other debris embedded within,
it asks for much more. If permissions were
editable, the user would be able to trust this
application’s ability to operate the flashlight

Figure 1. Flashlight app permission re-
quirements

only, and not have to worry about the true
reason for the other permission requests.
There are various ways one could remove

permissions from Android applications. Pre-
vious work in this area proposes a "privacy
mode", where applications running in this
mode run with lowered permissions [12]. This
approach requires heavy modification to the
Android OS itself, but yields a flexible so-
lution. Applications can also be repackaged,
with their manifests modified to contain fewer
permissions. This is the most popular ap-
proach at present, as applications containing
this functionality can be readily obtained from
major application markets [7]. Additionally,
the application's executable code could be
dynamically rewritten to protect sensitive API
calls [2].
All of the above approaches, however, are

dependent on Google's policy regarding ap-

plication permissions, as they influence how
developers write their applications. Google's
documentation discusses the implementation
in enough detail for a developer to use it,
but does not go into the rationale behind
the approach. While they do suggest that
the "dynamic" permission model would be
too much of a burden on the user, they do
not mention editable static permissions at all.
Furthermore, application developers are not
explicitly instructed to handle cases of re-
voked permissions in their applications. Since
the lack of a required permission is typically
implemented in the form of a Java Securi-
tyException [5], some programmers will han-
dle these gracefully out of habit. However,
if an application or library it uses is not
explicitly written to handle the permission
revocation, modification of the source code
will be required to ensure proper function.

1.3. Effect of Permission Removal

While previous research has demonstrated
that a significant number of Android appli-
cations request and use too many permis-
sions [4], it is unclear how removing permis-
sions would affect the application's behavior.
Under Android's security model, developers
typically expect all the requested permissions
to be available. Therefore, it would not be
surprising if many developers do not handle
the lack of permissions gracefully. When an
application invokes an API call without the
necessary permissions, it typically throws a
SecurityException. However, if such
an exception is caught by library or wrap-
per code, the application can continue run-
ning. Moreover, different permissions are not
equal. Some permissions describe devices'
hardware capabilities, such as CAMERA. Since
they are not universally available, we expect
libraries to be able to handle their absence
more gracefully.
When removing a permission, users will

expect to see any correlating features be

disabled. An everyday example being the
removal of GPS capabilities from Google
Maps. Currently, many users turn their GPS
off in attempts to extend their battery life.
When this is done, at launch, the user is
notified that the accuracy of Google Maps
would be improved if GPS was enabled.
When removing permissions from and ap-
plication, users are going to expect similar
behavior. If an application was not written
with permission removal in mind, however,
features that are not obviously correlated may
malfunction leaving the user confused. This
could theoretically include data corruption if
the application is not written to handle its
data in a robust manner. If this is the case,
data would be susceptible to being corrupted
if the application crashes regardless of per-
mission removal. While these occurrences are
of concern, in the long run, they can easily
be addressed by developers.
In this paper, we take the first step to

quantitatively measure the effects of remov-
ing permissions from Android applications by
trying to answer the following questions:

• How likely will an application crash after
a permission is removed?

• Which permissions, if removed, are less
likely to cause an application to crash?

• Why do applications handle the lack of
certain permissions more gracefully?

Our work will benefit both users and de-
velopers. Users can make more informed
decisions when deciding which permissions
to remove (when they use tools for remov-
ing permissions). Application developers can
make their code more robust against missing
permissions. Android library developers can
design their libraries to handle lack of per-
missions more gracefully.
In the remainder of this paper, we will

attempt to quantify the effects of removing
permissions from Android applications. In
Section 2 we will discuss related work. Then,
in Section 3, we will discuss our methodology
and the tool we developed for automated

testing, PyAndrazzi. We present the results of
our testing in Section 4 and discuss the impact
of our findings on users and developers in
Section 5. Finally, in Section 6 we discuss
future work and conclude with Section 7.

2. Related Work

Recently, there have been a number of
academic and non-academic works in the
area of Android permissions. The work that
most closely relates to ours is [8]. In their
work, they attempt to analyze the effects of
returning fake data to the sensitive API calls
who's permissions they want to restrict. The
behavioral changes are analyzed by using im-
age comparison techniques. Our work differs
from their's in four significant ways. Firstly,
we test the removal of permissions without
modifying the Android framework, giving us
a more realistic experiment. Secondly, all
of our testing is performed autonomously
on emulators and does not require human
generated application specific scripts, mak-
ing our method of testing scalable. Thirdly,
our samples are completely random where
as their's are significantly skewed towards
over permissioned applications which results
in an admittedly overestimate of the side
effects. Finally, we observe the applications
exception behavior instead of using image
analysis to detect changes when permissions
are removed. The overall difference is we
are attempting to quantify the behavior of an
application when a permission is removed,
where as they focus on analyzing the effects
of using fake instead of removing permissions
from applications.
In [Rastogi:2013:AAS:2435349.2435379],

they also performed work similar to ours.
Like us, they used UI introspection; however,
they utilized humans to record input while
we generate dynamic input. In addition,
they focus on network traffic while we are
focusing on application's on device behavior.

Some third party Android distributions,
such as CyanogenMod [3] and Mock-
Droid [1], also modify the Android OS to
enable permission removal. Like [8], Mock-
Droid provides fake data to API calls where
permissions are being removed. Cyanogen-
Mod, however, enables the user to actually
revoke permissions. While CyanogenMod es-
sentially accomplishes the changes we would
like to see, the developers of CyanogenMod
state concerns about applications failing as
a result of permission removal. In addition,
these third party distributions are cumber-
some to many non-technical users due to
the fact that they require you to re-flash the
firmware of your device thus voiding its war-
ranty. As a workaround, others have devel-
oped applications that allow users to imple-
ment the security model we described. With
the exception of the latest to hit the market,
Plop, they all require “rooting”. Among these,
LBE Privacy Guard and PDroid provide fake
data to handle security exceptions while Plop
and Permission Denied do not [7]. Using fake
data theoretically decreases the number of
exceptions incurred, however, it is still unable
to handle all of them, i.e. writing to exter-
nal storage. Ultimately, revoking permissions
or providing fake data, regardless of which
method one uses, can lead to applications
crashing and unexpected behavior. In the end,
the better solution is for Google to alter the
security model of the Android OS and for
developers to handle the exceptions.

3. Design and Implementation

We designed Pyandrazzi, a system for eval-
uating how removing permissions impacts the
behavior of Android applications. To eval-
uate each application, Pyandrazzi automati-
cally runs the application, supplies it with
various UI events, detects when the appli-
cation crashes, and logs the cause of the
crash. Pyandrazzi consists of the following
components (see Figure 2):

Figure 2. PyAndrazzi Component Diagram

Permission Removal. Pyandrazzi de-
codes the application's APK file using APK-
Tool. Then, it removes the permission being
evaluated. Finally, it rebuilds the APK and
signs it using Android's built-in debug key.

Installation and Execution. Pyandrazzi
installs and runs applications in emulators.
It utilizes the MonkeyRunner framework to
install and uninstall applications, provide UI
inputs, and take screen shots of applications.

Automatic UI Exploration. Pyandrazzi
needs to execute as much code as possible
to maximize the number of adverse effects
resulting from permission removal. For each
application, Pyandrazzi determines the list
of activities and executes each one starting
with the Main activity. During each activity,
Pyandrazzi takes a screenshot and performs
a series of screen touches. We implement
this functionality using a UI introspection
approach based on the AndroidViewClient
library [9]. Using this method, Pyandrazzi is
able to query the screen for click-able ele-
ments and performs "random" touches with a
high probability of changing the application
state.

Crash Detection. Pyandrazzi needs to
detect application crashes and their causes. It
uses ADB to access logcat, which provides
us with the logs from the emulator, including
system status and application crashes. When
an application crashes due to a fatal error,

such as a SecurityException, a separate
thread monitoring the logs will notify the
testing thread, which will record the cause of
the crash and launch the next Activity.

4. Evaluation

To evaluate the impact of removing per-
missions on applications, we selected seven
common permissions (Table 1) based on their
potential threat to the user's security and
privacy. For each permission, we randomly
downloaded 100 applications that declare the
permission in their manifests. These applica-
tions are from the official Google Play Market
as well as other markets in the US, China, and
Europe.
A small portion (less than 3%) of the

applications contained manifests with unusual
control characters that APKTool would not
process (eg. 0x04), and were discarded. Ad-
ditionally, 2% of the applications caused the
emulator to crash and were not able to be
tested. Pyandrazzi installed and tested the
remaining ones as described in Section 3.
Pyandrazzi detects application crashes and

their causes from the emulator's logs. When
an application does not have a permission
required by an API call, the Android frame-
work will typically throw a SecurityEx-
ception and the application will then crash
unless it catches the exception. An application

Apps # Fatal SecurityException
Data Set Run Exceptions # Exceptions # Apps Throwing Exceptions
WRITE_SMS Original 95 528 1 1
WRITE_SMS Removed 91 555 1 1
ACCESS_FINE_LOCATION Original 99 623 0 0
ACCESS_FINE_LOCATION Removed 99 616 18 13
CAMERA Original 97 1206 0 0
CAMERA Removed 97 1158 0 0
RECORD_AUDIO Original 93 700 0 0
RECORD_AUDIO Removed 92 659 0 0
READ_CALENDAR Original 91 581 0 0
READ_CALENDAR Removed 91 643 8 6
READ_CONTACTS Original 96 633 0 0
READ_CONTACTS Removed 96 561 40 20
INTERNET Original 95 191 13 3
INTERNET Removed 95 234 13 3

Table 1. Results of Random UI Introspection

may crash due to other reasons as noted by
the fatal exception column in (Table 1). For
example, bugs in the application, or when
Pyandrazzi executes an activity that is not
meant to be executed by the user. An addi-
tional possibility is that a library acting on the
application's behalf receives the Securi-
tyException, and returns the proper error
condition, such as a null pointer. Applications
that do no check for this kind of error state
may crash with other types of exceptions
such as NullPointerException. Since
we are unable to determine the true causes
of these exceptions without extensive static
analysis of each application, we only focus
on SecurityExceptions, which indicate
under-permission. Among all the crashes,
5.8% were due to a SecurityException.
We examine the seven permissions separately
below.

INTERNET. We determined the cause
of the SecurityExceptions from ex-
amining our logs and screen shots. The
exceptions generated both before and af-
ter permission removal were the result of
a change in the permissions system in
Android 4.2, requiring a new permission,
WRITE_APN_SETTINGS, for the API calls
the applications performed. This is techni-

cally under-permission, but was not caused
by removing existing permissions. In the re-
mainder of our samples, ad libraries were the
sole reason for an application's request for
the INTERNET permission. All the versions
of the AdMob libraries that we examined fail
gracefully when the INTERNET permission
is removed. For example, one version of
AdMob displays a message to the user as seen
in Figure 3.
In light of this, we attained a copy of

a popular third-party Android web browser
and removed its INTERNET permission us-
ing Pyandrazzi. When executed, the applica-
tion terminated with a SecurityExcep-
tion related the applications request for
DNS information. With further investigation
we determined that the application calls the
java.net functions directly causing a Se-
curityException to be generated and the
standard crash screen to be displayed (see
Figure 4).

CAMERA and RECORD_AUDIO. In the
case of CAMERA and RECORD_AUDIO, both
functionalities have a service that proxies ap-
plication requests. If the relevant permissions
are removed, they will behave as if no cam-
era or microphone is present. Therefore, we
observed no SecurityExceptions when

Figure 3. Admob displays a message
when the INTERNET permission is re-
moved.

removing these permissions.
READ_CONTACTS and

READ_CALENDAR. Manual investigation
determined that, when removing
READ_CONTACTS, we were only receiving
a SecurityException in cases where
the API call to read the contacts was
actually occurring. While we cannot
completely rule out the presence of
some other helper library that catches
exceptions, in every case we have manually
examined, the SecurityException
was only occurring when our automated
testing specifically activated a UI element
or activity's startup code that made a
request to the Provider URI, con-
tent://com.android.contacts/.
The removal of READ_CALENDAR results

in similar behavior. Apps attempting
to access the Provider URI, con-

Figure 4. App crashes due to Securi-
tyException when the INTERNET per-
mission is removed.

tent://com.android.calendar/,
generate security exceptions in all cases we
have examined.

WRITE_SMS. WRITE_SMS also uses
a Provider URI, content://mms-sms/;
however, we did not observe any Securi-
tyExceptions resulting from permission
removal. The one that was observed in both
test cases was a result of the missing per-
mission, WRITE_APN_SETTINGS, that was
discussed earlier. The lack of SecurityEx-
ceptions is likely due to the relative depth
of writes to this URI within the application,
which makes it more difficult to trigger. Any
unauthorized Provider URI access produces
the standard crash screen (Figure 4).

ACCESS_FINE_LOCATION.
The fine-grained location permission,
ACCESS_FINE_LOCATION, is a special
case. It is one of a few permissions in

Android that is a nested permission. Many
API calls will operate in the presence of
either fine or coarse location permissions
but prefer fine; if fine is removed it will fall
back to coarse grain location. This results
in few SecurityExceptions (~13%),
since we will only see them occur in cases
where the GPS hardware is explicitly being
used.

5. Discussion

Our evaluation shows that the rate of fail-
ure varies with the permission. In our test,
removing permissions only caused 39 (5.9%)
of the 662 applications to crash. In the best
cases, removing CAMERA, RECORD_AUDIO
and WRITE_SMS respectively, never caused
crashes due to permission removal. While
our random sample did not result in any
SecurityExceptions with the removal
of WRITE_SMS, we believe that this is due
to the API call being triggered by UI elements
deep in the UI structure. Furthermore, the
results from our random sample showed that,
if an application's sole use of the INTERNET
permission is for advertising, SecurityEx-
ceptions caused by its removal are likely
to be handled by the ad library. If the ap-
plication makes use of network functionality
on its own, as in our manually selected test
case, the application may crash with a Se-
curityException. Lastly, we found that
removing the READ_CONTACTS and AC-
CESS_FINE_LOCATION permissions had
the greatest impact causing 20 and 13 appli-
cations to crash respectively.

Wrapper Code. Our manual inspection
shows that many wrapper code pieces handle
the lack of permissions gracefully. Wrap-
per code includes both system services such
as Audio Manager and Camera, as well as
developer-defined libraries like those used for
advertising. System services provide abstrac-
tion between getHostByNamethe developer's

code and the hardware. For example, an ap-
plication trying to use the device's camera can
fail gracefully in the event the device has
no camera. This is also true of permissions
revocation. When the relevant permission is
removed, the service acts as if the hardware it
manages does not exist. Third-party libraries
can accomplish the same feat by catching the
exception on behalf of the developer. Google
AdMob, for example, will display a message
to the user running an application without the
necessary permissions to obtain the ads (See
3). Notably, it will allow the application to
continue to function without advertising.
While these wrapper code pieces make it

easier for the user to remove the permis-
sion without causing crashes, they make it
harder for the developer to detect the lack
of declared permissions programmaticaly. To
address this, developers could make their own
API calls to force the exception to be thrown
if they wanted to take their own action on
permissions revocation.

Protected URI. In situations where an
application accesses protected URIs directly
(not through wrapper code), we verified that
the application throws SecurityExcep-
tions when it accesses the URIs. In this
case, the developer can easily catch and han-
dle the exception appropriately. However, this
does require explicit modification of existing
code, and without it users cannot easily re-
move access without their applications crash-
ing.

Protected API. The use of protected
API calls can result in similar behavior to
that of protected URIs. It is important to
note, however, that the exception-throwing
behavior of each method may change be-
tween Android API revisions. We observed
in previous iterations of our testing that the
getHostByName() method used to per-
form DNS lookups failed gracefully under
Android 4.0.4 (API 15) and returned an error
value; applications behaved as if there was no
Internet connectivity. On Android 4.2.2 (API

17), the method generates a SecurityEx-
ceptions when the INTERNET permission
is removed causing applications to crash.
Therefore, to ensure maximum compatibility,
developers should always catch Securi-
tyException when using these APIs.

6. Limitations and Future Work

One of the limitations of our work, and
dynamic analysis in general, is the issue of
code coverage. Our approach relies on exer-
cising the application through its UI, and we
are unable to guarantee that we will execute
all sensitive API calls within an application.
Even if we were able to explore all ele-
ments of the UI as defined in the APK's
resources, chances are this would still not
result in complete coverage. Given that our
approach is based solely on dynamic analysis,
we currently cannot obtain the list of all the
API calls an application is able to make.
Consequently, we are unable to estimate our
coverage. Applications whose execution re-
lies on a WebView present further challenges,
as their contents are not visible to our current
UI introspection techniques and would re-
quire a special coverage calculation scheme.
In addition, Pyandrazzi does not attempt to
handle native code within applications. While
we did not find any native code in our ran-
dom application samples, we understand this
complicates some of our dynamic analysis
techniques, and would require us to measure
its coverage differently as well.
In future iterations of Pyandrazzi, we in-

tend to implement methods to increase and
accurately determine the extent of our code
coverage, as well as broaden the types of
applications we are able to closely examine.
Firstly, we would like to add a static analysis
phase to the tool to allow us to enumerate
API calls made by the application. We can
then use VM instrumentation or application
rewriting to determine when an API call is
executed. Secondly, Pyandrazzi does not han-

dle applications that depend on external third-
party libraries such as Adobe Air. Additional
analysis of our dataset will be required to
determine the prevalence of these libraries so
they can be included in our emulator image.
While testing the applications, we noticed

that third-party libraries included in the APK
tend to balloon the permission requirements
far beyond what the applications themselves
required. For example, the flashlight appli-
cation we mentioned earlier has most of it's
permissions primarily because they are re-
quired for the numerous ad libraries it uses to
serve ads to the user. In the future, we would
like to be able to map common libraries to
the permissions they require, or even these
library calls to permissions, as in [4]. Lastly,
we do not handle applications that use intent
receivers guarded by permissions to protect
message passing and would like to determine
if handling this case is necessary. It should be
noted, however, that activities intended to be
invoked by these receivers are already being
executed.
Overall, we successfully tested with seven

different permissions that have a high security
or privacy impact but have only scratched
the surface. In the future, we would like
to investigate the usage of many other per-
missions with an initial focus on those that
pose a security risk (e.g.billing). Further-
more, we would would like to test the re-
moval various permission combinations such
as ACCESS_FINE_LOCATION and AC-
CESS_COARSE_LOCATION.

7. Conclusion

We have developed Pyandrazzi, a system
for the automated testing and measurement
of the fatal exception behaviors of Android
applications when permissions are removed.
Our evaluation shows that not all permis-
sions are equal with there rate of crashes due
to permission removal ranging from 0-20%.
Overall, 94% of the 662 applications that

we successfully tested did not crash due to
permission removal as evidenced by a lack of
SecurityExceptions. If Google decides
to implement user editable permissions, they
will have the opportunity to further enhance
the user experience by wrapping more sen-
sitive API calls in libraries which handle
permission errors gracefully.
In regards to developers, if they wish to

make their applications more robust when
requested permissions are unavailable, they
should try to use wrapper code that call sen-
sitive APIs and handle exceptions gracefully
rather than calling the sensitive APIs directly.
On the other hand, if they wish to restrict
functionality unless the requested permissions
are available (e.g., INTERNET permission
for ad libraries that generate revenue), they
should invoke the sensitive APIs directly and
prevent the application from continuing until
the permission is restored.

References

[1] Alastair R. Beresford, Andrew Rice,
Nicholas Skehin, and Ripduman So-
han. ``MockDroid: trading privacy
for application functionality on smart-
phones''. In: Proceedings of the 12th
Workshop on Mobile Computing Sys-
tems and Applications. HotMobile '11.
Phoenix, Arizona: ACM, 2011, pp. 49–
54. ISBN: 978-1-4503-0649-2. DOI:
10.1145/2184489.2184500. URL: http:
/ / doi . acm . org / 10 . 1145 / 2184489 .
2184500.

[2] Benjamin Davis and Hao Chen.
``RetroSkeleton: Retrofitting Android
Apps''. In: The 11th International
Conference on Mobile Systems,
Applications and Services (Mobisys).
Taipei, Taiwan, June 25–28, 2013.

[3] Matt Demers. CyanogenMod Adds
Support For Revoking App Permis-
sions. Anroid Police. May 25, 2011.
URL: http://www.androidpolice.com/

2011 / 05 / 22 / cyanogenmod - adds -
support-for-revoking-and-faking-app-
permissions/.

[4] Adrienne Porter Felt. ``Android per-
missions demystified''. In: 18th ACM
conference on Computer and commu-
nications security. 2011.

[5] Google. Permissions|Android Develop-
ers. Google. Apr. 14, 2013. URL: http:
//developer.android.com/guide/topics/
security/permissions.html.

[6] K. J. Higgins. More Than 25% Of An-
droid Apps Know Too Much About You.
Dark Reading. Nov. 1, 2012. URL:
http://www.darkreading.com/mobile-
security /167901113 / security /privacy /
240012705/more-than-25-of-android-
apps-know-too-much-about-you.html.

[7] Chris Hoffman. How to Restrict An-
droid App Permissions. Apr. 14, 2013.
URL: http : / / www . howtogeek . com /
115888/how- to- restrict- android-app-
permissions/.

[8] Peter Hornyack, Seungyeop Han,
Jaeyeon Jung, Stuart Schechter, and
David Wetherall. ``These aren't the
droids you're looking for: retrofitting
android to protect data from imperious
applications''. In: Proceedings of the
18th ACM conference on Computer
and communications security. CCS '11.
Chicago, Illinois, USA: ACM, 2011,
pp. 639–652. ISBN: 978-1-4503-0948-
6. DOI: 10 . 1145 / 2046707 . 2046780.
URL: http : / / doi . acm . org / 10 . 1145 /
2046707.2046780.

[9] D. T. Milano. Android ViewClient.
URL: https : / / github . com / dtmilano /
AndroidViewClient.

[10] S. Perez. IDC: Android Market Share
Reached 75% Worldwide In Q3 2012.
Tech Crunch. Nov. 2, 2012. URL: http:
/ / techcrunch . com / 2012 / 11 / 02 / idc -
android - market - share - reached - 75 -
worldwide-in-q3-2012.

http://dx.doi.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/2184489.2184500
http://www.androidpolice.com/2011/05/22/cyanogenmod-adds-support-for-revoking-and-faking-app-permissions/
http://www.androidpolice.com/2011/05/22/cyanogenmod-adds-support-for-revoking-and-faking-app-permissions/
http://www.androidpolice.com/2011/05/22/cyanogenmod-adds-support-for-revoking-and-faking-app-permissions/
http://www.androidpolice.com/2011/05/22/cyanogenmod-adds-support-for-revoking-and-faking-app-permissions/
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://www.darkreading.com/mobile-security/167901113/security/privacy/240012705/more-than-25-of-android-apps-know-too-much-about-you.html
http://www.darkreading.com/mobile-security/167901113/security/privacy/240012705/more-than-25-of-android-apps-know-too-much-about-you.html
http://www.darkreading.com/mobile-security/167901113/security/privacy/240012705/more-than-25-of-android-apps-know-too-much-about-you.html
http://www.darkreading.com/mobile-security/167901113/security/privacy/240012705/more-than-25-of-android-apps-know-too-much-about-you.html
http://www.howtogeek.com/115888/how-to-restrict-android-app-permissions/
http://www.howtogeek.com/115888/how-to-restrict-android-app-permissions/
http://www.howtogeek.com/115888/how-to-restrict-android-app-permissions/
http://dx.doi.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2046707.2046780
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient
http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012
http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012
http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012
http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012

[11] B. Womack. Google Says 700,000
Applications Available for Android.
Bloomberg Businessweek. Oct. 29,
2012. URL: http://www.businessweek.
com/news/2012-10- 29/google- says-
700 - 000 - applications - available - for -
android-devices.

[12] Yajin Zhou, Xinwen Zhang, Xuxian
Jiang, and Vince W. Freeh. ``Taming
Information-Stealing Smartphone Ap-
plications (on Android)''. In: 4th In-
ternational Conference on Trust and
Trustworthy Computing (TRUST 2011).
Pittsburgh, PA, June 2011.

http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-android-devices
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-android-devices
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-android-devices
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-android-devices

	Introduction
	Mobile Device Permission Models
	Removing Permissions from Android Apps
	Effect of Permission Removal

	Related Work
	Design and Implementation
	Evaluation
	Discussion
	Limitations and Future Work
	Conclusion

