AppShield: Enabling Multi-entity Access Control
Cross Platforms for Mobile App Management

Zhengyang Qu', Guanyu Guo?, Zhengyue Shao?, Vaibhav Rastogi®, Yan
Chen', Hao Chen*, and Wangjun Hong!

! Northwestern University, Evanston IL 60208, USA
2 Zhejiang University, Hangzhou, China
3 University of Wisconsin, Madison WI 53706, USA
4 University of California, Davis CA 95616, USA
zhengyangqu2017@u.northwestern. edu, guanyuguo@zju.edu.cn,
szylover@zju.edu.cn, vrastogi@wisc.edu, ychen@northwestern.edu,
hchen@cs.ucdavis.edu, wangjunhong2015@u.northwestern. edu

Abstract. Bring-your-own-device (BYOD) is getting popular. Diverse
personal devices are used to access enterprise resources, and deployment
of the solutions with customized operating system (OS) dependency will
thus be restricted. Moreover, device utilization for both business and per-
sonal purposes creates new threats involving leakage of sensitive data.
As for functionalities, a BYOD solution should isolate an arbitrary num-
ber of entities, such as those relating to business and personal uses and
provide fine-grained access control on multi-entity management. Existing
BYOD solutions lack in these aspects; we propose a system, called App-
SHIELD, which supports multi-entity management and role-based access
control with file-level granularity, apart from local data sharing/isolation.
APPSHIELD includes (1) application rewriting framework for Android
apps, which builds Mobile Application Management (MAM) features into
app automatically with complete mediation, (2) cross-platform proxy-
based data access mechanism, which can enforce arbitrary access control
policies. The fully functional controller with data proxy is implemented
for both Android and iOS. APPSHIELD allows for enterprise policy man-
agement without modifying device OS. The evaluation shows that App-
SHIELD is successful at policy enforcement and is reliable. It induces
little impact on application’s performance and size, for example, our app
rewriting introduces less than 5% code size increment in over 95% apps
in our evaluation.

1 Introduction

Bring your own device (BYOD) enterprise policies have been growing in popu-
larity. Employees use their personal devices to access an enterprise’s proprietary
resources. According to the survey by RCR Wireless News in 2015 [1], 85% of
respondents indicated BYOD was incorporated into their organization’s current
telecom offering. The popularity of BYOD represents both an opportunity and
a challenge. On the one hand, it boosts productivity and reduces the cost of

2 Zhengyang Qu et al.

dedicated devices. On the other hand, using the same device for both business
and personal activities incurs new security threats, such as data exfiltration and
revenue loss due to lost devices, employee job hopping, and malware. For exam-
ple, considering the threat of malware alone, both Android and iOS have been
reported to be affected by malware or low-reputation content [30, 19, 16]. Used in
a BYOD setting, infected devices could threaten the confidentiality and integrity
of business data. The concept of Mobile Application Management (MAM) is thus
proposed to secure the BYOD utilization. Specifically, MAM solutions are the
software and services that control access to enterprise resources at the mobile
application level.

Android and iOS have discretionary access control to isolate data among
apps. Regarding data sharing, Android provides the world read-/writable ex-
ternal storage, and iOS maintains a similar directory /Documents/Inbox/. The
system default data sharing/isolation mechanisms are insufficient for the compli-
cated scenario of BYOD, given the numerous inter-app information flows from
various entities. We also investigate existing BYOD commercial solutions (in Sec-
tion 3.1), studies on information flow control [42, 25, 32, 33, 31] and application
virtualization/sandboxing [21, 29, 43]. The following issues are not addressed.

e Portability. Many existing studies have been proposed to secure privileged
resources in the enterprise environment [29, 37], but they are rarely adopted by
vendors. Users have to get the customized firmware in deploying the security
extension on their devices; this may not be possible because most devices
have locked boot loaders and even in cases where this is technically possible,
users may lack the right skills. The fragmentation issue of Android is another
dominant factor that hinders the solutions with customized OS dependency
from deploying in large scale. A recent report [8] showed 599 distinct Android
brands with 11,868 distinct devices in 2013 and 18,796 distinct devices in 2014.
Moreover, each of Android OS versions 2.3, 4.0, 4.1, 4.2, 4.4 has more than 10
percent of the worldwide market share. A solid MAM solution should not have
any OS-specific requirement, e.g. version, firmware, to bolster the portability.

e Multi-entity management. Given a device, parallel data access control
among application sets of various business entities is essential in the scenario of
external business partner collaboration. For example, when a consulting com-
pany works closely with multiple clients simultaneously, it requires privileged
data from those companies. The data sharing within each company’s applica-
tion set should be orthogonal. Existing BYOD solutions cannot address this
issue because they only support bisecting the apps on device into the personal
set and the business set.

e Role-based access control (RBAC). Role-based access control (RBAC)
[36, 37, 38] associate permissions with roles and users are made members of
roles. It eases access management and is especially beneficial to large organi-
zations like financial and medical institutions.

While some operating systems (such as Android 5.0 and above) offer multi-
account based management, the approach is not as flexible and lacks multi-
entity management and RBAC support. We believe a BYOD solution should

AppShield 3

provide greater flexibility to enterprise policy administrators with respect to
these aspects.

e Fine-grained access control. More stringent privacy laws have recently im-
posed new levels of confidentiality on health care and insurance companies,
and financial institutions. Existing solutions do not have the policy enforce-
ment flexible enough to secure high-credential data. In a solid solution, the
data access among apps is controlled at a file level. For example, a user can
share normal attachments received via email to Dropbox, but for a patent
document with high-credential, any file sharing app’s access can be blocked.

To resolve these problems in existing MAM solutions, we take the approach
of application rewriting and provide it in a fully implemented prototype ApPp-
SHIELD with the consideration of portability, which is able to enforce arbitrary
access control policies with no dependency of OS. APPSHIELD includes two parts:
(1) application rewriting framework for Android platform, which builds MAM
features into an app, (2) cross platform proxy-based data access mechanism,
which is able to enforce arbitrary access control policies.

The application rewriting framework automatically converts a personal app
to the business version with almost no developer support. Specifically, the ap-
plication using APPSHIELD does not need to be developed in a certain way w.r.t
storing/accessing documents. We hook into the 1ibc [6] to capture all file system
system-call related calls and those relevant to Android content provider [7]. This
design enables APPSHIELD to achieve complete mediation. APPSHIELD protects
privileged data access through the stealth channels: (1) native code, (2) dynamic
code loading [34], and (3) Java reflection. The interposed low-level system calls
can reliably intercept the privileged data request from the application level in
all these scenarios. While we provide our proxy-based data access mechanism
for both platforms, the application rewriting is available for Android only due
to the closed-source nature of iOS. Nonetheless, with a little developer support
(such as using an “APPSHIELD” SDK), it is possible to provide iOS support.

The proxy-based data access mechanism is implemented within a controller
application. Then we transparently proxy the data requests through our own
controller that manages the applications’ file-system-level data, content provider
data and enforces access control policies. Apart from portability, the novel de-
sign of decoupling policy enforcement from OS also brings the benefit of cross
platform. With the idea of data request proxy, we implement the fully functional
controller application on iOS platform.

The APPSHIELD Android app! has been released on both Google Play in
North America, and Myapp in China. Our contributions are:

o We design a proxy-based data access mechanism that does not need OS support
to enforce arbitrary access control policies, including those like MAC/SELinux
[39] also. It is easily extended to other platforms, which is implemented on both
Android and iOS.

! https://play.google.com/store/apps/details?id=com.webshield.appshields
hl=en

4 Zhengyang Qu et al.

o We investigate applying our proxy-based data access mechanism to Android
MAM. The system prototype supports the configuration/enforcement of four
types of security policies. File isolation. The privileged files of business apps
are isolated from personal apps. Multi-entity management & RBAC. Apps
can be divided into an arbitrary number of logical sets. It is further utilized
in modeling RBAC, with orthogonal intra-set data access and multicast secu-
rity policy update. Although we are not the first to apply RBAC to Android
platform [36, 37], we propose a novel design without OS modification to boost
portability. Fine-grained file access control. To provide special protection on
high-credential data, the access control policy could be defined at file-level
granularity. Content provider isolation. Other than managing the privileged
structured data in system content provider, the data requests from the busi-
ness apps are redirected to a private mirror content provider. For example, the
business contacts are hidden from the personal apps.

e Our evaluation shows that APPSHIELD has low overhead in memory, runtime,
and package size and that it can reliably rewrite a large number of apps.

The remainder of this paper is organized as follows. Section 2 presents a brief
background. Next, we cover the problem statement and APPSHIELD design in

detail in Section 3, followed by the implementation aspects in Section 4. Section 5

deals with the evaluation of APPSHIELD. We have the relevant discussion and

related work in Sections 6 and 7. Finally, we conclude our work in Section 8.

2 Background and threat model

Background Android apps are implemented in Java, which is compiled down to
Dalvik bytecode. It is also possible to use native code in apps. Android run-
time environment enforces the sandbox mechanism to separate running apps.
An app is assigned a unique user identifier (UID), by which the Linux kernel
enforces discretionary access control (DAC) on low-level resources. Specifically,
each app holds a private directory to keep the data in the internal storage, which
cannot be accessed by any other app. The middleware further offers a permis-
sion system [9]. An app is granted permissions during installation. Apart from
the pre-defined permissions guarding the system services, an app can define its
customized permissions to restrict the access to their own components: Activi-
ties, Services, Content Providers [7], and Broadcast Receivers. Android includes
content providers to control the access to a structured set of data.
3 types of MAM solutions have been proposed for BYOD.

o Application Rewriting. This approach inserts management hooks into existing
Android apps. It has the advantages that it requires no developer collaboration
and that it is independent of the OS version. However, it fails on apps that
have been protected by anti-decompilation techniques.

o Software Development Kit (SDK). MAM vendors provide software develop-
ment kits (SDK) for developers to incorporate into their apps. This approach
has the disadvantage that developers must build and distribute two versions
of the same app, and users’ choice of business apps is limited to the markets.

AppShield 5

o OS Modification. MAM features are directly built into the OS, so it neither
requires developer collaboration nor can be defeated by anti-decompilation.
However, since it relies on OS customization, the portability is limited.

In the case of application rewriting, third-party BYOD services are deployed
with enterprise mobile marketplace. The client company selects useful general
app, and BYOD vendor generates the enterprise version. Application rewrit-
ing requests reverse-engineering the personal app. With developer’s coopera-
tion in an enterprise setting, the developers can be asked not to apply anti-
decompilation techniques, and either the developer’s certificate or the unique
certificate generated by BYOD vendor can be used to sign the business app un-
der the agreement. Thus, app update can be easily managed in a timely manner.

Permissions are associated with roles, and users are made members of ap-
propriate roles. Compared with the traditional group-based access control that
only involves a set of users, using the role concept to bridge the user set and the
permission set largely simplifies management of permissions and brings extra
semantics in access control, which is valuable in the scenario of MAM.

Threat Model On the device, both personal apps and business apps are installed.
The personal apps may contain malware, which is able to access and leak the
privileged data to untrusted servers. Moreover, for the data owned by an enter-
prise, other companies are motivated to track it.

OS level protection sacrifices the portability. Considering Android fragmen-
tation, a solution without portability cannot fulfill the needs of BYOD, where
employees utilize their diverse personal smartphones for business usage also. We
agree that our defenses can be compromised if a device is rooted. Root is how-
ever too strong a threat model. Only hardware or hypervisor-based solutions can
ensure defense against superuser attacks. OS-level defenses remain vulnerable.
Furthermore, a lot of modern devices are not rootable by any known means,
meaning our defenses can offer complete protection.

3 System Design

3.1 Problem Statement

Security Model The security model of APPSHIELD is depicted in Figure 1. An
employee may install both personal and business apps on her device. A personal
app may be any app that the user wishes to install, including possibly malicious
apps. The business app, however, is issued by the IT administrator, who grants
business apps as follows. First, he selects any off-the-shelf app from a mobile
marketplace that is useful for his organization and submits the request to the
BYOD vendor. Then, BYOD provider vets it using existing malware detection
systems, such as [20, 26, 35]. Finally, the app is converted into business version
and deployed in the enterprise mobile application marketplace after getting the
agreement from the application developer.

6 Zhengyang Qu et al.

o

~ x
..
.

o

" Administrator-Enterprise A

App Rewriting Service Remote

> A

Gy

Administrator-Enterprise B

;

Personal App Busmess App Set A-Enterprise A

Policy Enforcement
Local

|Ema|I Cllent|%>|Dropbp$(| }

deny.doc V0w, pdf |

! > o "
Business Address Book *‘4 Skype | | Mobile Scanner | | ~ Application rewriting flow|
: | | = Data flow

' Business App Set B-Enterprise B}

Fig. 1: Security model

Personal apps share data by existing mechanisms, such as content provider
and public external storage, on Android. For example, Instagram posts the pho-
tos managed by Dropbox. Business apps share corporate data using the mech-
anisms provided by APPSHIELD. APPSHIELD manages a secure space where all
the business data are maintained and security policies can be dynamically con-
figured and enforced at file-level granularity as the tuple:

Policy = (App-S, 0bj, App-R,D), (1)

where App_S and App_R are the apps to share and receive the data, 0bj is the ob-
ject to be shared, and D is the decision made. When the 0ffice app, for example,
opens a document “allow.doc” from the business Email Client, APPSHIELD
validates the identity of the Office app, verifies against the security policy,
opens the attachment file, and provides the business version of 0ffice with the
file descriptor of the opened file, whereas the app Dropbox could not access the
file “deny.doc” owned by Email Client due to the policy violation.

As for multi-entity management, business apps from different companies in-
stalled on a device can be classified into various logic sets by the IT administra-
tor. Given the flexibility and simplicity of management, RBAC is introduced to
model the capabilities assigned to the user through the user-role review phase.
Specifically, in Figure 1, the business app set A represents that a user is assigned
the role holding the permissions to check the email and edit attached enterprise
document belonging to enterprise A. The business app set B grants higher privi-
lege to the user and allows the access to the address book and scanned document
shared via the cloud service of enterprise B.

System Overview Our system is organized into two parts: (1) an application
rewriting framework for Android platform as the back-end that converts a per-
sonal app from mobile markets to a hardened business version by injecting MAM

AppShield 7

Table 1: Comparison with existing MAM solutions

Method System Isolation Multi-entity RBAC Granularity Sharing Portability
management
Rewriting AppShield Sandbox Yes Yes File-level Local High
dynamic
AirWatch [2] Sandbox No Yes Static Online
Mocana [15] Sandbox No No Static Online
SDK Good [13] Sandbox No No Coarse Online High
dynamic
Citrix [12] Sandbox & No Yes Static Local
Encryption
AirWatch Sandbox No Yes Static Online
OS modifi- Android L DAC No No Coarse Local Low
cation dynamic

functionalities; (2) a front-end mobile app for both Android and iOS platforms
that enforces the security policies with our proxy-based data access mechanism.

Table 1 lists existing MAM solutions on corporate data isolation/sharing and
access control. The leading MAM vendors, except Citrix [12], fail to support local
privileged data sharing, which requires the network connection and reduces the
usability. Given the lack of fine-grained access control, these solutions are not
able to provide special care of data with high-credential. All of the existing
MAM solutions listed in Table 1 only bisect apps into the business set and the
personal set. APPSHIELD supports classifying the installed apps into an arbitrary
number of groups, which enables multi-entity management. Some current BYOD
systems provide RBAC support, but they deploy the access control module on
the server side handled by their own administrators, which is not feasible in
managing the data from multiple companies on the same device due to the
lack of communication channel among IT administrators. Our solution jointly
considers role modeling and multi-entity management.

To our best knowledge, Bring Android to work [11] deployed on Android 5.0
and above is closest to our framework but it still fails to satisfy all the require-
ments listed in Section 1. This system is implemented at the operating system
level. It divides the external storage into two directories: /storage/emulated/0/
for personal apps and /storage/emulated/10/ for business apps. The two ver-
sions of an app run with different UIDs. The data in one directory is only publicly
accessible and shareable by apps from the corresponding set.

On Android L, we found that enterprise data could be shared among them
without proper regulation. Because Android L only enforces DAC at the root di-
rectories of the two application sets, the fundamental data sharing mechanism of
authorized apps remains the same with general personal apps. When a privileged
file is shared via file system, it goes through the public storage that is readable
by other business apps, and the only difference is that data exchange is in the
business root directory. It is not capable of setting up multiple business appli-
cation sets, and thus neither the multi-entity management nor the fine-grained
access control is supported.

Given our radically different design and methodology from existing studies,
we summarize the following challenges:

8 Zhengyang Qu et al.

e Lack of OS support. The existing Android storage mechanism can only sup-
port either data isolation by private internal storage or data sharing by the
system-wide read- /writable external storage or by content providers. Previous
work, such as TrustDroid [43, 28], Maxoid [42], Aquifer[31], and DR BACA
[37], need to modify Android middleware to achieve the domain-level data iso-
lation or permission regulation, which strongly reduces the portability. Thus,
it is non-trivial to enable allocating a selective set of apps privileged data
access permission without OS modification and root privilege.

e Diversity of data access behavior. Developers could utilize a diverse set
of methods to access privileged data. We need to abstract the data access
behavior to completely enforce the data isolation/sharing policies.

e Performance penalty. Some previous studies employ virtualization-based
approaches to provide isolation between private and corporate domains [22].
Such methods do not scale well on the resource-constrained mobile device.
Moreover, deep virtualization reduces the battery lifetime given the duplica-
tion of complete OS.

3.2 Application Rewriting Framework

The developer can either call the OS API based on the framework interface
written in Java or directly invoke the native libraries. All the OS-level API invo-
cations go through libc, which then makes system calls into the kernel. The libc
layer provides us with a reliable point that abstracts all the complex high-level
data access requests. Overwriting the entries in the global offset table (GOT)
during the dynamic linking procedure allows us to inject our hooks to monitor
the app’s data access behavior and enforce our security policies. Details of this
application rewriting method were discussed in Aurasium [41]. We do not claim
the application rewriting design as our contribution, but rather our investigation
on its usage in data access control.

Android apps are distributed in APK, which is a JAR archive including com-
piled Java source files in Dalvik bytecode, compiled manifest file, resources such
as layout, images, and native libraries. We first unpack the APK file and decom-
pile the dex bytecode to an intermediate representation (IR) smali [17] to enable
our modification on bytecode. Our rewriting modifies 3 parts of application:

e Native code. We implement our customized system call hooks in C/C++
to monitor the privacy-sensitive behavior, such as open() and rename() for
file access and ioctl() for data exchange via the content provider. Java code
cannot modify process memory space, so we include the native code to over-
write the GOT with the address of our detour hooks whenever any ELF file
is loaded. Moreover, business apps have frequent communication with App-
SHIELD, which includes information such as the identifier of business app to
enforce security policies, and we thus implement the communication via the
socket in the native layer for the latency performance.

e Manifest file. Android OS has the process zygote to initialize all the apps.
When an app is running, its runtime environment is established. To enable

AppShield 9

GOT overwriting in ELF file, we modify the Manifest file to wrap the target
app with our preprocess procedure. Specifically, we inject a service into the
app that invokes the native code to modify the GOTs of all the loaded ELF's,
and the preprocess procedure is configured in the parent class of the whole
target app to guarantee it is running in the middle of zygote initialization
and the start of the app. Moreover, APPSHIELD front-end app manages the
security policy repository set by the I'T administrator and enforces the security
policies that grant the app the access to privileged data. Thus, we need to
declare the Activities in the manifest file, which are injected into the target
app’s bytecode to popup Ul message about the violation of secure policies.
Regarding the data sharing/isolation of content provider, we create a mirror
content provider in the private internal storage of APPSHIELD and guard it
with a special permission. Therefore, if a business app needs access to this
content provider, it must declare this permission in the Manifest file.

e Bytecode. We modify the bytecode to configure the preprocess procedure in
the parent class of the app. For example, class A is the child class of class
B whose parent class is android.app.Application [4]. Then we replace the
parent class of class B with our injected service. The Activities showing UI
message are written in Java, compiled and converted to Dalvik bytecode.

We then compile the IR into the rewritten version of bytecode and repack
the app into an APK file. An app needs to be signed, but rewriting invalidates
its original signature, and APPSHIELD cannot sign the rewritten app using its
original private key. The signature is mainly used for identifying the developer.
Moreover, app updates require the new version of each app to be signed with
the same private key as the old version. APPSHIELD can achieve these functions
by signing apps originally signed with same keys with same (but new) keys.

APPSHIELD is deployed as a remote service and generates a random private
key to sign each business app. When the app is installed, the client side App-
SHIELD keeps the mapping from the package name to its signature, which is used
to differentiate business apps and personal apps. Due to the physical isolation of
signature generation and the one-to-one mapping of original keys to new keys, it
is difficult for an attacker to create a malicious app with the same signature as
that of a legitimate business app to launch the privilege escalation attack. Our
remote service can manage app update in the same way as mobile markets.

3.3 Proxy-based Data Access Mechanism

Figure 2 illustrates our proxy-based data access mechanism. In Android, any
operation on privileged data via file system and content provider goes through
our customized low-level system calls. The injected bytecode collects the context
of the operation, such as the package name, signature, and data properties. The
context is then sent to the Policy Enforcement Point (PEP), which is imple-
mented as a Service in APPSHIELD and can be accessed by other apps through
the socket in the native layer. On iOS platform, the request of file operation
carrying the app’s identity and target file object is sent to PEP, which is im-
plemented as a handler. The Policy Decision Point (PDP) decides whether

10 Zhengyang Qu et al.

.
;

1

Images.xcasssets Header 1
:

Load i
commands) | | (oo - \
1

‘

mach-o binary File

iOS Application

Context

/ T IT Administrator

Declsion policy update

— a Reference to Resource
s || Fiosen) o
Bytecode| Code Libraries File System Android- i

Internal Storage |

classes.dex i ;
Content Provider
.

[AndroidManifest.me] @esources] 777777777777777777777777777777

Android Application

Local Remote

Fig. 2: Proxy-based data access mechanism

the operation is allowed based on the context from PEP and the query results
from the Policy Repository (PR) that could be remotely updated by IT
administrator via Remote Policy Manager (RPM).

Android APPSHIELD virtually maintains a file system and content providers in
its internal storage. If data sharing is allowed, APPSHIELD generates a reference
to the data, which is granted to the business app. The business app indirectly
operates on privileged data based on the reference to avoid creating duplicated
data for the sake of performance, security, and synchronization. Data isolation
is achieved, because the file system and the content provider are privately stored
in the internal storage, and PDP validates whether the app requesting data
operation is a business one; if so, application identity is further verified against
security policy set.

File-system Wherever the original app stores the data, such as public external
storage and privately accessible space, APPSHIELD redirects the file operations
from business apps to its own internal storage. We need to hook the following
system calls:

e open(), creat(). As an app invokes these two system calls, APPSHIELD in-
vokes the original system calls with a modified file path in the internal storage
of APPSHIELD and passes the flags and modes with a returned file descriptor.

e rename(), mkdir(), remove(). The file paths in the parameters of these
system calls are replaced with the business file paths in its internal storage.

e stat(), Istat(). APPSHIELD first gets a file descriptor to the business file in
its internal storage and then invokes the fstat () to fetch the file status.

Content Provider Content providers manage the access to a structured set of

data, which is identified by URI [10]. Our proxy-based data access mechanism

on content provider goes as follows:

e Mirror content provider. The core of content provider is the SQLite
database. APPSHIELD duplicates the target content provider with the same

AppShield 11

schema and table definition in its private internal storage. APPSHIELD guards
the mirror content provider with a special permission.

e System call ioctl(). This is the main system call through which all binder
IPCs are sent. By interposing on this system call, APPSHIELD replaces the
URIs to the original content provider with the URIs to the mirror content
provider to redirect the data operation. Using context in this system call,
APPSHIELD validates who initiates the operations on the content provider,
and the PDP module decides whether to allow the access. The malicious app
thus cannot operate on the mirror content provider by the overwriting URI
and permission declaration.

i0OS Given the closed source i0S, it is difficult to have the rewriting framework
inject the MAM features into general i0S apps without developer support. How-
ever, we easily extend our proxy-based data access mechanism on iOS platform
and implement the APPSHIELD i0S client in Swift, which manages the virtual
file system in its private space. The business app, which owns the privileged
file, could create and update privileged file by sending it to APPSHIELD’s direc-
tory Documents/Inbox/. At the same time, APPSHIELD records the mapping
between the app’s identity and the file object, which is expressed as App-S and
Obj in Equation 1. The “Open-in management” feature, introduced from iOS
7 [14], allows APPSHIELD to control which app the device uses to open a file.
Thus, when an app App_R attempts to operate on the privileged file, APPSHIELD
validates the request against the policies in PR.

3.4 Security Policy

File isolation The file-related operations from personal apps to business apps
are strictly prohibited. All the files owned by business apps are kept in the in-
ternal storage of APPSHIELD client app, which is invisible to all the other apps.
When an app initializes the file operation request, the package name bound with
its signature are sent to APPSHIELD, which verifies whether it is a business app
against the record in a database. It is extremely challenging to evade this secu-
rity check because it requires the attacker to get the mapping relation between
package name to app signature, which is constructed on the remote server side
and securely stored in the private space of APPSHIELD client side.

Multi-entity management & RBAC Given the business apps from different
companies, IT administrators can set up multiple app sets, where the union
of the apps set’s functionalities represents the permissions granted to this role
(set). After a business app is pushed and installed on the device, it is assigned
to a business app set following the configuration made by IT administrators,
which can be dynamically adjusted on-the-fly. Once the business identity of
the app requesting file access App_R is verified, APPSHIELD would further check
whether there is an app set including both the owner of the target file App_S and
AppR. If the two apps are not grouped into the same set, the file operation will
be denied, which thus guarantees the orthogonal data access among roles. The

12 Zhengyang Qu et al.

@ Quickoffice Pro

File

(a) Application sets (b) Parallel access among application sets (c) OS contact provider access (d) Business contact provider access

Fig. 3: Multi-entity management, RBAC & Content provider isolation

example is illustrated in Figure 3a and Figure 3b, where one app set includes
email client Outlook, document editor Docs to Go, and another set consists of
the app Quickoffice. When Quickoffice tries to open the file allow.doc as an
attachment in Outlook, the request is denied because the policy maintains the
parallel access among different roles.

Fine-grained file access control Android Lollipop allows all the requests
across the business apps. In contrast, APPSHIELD’s file sharing is managed at
file-level granularity for the apps in the same set. Given the sender app App_S, the
receiver app App_R, and the file object Obj, APPSHIELD checks the corresponding
security policy in its repository, whose default value is Allow. This mechanism
enables more flexible access control in protecting the high confidential file.

Content provider isolation Business app conducts operations on the mirror
content provider. If the app’s identity is verified, the cursor of the mirror content
provider will be returned, or APPSHIELD will assign the app with the reference
to the system content provider. This design guarantees the isolated operation on
data in system default content provider and business privileged content provider.
Note the example app in Figure 3c and Figure 3d, with the behavior of accessing
the system’s address book, the enterprise app fetches the business contacts in
mirror content provider.

4 Implementation

We leverage the existing open source tools apktool [3] to unpack, decompile,
and repack the app. We implement our customized system calls in C/C++. The
open source tool AXML [5] allows us to modify the Manifest file at ease. The
activities used to popup warning message are implemented in Java and those
.class files are converted to bytecode using dx included in Android build tools.
We also implement a script in Python to rewrite the bytecode in IR.

Android has 3 system content providers: contact provider, SMS provider, and
calendar provider. The proxy-based data access mechanism is currently imple-
mented on the contact provider. The calendar provider and SMS provider could

Table 2: 35 file-related applications

AppShield

13

Package name

Isolation Multi-entity
management &
RBAC

File-level granularity

com.pixatel.apps.filemgr

cn.wps.moffice_eng

com.aor.droidedit

com.dataviz.docstogo

net.appositedesigns.fileexplo

rer

com.ImaginationUnlimited.instaframe

com.joodioapps.DocToPdf

com.lyrebirdstudio.mirror

com.mail.emails

com.majedev.superbeam

com.microsoft.skydrive

com.outlook.Z7

com.outthinking.textonpic

org.devgiant.project.zipfileextracter

com.sketchpicture.pictutreeffect

com.taxaly.noteme

com.thomasgravina.pdfscanner

com.ToDoReminder.gen

com.youthhr.phonto

cz.awk.android.docconv

joa.zipper.editor

jp-ne.shira.csv.viewer

net.daum.android.solmail

com.acr.sdfilemanager

com.sapparray.docmgr

com.jellydog.freereader

com.olivephone.office

vn.esse. WordToText

couchDev.tools.DocxParse

T

com.qo.android.am3

com.probcomp.filexplorer

com.seeke.pdfreader

Crash

com.topnet999.android.filemanager

[

com.nimblesoft.filemanage

NN IS IS OSSOSO OSSOSO OSSN SIS SIS IS IS OIS OSOSON
SN GSES E SO OO OSSOSO S SIS SIS IS IS IS OSOSOSON

T

l

l
l

SIS IR XX RS S S SSRR --dd === &

com.infraware.office.link

Cannot rewrite

[Succeed

[33/35] 31/35

[

31/35

be extended easily with small engineering efforts. For the content providers of
third-party apps, our solution interposes on the system call ioct1() and blocks
the operation when the app managing the content provider and the app accessing
the data are from different sets.

5 Evaluation

We evaluated APPSHIELD on a Samsung Galaxy Nexus with 4.3 Jelly Bean and
an iPhone 5s with i0S 8.1.1.

5.1 Security Policy Enforcement

We selected 50 apps from Google Play to evaluate the effectiveness of our proxy-
based data access mechanism. These apps have common business functions,

14 Zhengyang Qu et al.

Table 3: 15 contact provider-related applications

[Package name [Tsolation]|

com.appyown.contactsbackuprestore
com.globile.mycontactbackup
com.idea.backup.smscontacts
com.ijinshan.kbackup
com.mofinity.ui
com.payneservices.LifeReminders
com.tos.contact
net.IntouchApp
com.actimust.simplecontacts
com.netqin.contactbackup
no.uia.android.backupcontacts
com.xuecs.ContactHelper
digiteria.backup
nexg.contactbackup
com.brainworks.contacts.cuteblue

[Succeed [1

<J

< <SS X =

S
~
i

5]

such as email, file-sharing, document editing/viewing, and contact management,
which were classified into two sets by the type of sensitive data operation: (1)
35 file-related apps, and (2) 15 contact provider-related apps.

We first used APPSHIELD to convert these 50 apps to business versions. Then
we manually interacted with these apps. Only one app can not be rewritten
due to its obfuscation, which crashed the reverse engineering toolchain during
unpacking, decoding, and repacking. One app crashed after rewriting. Even if
we just decompiled and repacked the app without any code modification or
injection, this app still crashed, which is probably attributed to the usage of
repackage-detection techniques, e.g. integrity verification.

We then tested each file-related app against three security policies. Specifi-
cally, whether the file owned by the business app was isolated from personal apps
and business apps from another group; whether the request from other business
apps in the same group can be allowed and blocked according to the configu-
ration. The results are listed in Table 2. Two apps cannot enforce the security
policies regarding multi-entity management and fine-grained access control. Af-
ter investigating the reason through application reverse-engineering, we found
that these two apps looked up files with the path starting with “/./sdcard”,
which was not considered when being converted to paths in the private space of
APPSHIELD and thus the business files cannot be located.

The 15 contact provider-related apps were evaluated on content provider
isolation. We checked whether each app loaded data from the system contact
provider before rewriting and from the mirror contact provider as the business
version. The results are abstracted in Table 3. One app failed in policy enforce-
ment. Unlike the normal case where app loaded the address book data from
contact provider, this app indirectly used Intent to start the system contact
manager app. Our solution does not have the control over system apps.

Across the 120 times of policy enforcement (3 for each file-related app, 1
for each contact provider-related app), our mechanism achieves the success rate
109/120 (90.8%). The general reason for the failure is that our implementation

AppShield 15

Table 4: Large-scale evaluation on 1000 applications
[Total Apps|| Succeed [Cannot be rewritten|Crashed]

[_1000 _ [[953(95.3%)] 12(1.2%) [35(3.5%) |

does not consider developer’s specific pattern of API invocation. e.g., the path
of the privileged file.

5.2 Reliability

For the test on the reliability of APPSHIELD, we picked top 250 apps by popular-
ity on Google Play in September 2015 within the following categories: Business,
Finance, Medical, and Productivity. We used APPSHIELD to convert these
1000 apps to their business versions, and then automatically ran the apps using
the UI/Application Exerciser Monkey [18]. The results are shown in Table 4.

12 apps failed during rewriting because their obfuscation crashed the re-
verse engineering tools apktool in unpacking, decoding, and repacking. While
we acknowledge that APPSHIELD cannot reliably rewrite apps with anti-reverse
engineering techniques, our large-scale test shows that the percentage of these
apps is still low. Also, developers are actively improving the reverse engineering
tools that APPSHIELD relies on. For the 35 rewritten apps that crashed during
execution, we ran their original versions and found 29 of them also crashed,
which clearly were not caused by APPSHIELD. To investigate the reasons why
the remaining 6 rewritten apps crashed while their original versions did not, we
just unpacked and repacked them without modifying their code or data, and
found all of them still crashed after repacking. We hypothesize that they might
use anti-repacking techniques, such as signature validation. We performed these
tests on real-world apps without developer support. In an enterprise MAM sit-
uation, however, it is reasonable to assume that the MAM provider can work
with the developers so as to enable successful rewriting of their apps. Developers
have strong incentive to work with MAM providers as this allows their apps to
be used across entire enterprises.

5.3 Impact of Application Rewriting

Latency We evaluated APPSHIELD’s performance by both micro-benchmark
and macro-benchmark. We implemented a test app that opens files and loads
data from contact provider. Moreover, we developed an iOS app that can delegate
the permission of accessing its private files to a selective set of apps. Given the
closed nature of iOS, we could not modify the invocation of low-level system
calls and hence cannot build an application rewriting framework. For evaluation,
we implemented the proxy-based data access mechanism inside the app. Even
though our rewriting framework is not cross platform, our proxy-based data
access mechanism is. We expect that with reasonable developer support, our
solution is still feasible on iOS platform.

16 Zhengyang Qu et al.

Table 5: Runtime latency introduced by APPSHIELD
File System Content Provider
Android 10S Android
Original [APPSHIELD | Original | APPSHIELD | Original | APPSHIELD
[Micro-benchmark x 1000 (s)[0.180 0.382 0.171 0.347 7.303 9.014
| Macro-benchmark (s) 1.472 1.524 1.643 1.753 1.068 1.194

e Micro-benchmark. We conducted a stress test with 1000 data access opera-
tions to investigate the latency introduced by APPSHIELD. First, we recorded
the accumulated time spent on getting the file descriptor on Android and get-
ting the file contents from the iOS APPSHIELD client with and without our
security policies enforced. Because we cannot dig into low-level system calls
of closed-source iOS, we measured the time of loading file contents on that
platform. We also measured the total time of fetching the cursor, which is a
reference to the content provider. Only the operations that we benchmarked
contain the latency introduced by APPSHIELD for policy enforcement, and the
further operations on data remained the same with the unmodified app.

The results are listed in Table 5. In the worst case, APPSHIELD introduced
an overall latency of 0.202s on Android file system during 1000 operations,
because acquiring each file descriptor involves one round of IPC with App-
SHIELD. For the performance on iOS, APPSHIELD introduced a latency of
0.176s. APPSHIELD introduced a latency of 1.711s when getting the cursor of
a content provider. Since IPC is the dominant factor in the latency and has a
fixed cost, the relative latency decreases, as the original operation takes longer.

e Macro-benchmark. We asked one user to manually load data via the file
system and contact provider on the smartphone. We recorded the time from
when the user started to access the data until when she closed the app after
the data was fully rendered on screen. The user performed a series of data
access operations for 5 times with and without APPSHIELD. Table 5 shows
the average of time. APPSHIELD introduced a latency of 52ms, 110ms, and
126ms in data operations on Android file system, iOS file system, and Android
content provider, respectively. Such latency is barely perceptible. Although
user experience on application response might not be accurate to the order of
millisecond and there is a slight difference in each round of manual operation,
we try our best to simulate user’s daily usage manner.

Memory consumption & Code size Figure 4 shows the cumulative distribu-
tion function (CDF) of the overhead in memory usage and code size caused by
rewriting. To eliminate the side effect of Android garbage collection when calcu-
lating memory usage, we used the tool dumpsys in Android Debug Bridge (adb)
to get the maximal memory usage during the execution of an app. To eliminate
the side effect of compression during app packing, when calculating code size,
we sum up the customized native libraries, Manifest file, and bytecode.
APPSHIELD’s rewriting introduced less than 5% code size increment in over
95% apps, and more than 85% apps incurred the memory usage overhead less
than 60%. The average overhead was 28840.3KiB in memory usage and 33.7KiB
in code size. Our system hooks into the low-level system calls, and the dynamic

AppShield 17

0.3 —— Code size
—— Memory consumption

0.2

0.1

20 40 60 80
Code size & Memory consumption increments

Fig. 4: Code size & memory usage overhead (CDF)

linking naturally supports the efficient memory utilization by avoiding code du-
plication. Moreover, we add our customized system calls, and the classes for Ul
notification just once rather than inlining them at every point where the original
app accesses privileged data.

6 Discussion

APPSHIELD does have some limitations because of its current implementation.
Our rewriting mechanism involves unpacking the APK file and decompiling the
dex bytecode to IR. App developers sometimes use anti-reverse engineering tech-
niques to crash decompilation tools to protect their intellectual property. More-
over, when the IT administrators conduct the security verification on the apps to
be selected as business ones, the obfuscated app may challenge the correctness of
the verification. However, our large-scale evaluation shows that the percentage
of these apps is low. Moreover, the app developer could be asked not to apply
such tools, where tiny developer support is needed. Developers are often willing
to work with enterprises as this offers them a large high-payoff user base.

Another limitation is that it depends on hooking on the dynamically-linked
libc. Any system call invoked not via the system libc, such as by using a
statically-linked libc, will bypass our hooking mechanism. The chance of this
happening is very low, and can be detected statically. Regarding the iOS plat-
form, it is extremely hard to automatically rewrite apps and hook those system
calls, given its closed-source nature. However, the proxy-based data access mech-
anism is cross-platform, which is implemented as a client iOS app leveraging the
“Open-in management” feature.

7 Related Work

Virtualization € Sandboxing L4Android [29] combines the L4Linux and Google
modifications of Linux kernel to enable executing Android OS on top of a micro-

18 Zhengyang Qu et al.

kernel. Running multiple Android OS instances in parallel on the same device
enables the complete isolation but has high performance penalty. TrustDroid
[43] addresses the performance issues. It introduces the logical domain isolation
approach, where two single domains are considered and isolation is enforced as
a data flow property between the logical domains without running each domain
as a single virtual machine. Boxify [21] constructs virtual sandboxes to secure
Android apps, but the decision on which app to be isolated relies on manual iden-
tification. We model the data access control problem in the scenario of MAM,
and app identity is classified by its business/personal purpose. These approaches
fail to consider the data-sharing problem to give a fine-granulated control that
grants a selective set of apps the access to privileged data.

Rewriting Davis et al. [24] rewrite the Dalvik bytecode to allow interposing on
security sensitive APIs. Retroskeleton [23] supports the retrofit of app’s behav-
iors by static and dynamic method interposition. These approaches are based on
the high-level API interposition, and thus, they cannot completely enforce the
security policies across all layers of Android framework. Aurasium [41] adopts
the design most similar to us that provides reference monitor capabilities by
repackaging Android apps to use a customized version of libc. APPSHIELD ex-
tends the usage of this application rewriting technique with the proxy-based data
access mechanism to achieve data access control, and multi-entity management.
Similarly, ASM [27] provides a programmable interface for API hooking, which
can also be leveraged to implement user-level access control.

RBAC Vaidya et al. [40] propose RoleMiner to assist automatic role construc-
tion following a learning approach. Previous studies mostly focus on the general
modeling of RBAC. Rohrer et al. [36, 37] further investigate the specific RBAC
problem when using Android device in sensitive environment, such as finance
and health, but the mechanism involves the modification of system middleware
and lacks a system prototype to be evaluated.

8 Conclusion

In this paper, we present the proxy-based data access mechanism, which can
enforce arbitrary access control policies. Given the critical issues of MAM, our
prototype system APPSHIELD achieves multi-entity management and RBAC at
file-level granularity, apart from privileged data isolation from personal apps and
corporate data sharing across business apps. We implement it on both Android
and iOS platforms to demonstrate its cross platform property. Our design has
neither dependency on OS nor the root privilege, which thus has good portability.
APPSHIELD is successful at policy enforcement with low latency and is reliable.

AppShield 19

9 Acknowledgments

We thank our reviewers for their valuable comments. This paper was made pos-
sible by the National Natural Science Foundation of China under Grant No.
61472209, by the U.S. National Science Foundation under Grant CNS-1408790.
The statements made herein are solely the responsibility of the authors.

References

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

2016 Predictions: The year of BYOD management. http://www.rcrwireless.
com/20160129/opinion/2016-predictions-the-year-of-byod-management-
tagl0.

AirWatch: Enterprise Mobility Management. http://www.air-watch.com/.
Android-apktool: A tool for reengineering Android apk files. http://code.google.
com/p/android-apktool/.

Android application class. http://developer.android.com/reference/android/
app/Application.html.

Android binary XML file parser. https://github.com/xgouchet/AXML.

Android bionic. https://android.googlesource.com/platform/bionic/.
Android content provider. http://developer.android.com/guide/topics/
providers/content-providers.html.

Android fragmentation report august 2014 - opensignal. http://opensignal . com/
reports/2014/android-fragmentation/.

Android manifest permission. http://developer.android.com/reference/
android/Manifest.permission.html.

Android Uri. http://developer.android.com/reference/android/net/Uri.
html.

Bring Android to Work. http://www.android.com/it/preview/.

Citrix. https://www.citrix.com/.

Good Technology. https://wwwl.good.com/.

iOS Open-in management. http://searchmobilecomputing.techtarget.com/
tip/Open-in-management-helps-secure-i0S-data.

Mocana - Strong and Usable Security. https://www.mocana.com/.

Significant iPhone and iPad malware threats will emerge in 2015.
http://wuw.ibtimes.co.uk/significant-iphone-ipad-malware-threats-
will-emerge-2015-1490577.

Smali: An assembler/disassembler for Android’s dex format. http://code.google.
com/p/smali/.

Ul/Application exerciser Monkey. http://developer.android.com/tools/help/
monkey.html.

What You Need to Know About iOS Malware XcodeGhost. http://wuw.
macrumors.com/2015/09/20/xcodeghost-chinese-malware-faq/.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, K. Rieck, and C. Siemens.
Drebin: Effective and explainable detection of android malware in your pocket. In
Proc. of NDSS, 2014.

M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. Von Styp-Rekowsky. Boxify:
Full-fledged app sandboxing for stock android. In Proc. USENIX Security, 2015.

20

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Zhengyang Qu et al.

K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch, and
B. Zoppis. The vmware mobile virtualization platform: is that a hypervisor in
your pocket? ACM SIGOPS Operating Systems Review, 44(4):124-135, 2010.

B. Davis and H. Chen. Retroskeleton: Retrofitting android apps. In ACM MobiSys,
2013.

B. Davis, B. Sanders, A. Khodaverdian, and H. Chen. I-arm-droid: A rewriting
framework for in-app reference monitors for android applications. IEEE MoST,
2012.

W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth. Taint-
droid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In USENIX OSDI, 2010.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and
accurate zero-day android malware detection. In ACM MobiSys, 2012.

S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi. Asm: A programmable
interface for extending android security. In Proc. USENIX Security, 2014.

P. Kodeswaran, V. Nandakumar, S. Kapoor, P. Kamaraju, A. Joshi, and
S. Mukherjea. Securing enterprise data on smartphones using run time information
flow control. In IEEE MDM, 2012.

M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter. L4android: a
generic operating system framework for secure smartphones. In ACM SPSM, 2011.
C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee. The core of the
matter: Analyzing malicious traffic in cellular carriers. In NDSS, 2013.

A. Nadkarni and W. Enck. Preventing accidental data disclosure in modern oper-
ating systems. In ACM CCS, 2013.

M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission model
and enforcement with user-defined runtime constraints. In ACM ASIACCS, 2010.
M. Ongtang, K. Butler, and P. McDaniel. Porscha: Policy oriented secure content
handling in android. In ACM ACSAC, 2010.

S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Execute this!
analyzing unsafe and malicious dynamic code loading in android applications. In
NDSS, 2014.

V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating android anti-
malware against transformation attacks. In ACM ASIACCS, 2013.

F. Rohrer, N. Feleke, Y. Zhang, K. Nimley, L. Chitkushev, and T. Zlateva. Android
security analysis and protection in finance and healthcare. Boston University MET.
F. Rohrer, Y. Zhang, L. Chitkushev, and T. Zlateva. Dr baca: Dynamic role based
access control for android. In ACM ACSAC, 2013.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, (2):38-47, 1996.

S. Smalley and R. Craig. Security enhanced (se) android: Bringing flexible mac to
android. In NDSS, 2013.

J. Vaidya, V. Atluri, and J. Warner. Roleminer: mining roles using subset enumer-
ation. In ACM CCS, 2006.

R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical policy enforcement for
android applications. In USENIX Security Symposium, pages 539-552, 2012.

Y. Xu and E. Witchel. Maxoid: transparently confining mobile applications with
custom views of state. In ACM EuroSys, 2015.

Z. Zhao and F. C. C. Osono. Trustdroid: Preventing the use of smartphones for
information leaking in corporate networks through the used of static analysis taint
tracking. In IEEE MALWARE, 2012.

