
A First Look at Firefox OS Security

Daniel DeFreez∗, Bhargava Shastry†, Hao Chen∗, Jean-Pierre Seifert†
∗University of California, Davis
{dcdefreez, chen}@ucdavis.edu

†Security in Telecommunications, Technische Universität Berlin
{bshastry, jpseifert}@sec.t-labs.tu-berlin.de

Abstract—With Firefox OS, Mozilla is making a serious push
for an HTML5-based mobile platform. In order to assuage
security concerns over providing hardware access to web ap-
plications, Mozilla has introduced a number of mechanisms that
make the security landscape of Firefox OS distinct from both
the desktop web and other mobile operating systems. From an
application security perspective, the two most significant of these
mechanisms are the the introduction of a default Content Security
Policy and code review in the market. This paper describes how
lightweight static analysis can augment these mechanisms to find
vulnerabilities which have otherwise been missed. We provide
examples of privileged applications in the market that contain
vulnerabilities that can be automatically detected.

In addition to these findings, we show some of the challenges
that occur when desktop software is repurposed for a mobile
operating system. In particular, we argue that the caching of
certificate overrides across applications—a known problem in
Firefox OS—generates a counter-intuitive user experience that
detracts from the security of the system.

I. INTRODUCTION

In July 2013, Mozilla launched Firefox OS, an entirely
web-based mobile platform. Primarily aimed at developing
markets, Firefox OS devices tend to be low-powered, but
inexpensive, and therefore offer an attractive alternative for
consumers that cannot afford an Android or iOS device [29].
The lure for developers is, of course, the possibility of creating
applications that conveniently work across platforms. One of
the primary barriers to the adoption of web-based applications
has always been lack of hardware access. Mozilla is attempting
to solve this problem by leading a standardization effort for
new Web APIs [7]. Meanwhile, Firefox OS provides a glimpse
at what the future may bring for the mobile web.

Being a late entrant in the smartphone market, Mozilla has
had the advantage of hindsight. Firefox OS adopts many of
the security features of other mobile platforms, while avoiding
some of the missteps. Laying at the intersection of the web
and mobile security models, Firefox OS maintains the same-
origin policy while adopting the use of applications as security
principals that has become the hallmark of mobile systems. Not
only are Firefox OS applications isolated from one another, but
even remote code from a single origin that spans applications
is sandboxed, as if the applications were running in separate
browsers. This model prevents some of the issues that have
plagued Android [37], and serves as a partial realization of
previous recommendations regarding the interplay between
web and mobile security [9], [31].

While the platform itself is relatively robust, application
developers make plenty of mistakes. Here, too, Mozilla has
learned from its forebears, taking steps to proactively contain

the abuse of vulnerable applications. All privileged appli-
cations have a default Content Security Policy applied and
are reviewed for conformance to security guidelines prior to
being distributed through the official Firefox Market. The
Content Security Policy almost categorically prevents Cross-
Site Scripting (XSS) via JavaScript injection, and code re-
view should pick up any misuse of permissions or obvious
security errors. This paper asks whether these mechanisms
are sufficient to prevent developers from making trivially
preventable security blunders. We find that they are not. The
most prevalent attack vector, without a doubt, is HTML in-
jection, and .innerHTML1 is the culprit. The .innerHTML
property parses a text string and replaces a node’s content
with the HTML representation of that string. It is enormously
popular due to its convenience, and is often called behind the
scenes in libraries such as jQuery. Mozilla has taken great
strides to eliminate the use of .innerHTML and friends in
its official apps, but it is still allowed in the market. We
also find several other classes of security errors made by
applications in the market. Moreover, in section III we show
that these vulnerable applications are automatically detectable
with lightweight static analysis.

Adapting desktop browser technologies to a mobile se-
curity environment is bound to introduce complications. Our
observation is that the act of sandboxing applications creates
an expectation that the side effects of any action will be
restricted by application boundaries. As such, any behavior
that deviates from this expectation represents a security risk.
One example of such dissonant behavior is the way Firefox
OS handles certificate overrides. It is a known issue that
in Firefox OS certificate overrides for a domain are applied
across applications, rather than on a per-application basis.
When combined with the limited UI available in Firefox
OS surrounding connection security, system-wide caching of
certificate overrides puts users at risk and presents a counter-
intuitive user experience.

Contributions: We provide the following contributions:

1) We find that developer practices in the market fre-
quently violate Mozilla’s security guidelines for ap-
plications, including the direct insertion of user input
into the DOM, failure to properly handle the origin
of web messages, and the use of HTTP instead of
HTTPS.

2) We demonstrate that lightweight static analysis can
be used to help find vulnerable applications in the
Firefox Marketplace.

1There are several other properties that are also problematic, such as
.outerHTML.

3) In light of the certificate override caching problem,
we look at the consequences of retrofitting web
applications on legacy system software. We docu-
ment discrepancies in Firefox OS’ user interface and
demonstrate how the caching problem and inadequate
security indicators pose a security risk.

II. BACKGROUND

Firefox OS is divided into three layers: Gonk, Gecko, and
Gaia. Gonk is the Android-derived underlying OS, Gecko is
the layout engine (including SpiderMonkey, which provides
JavaScript, and several other legacy sub-systems), and Gaia
is the UI. All applications are written with common web
technologies (HTML5, CSS, JavaScript) and run on top of
Gecko. Even Gaia, which provides the core set of applications
shipped with a device, is built as a set of HTML5 apps. Gecko
enforces permission-based access control over applications’
access to device APIs.

Firefox OS applications are divided into three security
categories: unprivileged, privileged, and certified:

• Unprivileged applications have a restricted set of
permissions available. They can be either hosted or
packaged. Hosted applications are “installed,” but the
content for the application is hosted elsewhere. A
packaged application has all of its content placed
placed in a zip file which is distributed through a
market, and the market is responsible for signing the
package. A manifest is included in the package which
contains meta-data about the application, including
permission requests.

• Privileged applications have access to a richer set
of possible permissions. They also have access to
additional features such as the ability to declare local
redirects. Because of the increased level of trust,
privileged applications are required to be packaged,
have a default Content Security Policy applied, and
must go through a code review process prior to being
accepted into the market.

• Certified applications are installed as part of Gaia and
have access to all permissions.

Any application can embed web content. In Firefox OS,
where every piece of the user interface is within a “browser”
of sorts, the distinction between the app and web content is
that web content is viewed within an iframe and comes from
a different origin. The security restrictions for web content are
very similar to web content in a desktop browser, and the
permission set is the most restrictive of the categories.

While hosted and unprivileged packaged applications have
the same set of permissions available, there is an important
difference in the way the two types of apps are installed. The
.zip archives for packaged applications are housed by the
market. They are signed by the market and delivered over
HTTPS, thereby ensuring the integrity of the application. Nat-
urally, packaged applications can only be updated through the
market, allowing the user a degree of control and potentially
the ability to audit the code of the app. Hosted applications,
on the other hand, behave more like bookmarks. Only the
application manifest is fetched at install time, which we find
is almost always delivered over HTTP rather than HTTPS.

Running a hosted application implies fetching the application
content from a remote server, preventing any user control over
the content of the application and allowing permissions to be
tampered with at the time of installation. Fortunately most
of the sensitive permissions available to hosted applications
prompt upon first use.

As outlined in the official documentation [3], Firefox OS
uses a small set of permissions. There are 56 permissions in the
permissions table, of which only 23 are usable by uncertified
applications. Table I provides a list of all permissions requested
in the market. The most popular permission, systemXHR,
enables the use of XMLHttpRequest across origins.

In contrast to Android, Firefox OS permissions can be
either implicit or explicit. Implicit permissions are granted
at install time if the application requests the permission in
its manifest. Explicit permissions trigger a prompt at the
time of first use, and are revocable through the settings app
[26]. The security category that an application belongs to
determines which permissions are implicit and which are
explicit. For web content, all available permissions are nec-
essarily explicit, which at the time of writing only includes
desktop-notification and geolocation.

Just because a permission is requested does not mean
that an application actually uses that permission. There are
35 applications, for example, that request the systemXHR
permission but are incapable of performing cross-origin XHR.
This is identified by looking for mozSystem: true as a
parameter to XMLHttpRequest. In total, we find a lower
bound of 50 applications in the market that request permissions
for which they do not use the corresponding web API. Use is
determined by a permission map that was generated from the
Firefox OS source code by looking for calls to the permission
manager. This may be an underestimate, because it is assumed
that all code is reachable. Having overpermissioned apps
is undesirable from the standpoint of the principle of least
privilege, and demonstrates the imprecision of manual review,
but it is unclear how an application with extra permissions
could be coerced into using its permissions without being able
to inject JavaScript.

Permission Apps
systemXHR 142 (24.9%)
geolocation 106 (18.6%)
storage 54 (9.5%)
desktop-notification 53 (9.3%)
device-storage:sdcard 51 (8.9%)
browser 31 (5.4%)
audio-channel-content 28 (4.9%)
device-storage:pictures 27 (4.7%)
alarms 21 (3.7%)
contacts 16 (2.8%)
tcp-socket 10 (1.8%)
mobilenetwork 7 (1.2%)
device-storage:videos 6 (1.1%)
8 other permissions 17 (3.3%)
Total 570 (100%)

TABLE I. PERMISSIONED APPS IN THE FIREFOX OS MARKET
(FEBRUARY 2014)

At the time of writing, we are not aware of any permissions
abuse or other malware in the Firefox OS market. While
this is undoubtedly a result of Firefox OS’ nascent state,

the use of code review for privileged applications is also a
deterrent. Malware will almost certainly surface in the future.
In anticipation of this, Mozilla has attempted to minimize the
damage that a malicious application could do. Each application
runs in a separate Gecko child: a Content process which
provides a sandboxed execution environment. This includes
separate cookies and storage, regardless of origin. The possi-
bility of escape from this sandbox is limited because no facility
is provided to run native code. Instead, hardware access is
provided through JavaScript APIs. Should an application find a
way out of this sandbox, Firefox OS will soon utilize seccomp
to filter the system calls available to application processes. In
addition to the threat of privilege escalation, the availability
on Android of native operating system facilities - such as the
ability to list running processes - has led to information leakage
through side channels [39]. Firefox OS, in contrast, provides
very limited access and protects much of this information with
certified permissions.

From an application security perspective, the most im-
portant defense is the the introduction of a default Content
Security Policy (CSP) for privileged applications. Content
Security Policy is a mechanism for defining the allowed origins
of resources [34]. The most important feature of the default
policy is that it disables third-party and inline JavaScript.
Disabling inline JavaScript means that not only will inline
<script> tags be ignored, but also eval, some incantations
of setInterval, and other functions that interpret strings
as code. Fortunately, the default CSP was introduced early on
in the development of the Firefox OS ecosystem. Bringing
already developed applications into compliance can require
some effort, and we suspect this will be an issue for a number
of developers as the number of privileged APIs available
increases. CSP does nothing, however, to prevent the broader
problem of HTML injection. As [18], [38] discuss, and as we
shall see in the next section, this still leaves an attacker room
to maneuver.

Advertising: It has been observed [35] that the lack
of privilege separation between Android applications and ad-
vertising libraries can lead to permission abuse. Applications
and advertising libraries exist in a state of mutual distrust,
and a number of papers have looked at the possible ways of
separating advertising libraries from applications [28], [30]. In
contrast to Android, advertising on Firefox OS closely follows
the web model, which has the potential for better isolation
between applications and advertisements. Web advertisements
are often isolated by placing them in an iframe. This isola-
tion can be made more robust through the use of the sandbox
attribute on the frame, guaranteeing a unique origin (and thus
a different set of permissions), as well as preventing forced
navigation attacks. Unfortunately, few Firefox OS applications
go through the effort of sandboxing advertisements. The refer-
ence implementation from Mozilla [36] places the integration
code for the advertisement in an unsandboxed iframe that
is sourced from a data-URI. The advertisement and several
remote scripts - including a fingerprinting script - are thus
loaded in the same origin as the app. Any permissions that an
application2 declares are fair game for the ad provider to use.
So if the user has granted, say, audio-capture to the app,

2This integration library is targeted at hosted, rather than privileged apps,
but this still leaves a number of permissions available.

Oct Nov Dec Jan Feb
0

1,000

2,000

3,000

N
um

be
r

of
A

pp
s

Packaged Hosted

Fig. 1. Firefox OS Market Size, 2013-2014

it has also been granted to the ad provider. This is actually
a higher risk situation than on Android: the code changes
without warning, and an active network attacker could abuse
any permissions granted to the application.

III. DETECTING VULNERABILITIES IN FIREFOX OS APPS

This section identifies potentially vulnerable apps through
lightweight static analysis. The vulnerabilities reported here
are taken from applications in the Firefox Market. One chal-
lenge is that the Firefox market is so much smaller than its
counterparts. While Google Play and the iTunes App Store
each have over a million applications, the Firefox Market has
a mere 3,000. Figure 1 shows the size of the Firefox OS
market between October 2013 and February 2014, as measured
by the number of application manifests in the official tarballs
made publicly available by Mozilla. Surprisingly, the growth of
the market is driven almost entirely by packaged applications,
which as of January 2014 outnumber hosted applications in
the market.

We are primarily concerned with analyzing privileged apps,
which further constricts the dataset. From a code review
perspective, hosted applications are not significantly different
than web applications. There is little incentive to review
applications that can be continuously updated. This leaves us
with 570 applications. The fact that we are able to find multiple
vulnerable applications by using relatively simple techniques
suggests that the Firefox Marketplace is a promising area for
further vulnerability research.

Precise static analysis of JavaScript is a notoriously difficult
problem [19] due to the dynamic nature of the language, and
most tools have difficulty scaling to large programs (though
progress is being made [33]). Our approach eschews precision
in favor of efficiency. While our analysis is neither sound nor
complete, it establishes that heuristics can be applied and still
find vulnerabilities in the market. Whereas other techniques
might timeout analyzing a single program (see Section VI),
our tool is capable of scanning the entire market in a matter
of minutes on a standard desktop machine. Using just a few
heuristics we are able to flag several applications as vulner-
able. Two of these are privileged, and therefore have already
undergone code review. These applications are presented in
Section IV.

Mozilla already has an open source tool for validating
applications that are submitted to the market, called simply
“the validator.” The validator is used to help code reviewers
analyze privileged applications before they are accepted into
the market, and Mozilla has provided a web interface where
developers can run it against their own applications. The val-
idator primarily identifies errors that will break an application
once it is installed, such as manifest inconsistencies or the use
of JavaScript functions that violate the CSP. The validator does
warn when properties such as innerHTML are assigned non-
literal values, but this is such a frequent occurrence, and the
rate of false positives for injection attacks is so high, that it is
difficult to see how a reviewer could do anything but ignore
these warnings.

The market validator would be natural location for addi-
tional security checks, and an early version of our tool was
simply a set of extensions to the market validator. Based on
feedback from Mozilla, however, it was determined that a
central static analysis tool was too computationally expensive
to be practically useful. As such, our current tool stands
separate from the validator and is built on top of the Acorn
[22] JavaScript parser and the Tern [23] type inference engine.
The choice of technologies was influenced by Mozilla’s ScanJS
project (see section VI), so as to facilitate the possibility of
incorporation into that project. Our tool, however, shares no
code with ScanJS. At the time of writing, ScanJS is not capable
of finding the vulnerabilities discussed here.

The techniques described in the sections that follow build
upon a common global analysis that is performed for each
application. First, def-use chains are built for every variable.
These are created through a limited, context-sensitive inter-
procedural analysis. It is limited in the sense that it does not
yet handle a number of aspects of JavaScript, such as higher-
order functions, and thus makes several approximations.

After the def-use chains have been created, uses for known
sinks, sources, and filters are resolved to abstract definitions
such as “sink” and “filter,” and the use entries are updated to
reflect this. This list of sinks, sources, and filters includes the
standard set of properties available in most XSS references,
and also a set of popular library functions that are known to
achieve the same effect, such as the .html function in jQuery.

For every variable that is used at an interesting location
such as a sink or filter, we use Tern to infer the type of that
variable. Tern is normally used to provide auto-completion in
an editor, but is also well-suited to our purpose. We require
fast, but not necessarily perfect type resolution. JavaScript
is a classless language, and as such determining when two
objects are of the same “type” is difficult. Tern makes headway
by identifying common programming patterns. One example
given in the Tern documentation [23] is that of type extension.
Type extension in JavaScript is often achieved by writing a
utility function that copies an object prototype and then adds
properties to this new object. Understanding the relationship
between objects created in this manner necessarily requires
guesswork, and Tern provides a set of heuristics for making
educated guesses in these situations.

Next, constant propagation is performed when a variable is
used as a property name. This allows us to produce reports in
spite of certain obfuscation techniques. One such case in the
market is the popular ConnectA2 app, which hex-encodes all

window.addEventListener(’message’, function(evt) {
authWindow.close();
token = evt.data.token;
self.exchangeToken();

});

Fig. 2. Example message handler that fails to validate the message origin

window.addEventListener(’message’, function(evt) {
if (evt.origin !== ’app://example.com’) {
return;

}
var data = evt.data;
token = evt.data.token;
self.exchangeToken();

});

Fig. 3. Correct validation of message origin

object properties. Then, after the def-use chains have been built
and the types of variables have been inferred, a set of policy
rules are applied. These rules are described in the sections that
follow.

A. Origin Validation
The approach used here is to conservatively flag uses of the

messaging API that do not validate the origin of messages by
identifying instances where the origin3 property is not accessed
at all. If an application is going to validate the origin of a
message, as in Figure 3, the origin property must be read
somewhere. The exact conditions used to identify apps that
fail to validate the origin of web messages are as follows. The
app must:

1) Register a message event handler
2) Not read the origin property in any scope where the

message event is alive
The first condition is met by traversing the Abstract

Syntax Tree (AST) and looking for a call expression
to addEventListener which passes the string literal
message as the first parameter.

The second condition is evaluated by analyzing the body
of the message handler. The first parameter to the message
handler, evt in Figure 2, is the actual message. The def-
use chains for the evt variable are searched for accesses
of the origin property. If the origin property for the event is
never accessed, then it is impossible for the app to verify that
the origin is correct. Note that false negatives are obviously
possible. We only identify cases where the applications could
validate the origin of the message, not where it does.

It is has been shown in [32] that many of the top websites
fail to correctly validate the origin of messages. Similar results
are found here, despite the fact that the use of postMessage
is featured prominently in Mozilla’s security guidelines. Of
the 83 applications that register message handlers, 56 of them
fail to validate the origin of messages. We make no claim
that these applications are vulnerable to attack. It may be that
there is no way for external content to send messages to these
apps. Section IV, however, demonstrates that under the right
conditions, failure to validate the origin of a message event
can have dire consequences.

3We also look for the source property, but here we refer to the two
collectively as the “origin” property.

0 20 40 60 80

Number of Apps

Do not validate
Do validate

Fig. 4. Message origin validation in Firefox OS Market

B. HTML Injection

The most straightforward way to discover applications
that are possibly vulnerable to HTML injection is to list all
applications that pass a variable, rather than a constant, to
a sink capable of inserting raw HTML into the Document
Object Model (DOM). This is the criteria used by the market
validator. The problem with this approach is that most of these
uses are not exploitable. Banning the use of these dangerous
properties entirely would be one solution, but it seems unlikely
that Mozilla is going to take that step.

The approach used here is to detect instances where the
same type of data is used more than once in an application,
but not filtered in all uses. The observation is that developers
filter data when they believe an attacker can control the input.
If they also use that type of data without filtering it, then this
is likely a mistake. Specifically, an app will be flagged if:

1) Data from a defined source is read into reaching
definition v1 of inferred type A

2) v1 is passed to a defined sink
3) Data of inferred type A is filtered, creating reaching

definition v2
4) v2 is passed to a defined sink

Note that the only relationship between v1 and v2 is that
they have the same inferred type. This is a potential source
of false positives, as it inherits the imprecision of the type
inference process.

The first condition requires the development of a list of sen-
sitive sources. This list was developed by hand, and includes
XHR, traditional DOM XSS sources, filenames, web messages,
etc. The second and fourth conditions are established in similar
fashion. A standard list of sensitive sinks documented by
Mozilla is used, along with a custom list of library-specific
sinks such as the html function in jQuery. The third condition
is met by a heuristic. If the replace method is used, or if
a temporary DOM element is created and the textContent
of that element is immediately read, the data is considered
to be filtered. This is meant to be merely a first step toward
identifying the way applications filter data.

Consider the example in Figure 5. The tool makes the as-
sumption that when JavaScript functions are used in an object-
oriented fashion, i.e. functions are called with the constructor
invocation pattern, then all instances of an object with that
prototype can be treated as if they were the same object. They
are not actually the same object, of course. Therefore it is
possible that one instance may need filtering while another may
not, but this is rare in practice. In the example, all instances of
Something are treated as if they are the same variable and

function unfiltered(v) {
var html = ’<div>’ + v.getName() + ’</div>’;
element.innerHTML = html;

}

function filtered(v) {
var filtered = filter(v.getName());
var html = ’<div>’ + filtered + ’</div>’;
element.innerHTML = html;

}

function filter(s) {
return (s || "").replace(/</g, ’<’);

}

var data1 = new Something();
var data2 = new Something();
unfiltered(data1);
filtered(data2);

Fig. 5. Inconsistent filtering of attacker controlled input

tracked accordingly. In the unfiltered function, a property
of this single variable is assigned directly to innerHTML,
a sensitive sink. The tool identifies the fact that the same
property is used in the filtered function. It is first passed
as a parameter to filter, where replace is called. Then
it is used in a sensitive sink.

Five applications vulnerable to HTML injection were de-
tected using the method of looking for filtering inconsisten-
cies. Manual analysis showed that only two of these were
legitimate injection vulnerabilities. One application intersected
the HTML injection and origin validation sets, as discussed
in section IV. Two other applications have been identified as
vulnerable to HTML injection by manual analysis.

C. Use of plaintext HTTP
We find that it is common for privileged applications to use

HTTP instead of HTTPS for XHR communication. The use of
HTTP instead of HTTPS is identified by constant propagation.
Whenever the open method of an XMLHttpRequest object
is called, our tool looks at the second parameter. The app is
flagged with a low-priority warning if this is a string literal that
starts with http://. The ConnectA2 application, which is
one of the most popular apps in the market and consistently on
the front page, was flagged in this fashion, despite obfuscation.
During registration, ConnectA2 sends the phone number of the
registrant in the clear to their servers. While not a serious
privacy violation, this is certainly undesirable. Our results
show that 48 apps open systemXHR connections over insecure
connections, which is just under 50% of the applications that
actually use systemXHR.

IV. CASE STUDIES

This section presents three vulnerable applications dis-
covered in the Firefox OS market. The first is an unprivi-
leged application susceptible to a traditional XSS attack. This
demonstrates that unprivileged Firefox OS applications are on
the same security footing as normal web applications. The
second app is privileged, but susceptible to HTML injection
via local filenames on the device. The third app is privileged
and susceptible to oAuth session forgery despite CSP due to a
failure to validate the origin of web messages combined with
HTML injection.

Classic XSS: This is an exploitable vulnerability that
was manually discovered in a version control application
prior to static analysis. Our tool is capable of finding the
vulnerability automatically. This app allows a user to access
their Github account to view Gists. The application has an
XSS vulnerability caused by failing to sanitize the names of
Gists. This allows an attacker to inject JavaScript. Without CSP
it is trivial to extract login credentials and exfiltrate them to
an attacker controlled site. Only privileged apps are protected
by a Content Security Policy. This leaves a large swath of the
packaged market potentially susceptible to classic XSS attacks.

HTML Injection via Filenames: This is a vulnerability
that was manually discovered in a privileged document editing
app prior to static analysis. Our tool is capable of finding
the vulnerability automatically. Many apps do not expect that
HTML entities can be put in filenames, but most HTML
characters other than the forward slash are valid filename
characters in Linux. The document editing app reads from the
SD card on the device. A malicious app on the same device
could create filenames containing HTML entities. When the
the target application reads the list of files it is susceptible
to HTML injection because the filename is used directly
with innerHTML. The possibility of exploitation is limited,
however, as the malicious app cannot close tags and the target
app has no other privileges.

It is unlikely that any application will rely on filenames
such as . Since all filesystem access is mediated through
the storage web API, which already puts restrictions on
filenames, it is recommended that the storage API perform
rudimentary HTML entity filtering.

oAuth Session Forgery: This vulnerable application
was flagged automatically, without prior knowledge of the
vulnerability. It is the sole application in the dataset that was
identified as an overlap of HTML injection identified through
inconsistent filtering and failure to validate the origin of web
messages.

One of the most popular applications in the Firefox OS
market is a note taking application that syncs with a cloud
service. This application uses oAuth 1.0 for authorization.
After authorizing the app, the user is redirected back to the
application with the request token as a URL fragment via
a special redirect declared in the application manifest.4 This
redirect page uses postMessage(result, *) to push the
request token back to the main application. The use of the
wildcard origin here is dangerous. An attacker could receive
the now authorized temporary credentials, but this would be
difficult to exploit because of the race to exchange this token
for a full access token. The message handler which receives
the request token is equivalent to Figure 2, i.e. it does not
validate the origin of the message it receives.

The application is also vulnerable to HTML injection via
the name of the note. This was automatically detected by
our tool because the name of the note is used in more than
one location, but not filtered before every use. The code for
displaying the name of the note is roughly equivalent to Figure
5.

4These redirects are limited in scope to the application. Only four appli-
cations in the market make use of these redirects, and all of them do so for
oAuth.

This application has been manually confirmed as ex-
ploitable in the following scenario. An attacker crafts a ma-
licious note with an <iframe> in the name of the note,
with the frame source being a page under the control of the
attacker. The attacker then shares this note with the victim.
The attacker’s page will be opened if the victim accepts the
note and views the notebook containing the note with the
Firefox OS app. This page can be made invisible and uses
postMessage to send a valid request token for the cloud
service to the app, which the attacker previously obtained by
authenticating to the cloud service but not completing the token
exchange.5 The app will exchange the attacker’s temporary
token for a full access token and replace the access token in
its local database with this new token. The next time that the
application syncs to the cloud service it will synchronize local
notes to the attacker’s account.

This example serves as a strong endorsement of the rec-
ommendation put forth in [17] to extend CSP to provide
messaging whitelists. Indeed, manual analysis of the market
shows that most applications need only to send messages to
one origin, and in many cases that origin is the application
itself. The whitelists would be trivial to construct for these
applications, and it would prevent an entire class of attacks.

V. COUNTER-INTUITIVE USER EXPERIENCE

While the previous section studies multiple classes of
security vulnerabilities at the application layer, this section
scrutinizes the problem of system-wide caching of certificate
overrides. We describe what happens when system services
that used to be tightly coupled to the browser program are
exposed to applications in a mobile environment without
modification. Alongside insufficient security UI in Firefox OS,
we demonstrate how the caching problem poses a security risk.

A. SSL Certificate Caching

The certificate caching problem—a known issue in Firefox
OS [11]—is the following: Manually overriding a certificate
warning for a web origin not only overrides the warning
for subsequent visits to that web origin, but also makes the
override applicable to any application on the phone, as though
applications queried a shared system-wide cache for certificate
overrides. While application code from the same web origin
is sandboxed across applications in Firefox OS, the handling
of overrides presents an anomaly. We digress to present a
simplified flow of SSL certificate validation and override in
Gecko. Subsequently, we analyze the problem of certificate
caching in detail.

Certificate Validation and Override Services: Gecko
relies on the Network Security Services (NSS) library [4] for
security related services. NSS’ SSL/TLS certificate validation
service is responsible for validating the SSL certificate chain
presented by a remote server in the process of initiating an
HTTPS connection. The certificate override service, tied to
the certificate warning interstitial page, allows for manual
overrides of certificate warnings. It maintains a record of
certificate overrides that have taken place in the past, in the
form of {Web Origin, Certificate Fingerprint} key-value pairs.

5This is complicated by the fact that temporary credentials have a fairly
short lifetime. The attacker needs to regenerate request tokens approximately
every 30 seconds.

For a temporary override, the key-value pair is cached in
Gecko’s program memory. When certificate validation for a
server fails, the validation service queries the override service
to check if an overridden certificate for the server has been
cached. If there is a cache hit, the override service verifies if
the cached certificate is the same as the certificate presented
in the ongoing SSL handshake. If this succeeds, the HTTPS
connection proceeds without a warning. Otherwise, the user is
presented with a certificate warning interstitial.

A valid certificate vouches for the authenticity of a remote
security principal and forms the basis for trust in Internet com-
munications. The browser web and the smartphone platform
entertain different notions of security principals. Next, we see
how this leads to a confused deputy scenario in Firefox OS.

Security Principal: Desktop browsers routinely interact
with off-device security principals. The same origin policy
establishes a means to identify them. While the policy is
reflected in legacy NSS code, the notion of an on-device
security principal is something that is alien to security services
in the NSS library in general, and the certificate validation and
override services in particular.

While Firefox OS relies on the underlying OS kernel for
isolating on-device principals, it delegates certificate validation
and overriding to the legacy NSS library. So, while the
application is treated as a security principal in managing
session tokens, local storage, and permission-based access
control, the web origin dictates how SSL certificates are
handled. This semantic difference between the NSS port in the
desktop browser and in Firefox OS makes both the certificate
validation and override services, confused deputies. Since the
two services still treat web origin as the security principal,
certificate validation requests for the same web origin across
Firefox OS applications elicit the same response.

Next, we examine architectural differences between the
desktop browser and Firefox OS that lead to side-effects
being distributed and subsequently retained across process
boundaries.

Process Model: The desktop browser and Firefox OS
are built on different process models. The desktop browser
program itself and all of its (web) content run in a single
OS process. In contrast, Firefox OS is built on a multi-
process model. Each web app on Firefox OS runs in a separate
Content process. Gecko and its constituent sub-systems run in
a privileged process called the boot2gecko (b2g) process.

Because the desktop browser and its content pages run in
a single process, all transient side-effects are contained within
the process’ memory; this includes temporary certificate over-
rides. On Firefox OS web apps running in content processes
are untrusted principals, but the b2g process belongs to the
Trusted Computing Base (TCB). Security sensitive side-effects
such as certificate overrides are registered in the b2g process,
even if the operation responsible for the side-effect originated
in a content process. The validity of the override stretches
through the lifespan of the b2g process. Given that the b2g
process is one of of Firefox OS’ core components, it is killed
only on device restart.

A defining characteristic of the desktop user experience
is users being able to start and close (kill) programs (OS
processes). This observation combined with the fact that

Fig. 6. Site identity button after a certificate override: (Top-Bottom) Firefox
OS browser, Firefox desktop browser

desktop users are exposed to the browser program in its
entirety (program = process) instills the notion that side-effects
are strictly tied to program lifespan. The smartphone user
experience on Firefox OS is starkly different. Since program
(process) management of the b2g process is not exposed to
smartphone users, user expectations around side-effects are not
respected by the underlying OS.

Put together, application agnostic certificate handling and
retention of overrides in a core process pose a security risk.
Next, we see how the problem is exacerbated by discrepancies
in the security UI of Firefox OS.

UI Discrepancy: Although the caching of temporar-
ily overridden certificates is a characteristic of the desktop
browser, there are checks in place to ensure that an active
attacker has limited leverage. Temporary certificate overrides
are removed when the user closes the browser program.
However, a browser restart is not a necessary prerequisite
to clear overrides. Desktop Firefox exposes the option6 to
remove overrides during a running instance of the program.
Furthermore, even if overrides are not cleared, information
about past overrides is captured in multiple visual security
indicators in the browser UI; these indicators assist users in
taking informed decisions. One such indicator is a UI element
called the Site Identity Button [24]. The Site Identity Button
is comprised of a padlock icon at a bare-minimum. Figure 6
shows comparative screen shots of the site identity buttons in
the Firefox OS browser and the Firefox desktop browser after
a certificate override has taken place. As shown in the figure,
the padlock icon is gray colored when a certificate override has
taken place on the desktop browser. On clicking the padlock,
an informative security dialog is displayed to the user which
presents textual feedback on the state of connection security.
While the browser app on Firefox OS has options which permit
clearing browsing history, cookies, and stored data, none of
these are tied to sanitizing temporary certificate overrides. An
examination of the source code of Firefox OS’ NSS port
reveals that the option of overriding Active Logins is
present. Evidently, this option is neither exposed in the browser
app nor the certified Settings app.

The site identity button in Firefox OS’ browser app has the
following states:

6Removal of temporary certificate overrides is tied to clearing Active Logins
from recent browsing history.

1) Web page has no security (HTTP), visually repre-
sented by the globe icon,

2) Page is insecure or displays mixed (HTTP and
HTTPS) content, represented by a broken gray col-
ored padlock,

3) Page is secure, represented by a green colored pad-
lock.

In the Gecko port for Firefox OS, certificate overrides are
incorrectly mapped to the secure state of the site identity
button; the padlock is thus green colored (see Figure 6)
even when a web page’s SSL certificate has been manually
overridden. Additionally, because of limited screen real estate,
the security information dialog that is supposed to pop-up on
clicking the site identity button is absent in the browser app.
In the mozbrowser view that is commonly used by Firefox
OS apps to render web pages, the site identity button is
absent. Certificate validation or overrides in the mozbrowser
view therefore go unnoticed. Given that temporary certificate
overrides remain in Gecko’s program memory for a substantial
time-period, this poses a realistic threat. Tricking the user into
overriding the certificate warning for a given web origin is
sufficient to compromise subsequent visits to the affected web
origin across multiple apps. This includes the default browser
app, mozbrowser instances of apps belonging to the same
domain, and third-party apps that load web content (e.g. for
OAuth based authentication) from the affected web origin. This
was manually verified using an experimental setup.7

Threat Scenario:

1) Victim connects to compromised network, such as
public wifi.

2) Attacker performs MITM attack against HTTPS8 and
presents a fake certificate.

3) Victim overrides certificate warning temporarily, as-
suming the action impacts only the present page visit.

4) Page is loaded with green padlock in the location bar.
5) All subsequent connections can be MITM.

If device restart has not taken place, the MITM attack outlined
in the preceding scenario might recur should the victim recon-
nect to the compromised wifi at a later time. On successive
connections to a domain whose certificate has been overridden
by the victim in the past, a full SSL handshake with the
attacker’s cached SSL certificate takes place silently i.e., the
victim is neither presented with a warning interstitial, nor is
a possible MITM signaled in the browser UI. Apart from
initiating MITM attacks on newer connections, the adversary
can steal cookies from the victim’s unexpired sessions with
the compromised domain across applications.

A malicious application could aid this process by detecting
when a MITM attack is present. The application could provide
the user with some plausible sounding reason for requiring a
certificate override. Certificate warnings are already confusing,
and any inconsistencies in sandboxing behavior only increase
the cognitive attack surface.

7We used mitmproxy (http://mitmproxy.org/) to intercept/modify HTTP(S)
traffic from Geekphone’s Peak phone running Firefox OS 1.4.0.0-prerelease.

8Web domains for which HTTP Strict-Transport-Security (HSTS) is hard-
coded in the browser are not vulnerable to the described attack primarily
because certificate overrides for these domains are disallowed.

B. Application Code and Manifest Provisioning

While Mozilla ensures that packaged applications are dig-
itally signed and fetched from the marketplace over SSL,
hosted applications are provisioned as if they were normal web
content. Because hosted apps still need to fetch application
manifests and code from a web origin, Mozilla recommends
that app developers serve them over HTTPS [25].

The application manifest file contains security sensitive
information including a list of permissions requested by an
app among other things. We collated an exhaustive list of
hosted manifest URLs and noted that 92.8%9 of hosted ap-
plications fetch manifest and application code over HTTP.
We evaluated the threat of a man-in-the-middle intercepting a
hosted manifest/application code and subsequently modifying
it before relaying the modified content to the end-user. As
proof of concept, we inserted the audio-capture (microphone)
permission in the manifest of an application that is designed to
only play audio content. Subsequently, while application code
was being fetched from the remote server (over HTTP), we
altered it by adding a record audio functionality to the app.

The threat of an active attacker modifying the manifest and
application code in transit is constrained in two ways. Firstly,
sensitive permissions available to hosted apps such as audio-
capture and geolocation are explicit i.e., prompt on first use.
Secondly, Mozilla segregates permission sets for hosted and
privileged applications. Should an attacker request, say, the
Contacts permission (a privileged permission on Firefox OS),
Gaia’s application installer component will trigger a signature
check. Upon finding that the file in question is a manifest and
not a signed zip package, the installation process is aborted.
Unprivileged implicit permissions, however, can be injected
without the user’s knowledge. Since the App Permissions tab
in the Settings app does not list implicit permissions, there
is no way for a user to tell that the permission requests
have been modified. Presently, implicit permissions for hosted
apps include audio, fmradio, alarms, desktop-notification, and
storage [26]. These are relatively benign permissions, but their
absence from the permissions UI combined with the lack of
an integrity mechanism for hosted application code would be
a cause for concern should Mozilla enlarge the set of implicit
permissions for hosted applications.

Moving forward, requiring that security sensitive hosted
applications serve their manifest (and application code) over
HTTPS would be a step in the right direction.

VI. RELATED WORK

To the best of our knowledge, this paper is the first to look
at the security of Firefox OS. The differences between Android
and Firefox OS permission enforcement are discussed in [20],
but the focus of that work is on Android.

While real-world studies [14], [15] have observed prob-
lems in SSL validation across popular web and smartphone
applications and middleware libraries, they do not look at how
certificate overrides are handled at the client side. On Firefox
OS, SSL validation is done by system software; applications
are not trusted to validate certificates on their own.

91106 out of a total of 1191 hosted applications returned by the marketplace
API, as of 22nd February, 2014

Amrutkar et al. [10] perform an empirical evaluation of
security indicators across mobile browser apps based on W3C
guidelines for web user interface. They conclude that mobile
web browsers implement only a subset of desktop browsers’
security indicators, leaving mobile users vulnerable to attacks
that the indicators are designed to signal. While our study does
not intend to evaluate the state of security indicators in Firefox
OS, our observations could be used as a starting point for
extrapolating the findings in [10] to Firefox OS. Akhawe et
al. [8] quantify the effectiveness of desktop browser warnings
by measuring their click-through rates. Their finding that a
high proportion of users click through SSL warnings, although
from a desktop browser user base, lends credence to the attack
scenario based on a certificate override that we demonstrate.

There are a number of JavaScript static analysis tools
that were evaluated for their ability to analyze Firefox OS
applications. Many could be adapted to serve the same purpose
as ours, of which the three most practical are discussed here.
WALA [6] provides a rich set of sophisticated analyses [33],
but the JavaScript front-end had trouble parsing applications
in the market, and it has a number of scalability issues.
The results from WALA are clearly superior, but running
it against thousands of applications, the majority of which
include libraries such as jQuery, is computationally prohibitive.
Our lightweight approach, in contrast, can analyze the entire
market in a matter of minutes. JSPrime [27] is also capable of
performing dataflow analysis, but the architecture is extremely
difficult to extend. ScanJS [1], written in-house by Mozilla,
is closest in spirit to our own. It is based on the same
technologies as our tool, but looks only at AST patterns rather
than performing dataflow analysis. It would not be difficult
to extend ScanJS to perform our checks, and we are working
with Mozilla to do so where it makes sense.

Dynamic taint analysis is a promising direction for future
work, and has proven very effective for Android. The same
approach taken by TaintDroid [13] could work for Firefox
OS. Indeed, a recent project has introduced string-based taint
support into the SpiderMonkey JavaScript engine [5]. It would
be difficult to have code reviewers or developers use a tainted
JavaScript engine, however, as it would require merging taint
support into mainline Firefox or running a separate build of
Firefox to use for Firefox OS development/review.

HTML injection is necessary for a number of the attacks
discussed in this paper, which puts renewed emphasis on
addressing the issue of structural integrity. Proposals such as
Noncespaces [16] and Blueprint [21] address the issue, but fall
short of being usable for Firefox OS. Noncespaces presupposes
the use of XHTML, and both are aimed primarily at server-side
web applications.

Carlini et al. [12] provide an evaluation of the Chrome
extension security architecture. Through manual examination
of a sample set, they observe that extensions are vulnerable to
web attackers via HTML injection, and to network attackers
because of the use of plaintext HTTP for XHR and fetching
JavaScript. Their vulnerability results are similar to ours. Al-
though Chrome extensions and Firefox OS apps share several
characteristics—distribution through a centralized market, CSP
restrictions, written in HTML/JavaScript—there are notewor-
thy differences. Chrome extensions make use of privilege sep-
aration between the portion of the extension that interacts with

the DOM and the privileged core that makes browser API calls.
Chrome also provides an “isolated world” which prevents web
content from interacting directly with the extension. Firefox
OS does not use privilege separation within an app, nor does
it provide an isolated world. Extensions have a large attack
surface resulting from their interactions with many pages,
which partially motivates the introduction of these isolation
mechanisms. Most Firefox OS apps, in contrast, interact with
a limited number of other pages. Another difference is that
the CSP for Chrome extensions can be relaxed. Firefox OS
is less forgiving: privileged apps can only modify the CSP to
become more restrictive. The CSP for Chrome packaged apps
(not discussed in [12]), is actually more restrictive than Firefox
OS, as it disallows external resources [2]. This stricter CSP
would have prevented some of the vulnerabilities we found
from being exploitable, as the exploits relied on the injection of
an iframe with remote content. Chrome apps also differ from
Firefox OS apps by the set of available APIs and permissions.
Systematically classifying the similarities and differences of
vulnerabilities between packaged web apps on a variety of
platforms is an important effort that we leave to future work.

VII. CONCLUSIONS

Firefox OS is the most serious attempt yet made by
any modern operating system to merge the web and mobile
experiences. This has led to a number of interesting security
challenges as the web-based security model, firmly rooted in
the same-origin policy, collides with the application-centric
sandboxing associated with modern mobile operating systems.
The web brings to mobile a number of security lessons learned
the hard way, such as the importance of provenance in all
communication channels. But it also brings risks, not the least
of which being XSS attacks against highly privileged applica-
tions. Mozilla takes several proactive measures to address these
risks: application code review, a strong Content Security Policy
(CSP) for privileged applications, and application sandboxing
to name a few. We find that these measures have improved
upon both the web and mobile security models, but that there
is still room to grow.

Firefox OS is in a transition phase, as it still relies on
libraries that are firmly entrenched in the desktop security
model. Services that used to be tightly coupled to the browser
can wind up conflicting with the use of individual applications
as security principals. Moreover, the outmoded desktop notion
of application lifecycle can come into conflict with an always-
on browser. We show one example of how a known Firefox
OS issue can be traced back to these conflicts. This is a class
of bugs that has not yet been well-explored, and we suspect
that more issues will arise along these lines.

The Firefox OS market is small, but steadily growing.
As the market scales up, increased pressure will be put on
reviewers of privileged applications. Even now, there exist
quite a few applications that violate the security guidelines
put forth by Mozilla. Some of these guidelines can be very
easily checked. Flagging applications that fail to validate the
origin of postMessage messages takes very little analysis, yet
we find that the majority of applications that use postMessage
fail to even look at the origin of messages. This leads us
to the conclusion that even a small increase in the level of
sophistication used to validate applications that come into the
market would show appreciable results.

While app developers cannot be relied upon, and should
not necessarily be forced to, correctly implement security
checks, the structure of application code can be used to infer
certain semantic features about the application. The presence
of filtering a certain type of data might imply that the developer
feels that type data might be controlled by an attacker, which
is an otherwise undecidable problem. We have shown that in
at least one instance, this led to the discovery of an otherwise
unknown vulnerability. Though this is certainly a small result
set, there appears to be promise that this approach could
help prevent other vulnerable applications from entering the
market.

ACKNOWLEDGEMENTS

This work was partially supported by the EU FP7 Trustwor-
thy ICT program (FP7-ICT-2011.1.4) under grant agreement
no. 317888 (project NEMESYS).

REFERENCES

[1] https://github.com/mozilla/scanjs. Accessed: 2014-03-10.
[2] Chrome apps architecture. https://developer.chrome.com/apps/app

external. Accessed: 2014-04-18.
[3] Firefox os security overview. https://developer.mozilla.org/en-US/

Firefox OS/Security/Security model. Accessed: 2014-03-10.
[4] Network Security Services. https://developer.mozilla.org/en/docs/NSS.

Accessed: 2014-03-08.
[5] Spider monkey - taint support. https://github.com/alagenchev/spider monkey.
[6] Wala: T.j. watson libraries for analysis. http://wala.sourceforge.net/wiki/

index.php/Main Page.
[7] Webapi - mozillawiki. https://wiki.mozilla.org/WebAPI. Accessed:

2014-03-08.
[8] D. Akhawe and A. P. Felt. Alice in warningland: A large-scale field

study of browser security warning effectiveness. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13, pages 257–272,
Berkeley, CA, USA, 2013. USENIX Association.

[9] C. Amrutkar and P. Traynor. Short paper: rethinking permissions for
mobile web apps: barriers and the road ahead. In Proceedings of the
second ACM workshop on Security and privacy in smartphones and
mobile devices, pages 15–20. ACM, 2012.

[10] C. Amrutkar, P. Traynor, and P. C. van Oorschot. An empirical
evaluation of security indicators in mobile web browsers. IEEE
Transactions on Mobile Computing, (PrePrints), 2013.

[11] Bugzilla@Mozilla. https://bugzilla.mozilla.org/show bug.cgi?id=
858730.

[12] N. Carlini, A. P. Felt, and D. Wagner. An evaluation of the google
chrome extension security architecture. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security’12, pages 7–7,
Berkeley, CA, USA, 2012. USENIX Association.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In OSDI, volume 10, pages 1–6,
2010.

[14] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith. Why eve and mallory love android: An analysis of android ssl
(in)security. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 50–61, New York, NY,
USA, 2012. ACM.

[15] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating
ssl certificates in non-browser software. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS ’12,
pages 38–49, New York, NY, USA, 2012. ACM.

[16] M. V. Gundy and H. Chen. Noncespaces : Using Randomization to
Enforce Information Flow Tracking and Thwart Cross-Site Scripting
Attacks. In NDSS, 2009.

[17] S. Hanna, E. C. R. Shin, D. Akhaw, A. Boehm, P. Saxena, and D. Song.
The emperor’s new APIs: On the (in) secure usage of new client-side
primitives. In Web 2.0 Security & Privacy, 2010.

[18] M. Heiderich, M. Niemietz, and F. Schuster. Scriptless attacks: stealing
the pie without touching the sill. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 760–771,
2012.

[19] S. H. Jensen. Static Analysis for JavaScript. PhD thesis, Aarhus
University, Department of Computer Science, 2013.

[20] X. Jin, L. Wang, T. Luo, and W. Du. Fine-Grained Access Control for
HTML5-Based Mobile Applications in Android. In ISC 2013, 2013.

[21] M. T. Louw and V. Venkatakrishnan. BLUEPRINT : Robust Prevention
of Cross-site Scripting Attacks for Existing Browsers. In 30th IEEE
Symposium on Security and Privacy, pages 331–346, 2009.

[22] Marijn Haverbeke. acorn.js. http://marijnhaverbeke.nl/acorn/.
[23] Marijn Haverbeke. Tern. http://marijnhaverbeke.nl/blog/tern.html.
[24] Mozilla Foundation. How do I tell if my connection to

a website is secure? https://support.mozilla.org/en-US/kb/
how-do-i-tell-if-my-connection-is-secure.

[25] Mozilla Foundation. Web application specification. http://mozilla.
github.io/webapps-spec/. Accessed: 2014-03-08.

[26] MozillaWiki. App Permissions. https://developer.mozilla.org/en-US/
Apps/Developing/App permissions. Accessed: 2014-03-10.

[27] N. Patnaik and S. Sahoo. Javascript static security analysis made easy
with jsprime. Black Hat USA, 2013.

[28] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. Addroid: Privilege sepa-
ration for applications and advertisers in android. In Proceedings of the
7th ACM Symposium on Information, Computer and Communications
Security, pages 71–72. ACM, 2012.

[29] M. Press. Firefox OS Unleashes the Future of Mobile. https://blog.
mozilla.org/press/2014/02/firefox-os-future-2/.

[30] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating smart-
phone advertising from applications. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security’12, pages 28–
28, Berkeley, CA, USA, 2012. USENIX Association.

[31] K. Singh. Can mobile learn from the web. In Proceedings of the
Workshop on Web, volume 2, 2012.

[32] S. Son and V. Shmatikov. The Postman Always Rings Twice : Attacking
and Defending postMessage in HTML5 Websites. In Network and
Distributed System Security Symposium (NDSS’13), 2013.

[33] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation
tracking for points-to analysis of javascript. In ECOOP 2012–Object-
Oriented Programming, pages 435–458. Springer, 2012.

[34] S. Stamm, B. Sterne, and G. Markham. Reining in the web with content
security policy. In Proceedings of the 19th international conference on
World wide web, number 2, page 921, New York, New York, USA,
2010. ACM.

[35] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Inves-
tigating user privacy in android ad libraries. In Workshop on Mobile
Security Technologies (MoST), 2012.

[36] L. Stowasser and R. Nyman. Monetization with Inner-
active on Firefox OS. https://hacks.mozilla.org/2013/10/
monetization-with-inneractive-on-firefox-os/.

[37] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized origin crossing
on mobile platforms: Threats and mitigation. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
pages 635–646. ACM, 2013.

[38] M. Zalewski. Postcards from the post-xss world.
http://lcamtuf.coredump.cx/postxss/, 2011.

[39] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt. Identity, location, disease and more: inferring
your secrets from android public resources. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
pages 1017–1028. ACM, 2013.

