
Integrity: Finding Integer Errors
by Targeted Fuzzing

Yuyang Rong1(B), Peng Chen2, and Hao Chen1

1 University of California, Davis, Davis, USA
{ptrrong,chen}@ucdavis.edu

2 ByteDance Inc., Beijing, China
spinpx@gmail.com

Abstract. Integer arithmetic errors are a major source of software vul-
nerabilities. Since they rarely cause crashes, they are unlikely found by
fuzzers without special techniques to trigger them. We design and imple-
ment Integrity, which finds integer errors using fuzzing. Our key contri-
bution is that, by targeted instrumentation, we empower fuzzers with the
ability to trigger integer errors. In our evaluation, Integrity found all the
integer errors in the Juliet test suite with no false positive. On 9 popular
open source programs, Integrity found a total of 174 true errors, includ-
ing 8 crashes and 166 non-crashing errors. A major challenge during error
review was how to determine if a non-crashing error was harmful. While
solving this problem precisely is challenging because it depends on the
semantics of the program, we propose two methods to find potentially
harmful errors, based on the statistics of traces produced by the fuzzer
and on comparing the output of independent implementations of the
same algorithm. Our evaluation demonstrated that Integrity is effective
in finding integer errors.

Keywords: Fuzzing · Integer errors · Software security

1 Introduction

Integer arithmetic errors are a significant source of security vulnerabilities [21].
Integer overflow and underflow1 are undefined behavior in many languages, such
as C/C++, and may cause security check bypass or malicious code execution.
For example, on April 22, 2018, attackers created a massive number of Beauty
Coins (BEC) in two transactions by exploiting an integer overflow in ERC20 [2],
which forced the exchange platform OKEx to roll back all the transactions two
days later [3]. Divide-by-zero causes the program to crash and so may be used
to launch denial of service attacks. The number of reported integer arithmetic
1 The term underflow sometimes refers to float point underflow. However, in accor-

dance with Common Weakness Enumeration (CWE) [4], in this paper underflow
means that the result of an integer arithmetic operation is smaller than the smallest
value that the type can represent.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

N. Park et al. (Eds.): SecureComm 2020, LNICST 335, pp. 360–380, 2020.

https://doi.org/10.1007/978-3-030-63086-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63086-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-63086-7_20

Integrity 361

Table 1. Verified, unique arithmetic errors that Integrity found in real world applica-
tions, compared with Angora + UBSan. Note that the total numbers of unique errors
at the bottom are fewer than the sums of the rows above because some programs share
the same library and therefore we removed these duplicate errors when calculating the
totals.

Program Errors found by Integrity Errors found by Improvement

Crashing Non-crashing Total(I) Angora + UBSan(A) (I - A)

cjpeg 1 12 13 0 +13

djpeg 17 17 14 +3

file 17 17 0 +17

img2txt 3 21 24 2 +22

jhead 2 4 6 4 +2

objdump 5 5 0 +5

readelf 38 38 0 +38

tiff2ps 27 27 1 +26

tiffcp 2 31 33 2 +31

Total 8 166 174 23 +151

bugs has been increasing rapidly in recent years, which account for 104, 232,
and 635 Common Vulnerabilities and Exposures (CVE) in 2016, 2017, and 2018,
respectively.

Prior work showed how to detect integer overflows when they happen. For
example, Integer Overflow Checker (IOC) [15,16], which has been included in
Undefined Behavior Sanitizer (UBSan) [8] since LLVM 3.5. However, they relied
on the programmer to manually create test cases to trigger those bugs, which
is laborious and unreliable. We face the challenge of how to generate these test
cases automatically and efficiently.

Fuzzing is an automated approach for finding software bugs. Starting with
AFL, graybox fuzzers have made great strides in finding bugs fast. They
instrument programs with the code for recording program state during exe-
cution and use that information to guide input mutation. Fuzzers differ in their
strategies for exploration, which aims at expanding branch coverage. Previous
exploration strategies include matching magic bytes [28], finding sanity checks
and checksums [24,35], measuring the distance between the input and target
location [11,12], and solving constraints like Angora [13]. Besides exploration,
another goal of fuzzing is exploitation. In the context of fuzzing, exploitation
refers to triggering bugs, regardless if the bug may be used to launch attacks.
It is difficult to find good exploitation strategies. As a result, most fuzzers ran-
domly mutate the input to hope that some mutated input might trigger bugs.
Given the huge space of input, the probability that a randomly mutated input
will trigger a bug is low. Moreover, fuzzers have difficulty in detecting bugs that
do not crash the program because they lack reliable signals that indicate bugs in

362 Y. Rong et al.

those cases. For example, arithmetic errors cause a program to misbehave (e.g.,
to produce wrong results), but they rarely cause the program to crash.

Our goal is to allow fuzzers to exploit integer arithmetic errors efficiently.
Our key technique is to provide fuzzers with critical information by targeted
instrumentation such that the information can later be used to guide fuzzers to
exploit potential bugs. For example, to detect overflow when adding two 32-bit
signed integers, we extend both the operands to 64 bits, compute their sum
(which cannot overflow), and, if the sum is out of the range of 32-bit signed
integers, execute a special guard branch to send a signal to the fuzzer to indicate
the error. This way, if the fuzzer can reach the guard branch, then an integer
overflow occurs. The same idea can be used to check for other bugs, such as
index out of range, null pointer dereference, etc.

In principle, the above idea works with any fuzzer. However, to find bugs effi-
ciently, we need to overcome three challenges. First, we need to select a fuzzer
that efficiently solves the constraints indicating arithmetic errors (Sect. 3.2). Sec-
ond, the guard branches inserted by the fuzzer have much lower expected reacha-
bility than the original branches, because the guard branches indicate arithmetic
errors but most arithmetic operations should not have such errors. Therefore,
we need to redesign the fuzzer’s scheduling algorithm to assign different priori-
ties to the original and guard branches, respectively (Sect. 3.2). Finally, we need
to send a unique signal to the fuzzer to indicate arithmetic errors if the guard
branches are explored. The fuzzer should let the program continue exploring
branches after receiving the signal, in contrast to when the signal indicates a
memory violation (Sect. 3.2).

It might be tempting to implement the above idea by simply combining a
sanitizer (e.g., UBSan [8]) with a fuzzer. However, because of the challenges
described above, such a naive combination would result in poor performance,
as we will show in Sect. 5.4. Instead, we implemented our approach in a tool
called Integrity. As we will show in Sect. 5, Integrity is effective in finding integer
arithmetic errors in both standard test suites and popular open source programs.
On the Juliet Test Suite [9], Integrity found all the bugs with no false positive
(Table 2). Table 1 shows the bugs that Integrity found on 9 popular open source
programs from 6 packages. In total, Integrity found 174 unique arithmetic errors,
where 8 caused crash but 166 did not. We define a unique error by a unique (file
name, line number, column number) tuple.

Fuzzing is attractive because it provides inputs that witness errors. When
an error caused a crash, there is no doubt that the program misbehaved. How-
ever, when the error did not cause a crash, verifying whether the error caused
the program to misbehave becomes difficult as the decision must take domain
knowledge into consideration. We made progress on this problem by proposing
two methods. The first method is based on the statistics of the traces generated
by the fuzzer. If an integer arithmetic error occurred on most traces generated
by the fuzzer where the arithmetic operation executed, then the error was likely
benign, as long as the fuzzer had adequate path coverage. The other method
is based on comparing the output of independent implementations of the same

Integrity 363

algorithm on the same input. If an integer error caused one implementation to
misbehave, then the other independent implementation of the same algorithm
will unlikely generate a similar output, as long as the output is a deterministic
function of the input. These two approaches, when applicable, call attention to
integer errors that are potentially harmful.

2 Background

2.1 Integer Arithmetic Errors

In statically typed languages such as C, the type of a variable is determined at
compile time. An integer type has a fixed width and so can represent only a
range of integers. For example, an unsigned 32-bit integer variable can represent
only integers in [0, 232 − 1]. When the result of an arithmetic operation exceeds
the upper/lower bound of its type, overflow/underflow occurs. Another common
arithmetic error is divide by zero.

Some compilers have the option to insert code that checks for integer arith-
metic error at runtime. However, the checks cause runtime overhead. Moreover,
some arithmetic errors are benign because they are intended by the programmer.
For example,

v << (32 - b) >> (32 - b)

is a common idiom to extract the lower b bits from the unsigned 32-bit integer v.
As long as b is in (0, 32]2, the implementation correctly achieved the program-
mer’s goal, even though overflow might happen during the left shift. It would be
undesirable to terminate the program upon detecting such benign overflows.

2.2 Fuzzing

To avoid runtime overhead or terminating programs upon benign arithmetic
errors, we would like to find those errors during testing. Fuzzing is a popular
technique for finding bugs automatically with Graybox fuzzing being particularly
popular. It instruments programs with the code for recording program state
during execution and uses that information to guide input mutation. However,
integer overflow/underflow bugs rarely cause crashes, and most fuzzers cannot
detect bugs that do not crash the program. In this paper, we propose an approach
to instrument arithmetic operations to give the fuzzer critical information to help
it find potential errors in arithmetic operations.

2 It is undefined behavior when b is a constant 0. Some architectures only allow 5
bits for the second operand, making shift by 32 bits equivalent to shift by 0 bits,
producing v as the result; yet compilers, when −O2 optimization is turned on, will
optimize this line to 0 if b is compile-time known to be 0.

364 Y. Rong et al.

3 Design

Fuzzers mutate the input to find bugs in the program. They have two goals: (1)
exploration: explore different paths; and (2) exploitation: trigger bugs (regard-
less whether they can be used to launch attacks). Previously, fuzzers were used
predominantly to find memory errors. To use fuzzers to find integer arithmetic
errors effectively, we need to modify both their exploration and exploitation
strategies.

3.1 Exploitation

Arithmetic Operations. We detect integer overflow and underflow during
addition (+), subtraction (-), multiplication (*), shift left (<<), and divide by
zero during division (/) and remainder (%). We instrument LLVM IR code to
detect those errors as follows.

– +, -, *: We promote both the operands to the next longer type (e.g., from
int32 t to int64 t, and from uint32 t to uint64 t), evaluate the expres-
sion in the longer type, and check if the result is out of the range of the
original type. As long as the width of the next longer type is as least doubled
(e.g., int8 t, int16 t, int32 t, int64 t), which is the case in C and most
C-like languages, the operation in the longer type never overflows. For exam-
ple, to check if (int8 t)x + (int8 t)y overflows, we compute (int16 t)x
+ (int16 t)y and check if the sum is out of the range of int8 t.

– <<: A left shift operation x << n overflows if and only if hp(x) + n is greater
than or equal to the width of (number of bits in) the result type, where the
function hp(x) is the position of the highest non-zero bit of x. For example,
hp(0b00000001) = 0, hp(0b10000000) = 7.

– / and %: We check if the second operand is 0. For /, we also check if the
operands are MININT and –1 because MININT / –1 = MAXINT + 1 over-
flows.

Range Inference. Integer types have different ranges. To infer the correct
integer type, we must determine both the bit width and sign.

Bit Width Inference. For each operation, LLVM promotes every operand shorter
than 32 bits to 32 bits, executes the operation, and then truncates the result
back to the destination type when necessary. Therefore, if a truncation follows
the operation, then we use the destination type of the truncation to infer the bit
width; otherwise, we use the left-hand side of the operation.

Integrity 365

Sign Inference. LLVM IR does not distinguish between signed and unsigned
variables. LLVM determines if an operation on 32 or more bits may have signed
overflow or unsigned overflow using the sign information from abstract syntax
tree (AST), and encodes that information as a tag in the arithmetic instructions.
For example, add nsw (no signed wrap) and add nuw (no unsigned wrap). We
use these tags to infer the sign. However, operations on integers shorter than 32
bits carry no such tag because they never overflow in the range of 32-bit integers.
In those cases, we infer the sign of each operand using the cast operation before
the arithmetic operation. When LLVM casts the shorter type to 32 bits, we
examine if the cast is signed or unsigned. If both operands are cast, we take the
sign of the operand of the longer type if the operands have different bit widths.
If they have the same bit width, and if either operand undergoes an unsigned
cast, we infer the sign of the destination type as unsigned; otherwise, we infer
the sign as signed.

Instrumentation Reduction. When we instrument an integer arithmetic
operation to check for arithmetic errors, we create new branches. When a pro-
gram has many integer arithmetic operations, the instrumentation would create
many new branches for the fuzzer to explore. However, these branches differ from
the original branches in the program in a very important way for the fuzzer: we
expect most original branches to be reachable but few instrumented branches
to be reachable (because the latter represent arithmetic errors). Since unreach-
able branches waste the fuzzer’s computing budget, during instrumentation we
eliminate branches that are guaranteed unreachable as follows:

– While we need to check both overflow and underflow of signed operations,
we need not check underflow of unsigned operations, because once promoted
to a wider type, underflow becomes overflow. For example, when the original
type is 8-bit unsigned int, (uint8 t)0-1 = 0xff causes underflow. However,
when promoted to 16-bit unsigned int, (uint16 t)0-1 = 0xffff causes an
overflow on the original type because the result 0xffff is larger than the upper
limit of the original type, 0xff.

– We do not check shift operation on negative integers for the same reason as
above.

– When an operation is square, we do not check for underflow because it cannot.
– When a value is added to a negative constant or is subtracted by a positive

constant, we do not check for overflow; similarly, when a value is added to a
positive constant or is subtracted by a negative constant, we do not check for
underflow.

Section 5.5 will show that the above optimization significantly reduced the
number of branches that the instrumentation added to the program, and hence
the number of constraints that the fuzzer tries to solve.

366 Y. Rong et al.

3.2 Exploration

The instrumentation described in Sect. 3.1 reduces the problem of exploitation to
the problem of exploration. At each operation with potential integer arithmetic
errors, Integrity inserts a conditional statement to check for integer arithmetic
errors. When an error happens, the conditional statement executes a branch,
called the guard branch. In principle, we can use any fuzzer to do the exploration.
However, we desire to select a fuzzer that can explore arithmetic errors efficiently.
Moreover, since the guard branches are inherently different from the branches in
the original program (original branches), the fuzzer must treat them differently:
the fuzzer should triage between the original and guard branches when schedul-
ing branches (Sect. 3.2), and should behave differently between when arithmetic
errors occur and when other errors occur (Sect. 3.2).

Fuzzer Choice. Section 3.1 provides critical information to the fuzzer by instru-
menting the guard branches that represent those errors. While we may use any
fuzzer to take advantage of that information, we selected Angora [13] for its two
beneficial properties.

First, Angora fuzzes individual branches and can prioritize different branches.
With enough computing budget, Angora fuzzes every branch on a path at least
once. Since we associate every potential arithmetic error with a guard branch,
Angora exploits (tries to trigger) every arithmetic error on the path. Angora
also allows us to triage different branches, which is handy because the original
branches and guard branches have different expected reachability (Sect. 3.2).

Second, Angora’s input mutation strategy fits our goal well. When fuzzing a
branch, Angora uses byte-level taint tracking to identify the input byte offsets
that flow into the predicate that guards the branch. Then, Angora considers the
predicate as a blackbox function on those byte offsets and uses gradient descent
to find an input that satisfies the predicate. When the blackbox function is linear
or monotonic, this mutation strategy guarantees to find a solution quickly. + and
- are linear functions, and * is a monotonic function. When their operands take
their values directly from in the input, Angora can solve the predicates of those
operations efficiently.

Branch Triage. As discussed in Sect. 3.1, original branches and guard branches
have different expected reachability: we expect most original branches to be
reachable but few guard branches to be reachable because few arithmetic opera-
tions have errors. Moreover, before the fuzzer can reach an original branch b, it
cannot explore any guard branch that b dominates.3 Therefore, we must let the
fuzzer assign higher priority to the original branches than to the guard branches.

We replaced Angora’s scheduling with the following algorithm:

– At compile time, instrument each branch with a tag to indicate whether it is
an original branch or a guard branch.

3 A node d dominates a node n if every path from the entry node to n must go through
d.

Integrity 367

Algorithm 1. Integrity’s scheduling algorithm.
function pop � Returns the next branch to fuzz

return priorityQueue.pop()
end function
function push(b) � Pushes a new or existing branch onto the queue

if b is a newly found branch then
if b.tag = Tag.Original then

b.priority ← MAX PRIORITY
else

b.priority ← GUARD INIT PRIORITY
end if

else
b.priority ← b.priority − 1

end if
priorityQueue.push(b)

end function

– At run time, store all the branches to be fuzzed in a priority queue.
– When finding a new branch, assign the branch a priority according to the

branch tag (original or guard branch), and then push the branch onto the
priority queue (PUSH in Algorithm 1).

– When failing to solve a branch, lower the priority of the branch and push it
onto the priority queue (PUSH in Algorithm 1).

– When ready to explore a new branch, call POP in Algorithm 1 to get the
branch with the highest priority.

Signal of Errors. When the fuzzer receives a signal indicating an error in the
program, it stops the program execution and records the input, and the error
and its location. Memory access violation, such as segmentation fault, is the
most common signal. To reuse this framework, Integrity lets the instrumented
branches send a pre-determined signal to the fuzzer to indicate arithmetic errors.

However, merely sending a signal would be inadequate. Fuzzers stop the
program when receiving signals. It makes sense when the signal is triggered by
a memory error because the program cannot continue anyway. However, when
the signal is triggered by an arithmetic error, the fuzzer should let the program
continue to explore more paths, particularly when the error is false positive (see
Sect. 5.2 for examples). Without this ability, a false positive arithmetic error early
in the program would prevent the fuzzer from exploring most paths because most
paths descend from the location of that error. We implemented this desirable
function in Angora.

4 Implementation

We implemented Integrity as an LLVM pass in 924 lines of C++. We also mod-
ified Angora to do branch triage (Sect. 3.2) and to deal with the new signal of
arithmetic errors (Sect. 3.2) in 3419 lines of Rust.

368 Y. Rong et al.

We found that some programs may use 64-bit types (uint64 t, for example).
However, Angora supported only 64-bit constraints, which was inadequate to
check the overflow of the arithmetic operation on two 64-bit integers. To tackle
this problem, we extended Angora to support 128-bit constraints. We did so by
using u128 and uint128 t in Rust and C, respectively. In the case of a 128-bit
or higher precision integer operation, we created a new struct that has two (or
more) 128-bit unsigned integers inside and implemented all the arithmetic traits
(Add, Sub, Mul, etc.) for it.

5 Evaluation

We evaluated the performance of Integrity on both the Juliet test suite [9] and
popular open source programs. We also evaluated the impact of instrumentation
reduction described in Sect. 3.1.

All our experiments ran on a Linux server with two Intel Xeon Gold 5118
CPUs and 256 GB RAM.

We set MAX PRIORITY and GUARD INIT PRIORITY in Algorithm
1 to 65 535 and 65 534, respectively, to guarantee that the fuzzer will try to
solve all the original branches at least once before solving the guard branches.

5.1 Juliet Test Suite

The Juliet test suite, developed by the National Security Agency (NSA), contains
tests for errors listed in Common Weakness Enumeration (CWE) [4]. It organizes
the tests in a hierarchy: at the top level, the suite contains one test set for each
CWE. Then, each test set contains many subsets, and each subset contains
many tests. Each test is a C or C++ program containing a carefully designed
and inserted error. This test suite provides ground truth for evaluating the false
positive and false negative of Integrity.

We used Juliet Test Suite v1.3 and selected the following test sets relevant
to integer arithmetic errors:

– CWE190 Integer Overflow
– CWE191 Integer Underflow
– CWE194 Unexpected Sign Extension
– CWE197 Numeric Truncation Error
– CWE369 Divide by Zero

We excluded the following tests in the above test sets:

– Deterministic errors: These errors always happen regardless of the input, e.g.,
overflow caused by constant integers.

– Floating point errors, since we focus on integer arithmetic errors only.
– C++ programs. As discussed in Sect. 3.2, we used Angora as the fuzzer, and

currently it supports only C programs. This is not an inherent limitation of
Integrity.

Integrity 369

Table 2. Errors that Integrity found on the Juliet test suite. A“–” cell means that
the corresponding test set on the top contains no corresponding subset on the left.
Integrity found all the errors with no false positive. Every test contains one inserted
arithmetic error except subset s02 of CWE197, where half of its inserted bugs contain
two truncation errors each.

Subset Set

CWE190 CWE191 CWE194 CWE197 CWE369

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

s01 114 114 76 76 304 304 152 152 112 112

s02 38 38 38 38 0 0 76 114 38 38

s03 190 190 114 114 – – – – – –

s04 114 114 190 190 – – – – – –

s05 114 114 190 190 – – – – – –

s06 190 190 – – – – – – – –

s07 190 190 – – – – – – – –

Fig. 1. A test in CWE197 s02, which contains two truncation errors on Line 4 and 6.

Two CWEs related to integer arithmetic errors are worth mentioning. One
of them is CWE197 Numeric Truncation Error. Integer truncation causes an
error when the result is out of the range of the destination type. Therefore, to
detect this error accurately, we must detect the destination type (both sign and
width) accurately. For example, consider x & 0x0000ffff. If the destination
type has more than 16 bits or if it is unsigned 16-bit integer, then no overflow
can happen. In all the tests of CWE197, it is easy to infer the destination types
accurately because of the way how those errors were injected. However, in real
world programs, we found that accurately inferring the destination type in the
context of integer truncation was difficult. Therefore, we disabled this rule when
checking real world programs in Sect. 5.2.

The other one is CWE680 Integer Overflow to Buffer Overflow. This error
happens when calling the function malloc(site t) and when size t is defined
by uint32 t, which occurs on only 32-bit platforms. Since the fuzzer that we
used(Angora) ran only on 64-bit platforms, we did not test this error.

Table 2 shows that Integrity found all the bugs in the test sets of the above
five CWEs with no false positives. Every test case has one inserted arithmetic

370 Y. Rong et al.

Table 3. Unique errors that Integrity found in common open source programs. Note
that the total numbers of unique errors at the bottom are fewer than the sums of the
rows above because when calculating the totals we removed the duplicate errors in the
libraries shared by different programs.

Package Version Program Unique errors

Divide
by zero

Overflow
crashing

Non-crashing Benign

libjpeg-ijg v9a cjpeg 1 12 63

djpeg 17 101

file 5.32 file 17 7

libcaca 0.99beta99 img2txt 1 2 21 36

jhead 3.00 jhead 2 4 4

binutils 2.29 objdump -x 5 11

readelf -a 38 27

libtiff 4.0.7 tiff2ps 27 36

tiffcp -i 2 31 49

Total 4 4 166 315

error except subset s02 of CWE197. This subset contains 76 tests, where half of
the tests contains two truncation errors each as shown in Fig. 1: first truncating
the result of atoi into short, and then further into char, both of which cause
truncation errors. Therefore, Integrity found a total of 38+38× 2 = 114 unique
errors in this subset of 76 tests.

We tried Angora and Angora + UBSan on this test set, respectively. Neither
of them found any bugs.

5.2 Real World Applications

We evaluated Integrity on popular real world applications. We selected 9 applica-
tions from 6 packages that have many integer operations, such as image process-
ing and executable file parsing. Detailed version and command line arguments
are shown in Table 3. On each program, we ran Integrity on 12 cores for 72 h.

Table 3 shows all the unique errors that Integrity found. We identified a
unique error by the (file name, line number, column number) tuple where the
error occurs. We divide those errors into three categories. The first category
contains all errors that caused crashes (Sect. 5.2). Then, we manually reviewed
the remaining errors to identify benign ones. We determined an error to be
benign when we found that the error did not cause the program to misbehave
(Sect. 5.2). After excluding those benign errors, the remaining errors belong to
the non-crashing error category (Sect. 5.3).

It is also worth mentioning that tiff2ps and tiffcp share the same underlying
library(libtiff). As a result, Integrity found 6 duplicate non-crashing errors and

Integrity 371

19 benign errors in both program. We removed those duplicate errors from total
error count in Table 1 and Table 3.

Benign Errors. An error is benign when we found strong evidence that the
error had been expected by the programmer and therefore did not cause the
program to misbehave. We classify all the benign errors found into two classes:

Intentional Overflows. The programmer intended to use the result of an over-
flown value. One example is v << (32 - b) >> (32 - b), where the program-
mer intended to exact the lower b bits from the unsigned 32-bit integer v, and
implemented it by shifting v by 32− b bits to the left and then shifting by 32− b
bits to the right. As long as b is in (0, 32], the implementation correctly achieved
the programmer’s goal, even though overflow might happen during the left shift.

Unused Overflown Values. This class of benign errors is commonly introduced
by compiler optimization.

while (i--) { /* loop body */ }

is an example, Fig. 2 shows the compiled LLVM IR. The loop subtracts 1 from
the loop variable (an unsigned integer) and saves the result in another variable
just before checking the predicate that if the loop variable is not 0. When the
loop variable is 0, the subtraction underflows, but its result will never be used
because the loop finishes.

Fig. 2. An example of benign integer overflow. After LLVM optimization passes, the C
program was translated into the IR shown in the figure, the syntax slighted modified for
readability. On Line 3, the add instruction overflows when the loop variable %iter var

is 0, but the overflown result will never be used.

372 Y. Rong et al.

Crashes. Arithmetic errors may cause crashes in two different ways. Divide by
zero causes a crash immediately, while overflown or underflown values may cause
a crash when used as indices to arrays. Integrity discovered eight crashes, among
which four are divide by zero, and four are overflow.

Figure 3 shows a divide by zero error on Line 4 in the program libjpeg-ijp.
Integrity found an input that caused the parameter samplesperrow to become
0, which then caused divide by zero on Line 4.

Fig. 3. Divide by zero error in jmemmgr.c of libjpeg-ijg happens when the parameter
samplesperrow is zero.

5.3 Which Non-crashing Error Is Harmful?

An error is said to be harmful when it triggers unexpected behavior, e.g. to
produce a wrong result. Harmful errors may or may not be exploitable in the
context of software security, yet they still cause problems in software correctness
and reliability. If an arithmetic error causes a crash, it is definitely a harmful
error. However, when it does not cause a crash, it is non-trivial to validate
whether it is harmful.

We manually inspected all the 481 non-crashing errors reported by Integrity
and determined that 315 (or 65 %) were benign. However, manual inspection is
tedious and unscalable.

Automatically determining if an arithmetic error is harmful is challenging
because it depends on the semantics of the application. Nevertheless, we made
progress on this problem by proposing two methods, one based on statistics
of the traces generated by the fuzzer, and the other based on comparing the
output of independent implementations of the same algorithm on the same input.
These two approaches, when applicable, call attention to integer errors that are
potentially harmful.

By Statistics of Traces. This method is based on the conjecture that a harm-
ful bug in a popular open source program unlikely occurs during most executions,
because otherwise it would have been noticed, reported, and fixed with high
probability. By this conjecture, if an integer arithmetic error occurred on most
traces generated by the fuzzer where the arithmetic operation executed, then
the error was likely benign, as long as the fuzzer had adequate path coverage.

Integrity 373

Table 4. Benign arithmetic errors determined by statistics of traces. We use the benign
errors found by manual inspection as the ground truth when calculating the precision
and recall of the benign errors determined by statistics of traces.

Program Benign errors found

by manual

inspection

Benign errors determined by statistics of traces

Threshold = 0.95 Threshold = 0.70

Count Precision Recall Count Precision Recall

cjpeg 63 8 100.0% 12.7% 48 87.5% 66.7%

djpeg 101 19 100.0% 18.8% 42 97.6% 40.6%

file 7 6 83.3% 71.4% 8 87.5% 100.0%

img2txt 36 18 88.9% 44.4% 39 59.0% 69.9%

jhead 4 4 100.0% 100.0% 5 80.0% 100.0%

objdump 11 12 83.3% 90.9% 12 83.3% 90.9%

readelf 27 28 71.4% 74.1% 36 72.2% 96.3%

tiff2ps 36 25 88.0% 61.1% 37 62.2% 63.9%

tiffcp 49 46 67.4% 63.3% 53 67.9% 73.5%

Total 315 149 79.2% 37.5% 280 75.7% 67.3%

To implement the above idea, for each non-crashing arithmetic error, we
measured its rate of occurrence on all the traces where the arithmetic operation
occurred. When this rate is above a threshold, we consider this error to be benign.
We used the benign errors that we manually determined in Table 3 as the ground
truth. Then, at each threshold, we counted the number of benign errors using
the rule above, and calculated precision and recall based on the ground truth.
That is, let G be the set of benign errors that we manually determined, and S
be the set of benign errors that we identified by the statistics of traces. Then
precision is |S∩G|

|S| and recall is |S∩G|
|G| .

Table 4 shows the number of benign arithmetic errors and their precision
and recall with regard to the ground truth. The overall precision is 79.2% at
the threshold of 0.95, and is 75.7% at the threshold of 0.70. The overall recall is
37.5% at the threshold of 0.95, and is 67.3% at the threshold of 0.70. On several
programs, this method was quite accurate. For example, at the threshold of 0.95,
this method achieved both 100% precision and 100% recall on jhead, and 100%
precision on cjpeg. On 7 out of 9 programs the precision reaches above 80%,
which indicates that our method can efficiently rule out part of benign error and
thus reduce human labor.

By Comparing Independent Implementations. This method uses two
independent implementations P and Q of the same algorithm to evaluate
whether an arithmetic error is likely harmful. If P and Q (1) agree (have identi-
cal or similar output) on all the inputs that trigger no arithmetic errors but (2)
disagree (have different outputs) on the inputs that trigger arithmetic errors in
P , then the errors in (2) are likely harmful. This is based on the conjecture that
when an input triggers a harmful arithmetic error in P , it unlikely also triggers
an arithmetic error in Q, and even if it does, the two errors unlikely cause P

374 Y. Rong et al.

and Q to generate similar output. Obviously, the first property above requires
the output to be a deterministic function of the input, i.e., no randomness may
affect the output.

We applied the above method on the program djpeg in the libjpeg-ijg pack-
age. A JPEG encoder compresses an image by (1) dividing the image into 8 × 8
matrices and applying discrete cosine transform (DCT) to each matrix, (2) sup-
pressing the high-frequency signals by element-wise dividing each matrix by a
predefined matrix and rounding the result to the nearest integer, and (3) dis-
carding all the tailing zeros. The decoder reverses the above operations, where
it can infer the number of discarded zeros based on the size of the small matrix
and that of the image.

Since a JPEG decoder uses floating point arithmetic, two independent
decoders may create slight different outputs on the same input. However, if
the difference is large, then at least one decoder is misbehaving. We measured
the difference as the average L1 distance between two images. More precisely,
let

– A and B: two images of dimension m × n.
– Ai,j : a 3-channel vector representing the RGB values of the pixel at (i, j)
– A

(k)
i,j : the value of the kth channel. This value is in the range [0, 255], and

k ∈ {1, 2, 3}.

Definition 1. The average L1 distance between two images A and B of identical
size is:

D(A,B) =

∑
c∈C(A,B)

∑
k∈[1,3] | c(k) |

| C(A,B) | (1)

where

C(A,B) = {Ai,j − Bi,j : i ∈ [1,m], j ∈ [1, n], A[i, j] �= B[i, j]}

To evaluate whether non-crash arithmetic errors in libjpeg-ijg are harmful,
we selected libjpeg-turbo as an alternative, independent implementation. libjpeg-
turbo has the same API as libjpeg-ijg ; however, its decoder uses SIMD instruc-
tions to accelerate arithmetic operations while libjpeg-ijg does not.

We prepared two sets of JPEG images as input to the decoders:

– Normal images: We randomly picked 100 JPEG images from Android sys-
tem images, LATEX testing images, libjpeg testing images, and GNOME 3.28
desktop images. None of them triggered arithmetic errors on either decoder.

– Exploit images: We collected images produced by Integrity that triggered
arithmetic errors in the program djpeg in the package libjpeg-ijg, and then
removed the following from the collection:

• Broken images: Integrity generated many images that are invalid JPEG
and therefore cannot be rendered.

Integrity 375

• Images whose width or height is less than 8 pixels. Since JPEG encoder
partitions images into 8 × 8 matrices, the decoder’s behavior on those
images may be implementation-dependent.

• Images that triggered only the benign errors described in Sect. 5.2
After filtering, we were left with 67 exploit JPEG images.

Figure 4 compares the cumulative distribution functions (CDF) of the aver-
age L1 distance (Eq. 1) between normal and exploit images. The figure cleanly
separates the CDF of normal and exploit images with no overlap: the L1 distance
of normal images ranges from 0.0 to 6.0 with a median of 2.4, while the distance
of exploit images ranges from 16.9 to 342.4 with a median of 217.2. This implies
that those arithmetic errors that Integrity found in libjpeg-ijg are harmful.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Average L1 difference

C
D

F

normal images
exploit images

Fig. 4. Cumulative distribution function (CDF) of the average L1 distance (Eq. 1)
between the output of two decoders on the same input JPEG image. The CDF of the
normal images is cleanly separable from that of the exploit images.

5.4 Comparison with Angora + UBSan

We compared Integrity with simple combination of Angora and UBSan. We ran
Angora with UBSan in the same experimental configuration as we described in
Sect. 5.2.

Table 1 compares the number of verified bugs found by Integrity and
Angora+UBSan, respectively. Integrity found many more bugs than Angora
on each program. On all program together, Integrity found 174 bugs while
Angora+UBScan found only 23 bugs. Angora+UBSan found no bug in file, obj-
dump and readlef, but Integrity found a total of 60 bugs in them. This result
shows that Integrity performs far superior than simple combination of Angora
and UBSan. Without proper information sharing (Sects. 3.2), the fuzzer and the
sanitizer cannot cooperate well because the fuzzer would not know where the
potential bugs lie and divert computation power accordingly.

As a side note, we had to overcome engineering difficulties to combine Angora
and UBSan. Angora compiles two binaries for each program: one uses Data Flow
Sanitizer (DFSan) [6] to do taint tracking, and the other monitors the execution

376 Y. Rong et al.

traces. DFSan instruments instructions to track data flow. If the program calls a
function in third-party libraries, DFSan needs a modeled function to know how
to propagate the taint. When we initially compiled the programs using UBSan
and DFSan, it failed because DFSan could not find the modeled functions instru-
mented by UBSan. [31] also warned such issues when using multiple sanitizers.
We applied a temporary hack to overcome the compilation problem: we enabled
DFSan and disabled UBSan when compiling the binary for taint tracking, and
enabled UBSan and disabled DFSan when compiling the binary for monitoring
execution traces.

Table 5. Number of instrumented arithmetic operations before and after instrumen-
tation reduction

Library # of instrumentation Remaining

after reduction before reduction instrumentation

libpng 2518 2773 90.80 %

binutils 16432 18203 90.27%

libjpeg 14335 15312 93.62%

libtiff 7383 8123 90.89%

libpcap 714 887 80.50%

Total 41382 45298 91.36%

5.5 Instrumentation Reduction

To evaluate the effect of instrumentation reduction described in Sect. 3.1, we
instrumented five libraries with and without reduction and compared the number
of instrumented arithmetic operations. Table 5 shows that overall this technique
eliminated 9% instrumented arithmetic operations.

6 Related Work

6.1 Detecting Integer Overflow

Integer overflow has been extensively studied [15,16,22,27,34,36]. IOC [15,16]
instruments AST to test for overflow. It is now part of LLVM’s UBSan [8].

IOC tends to generate many benign overflows. IntEQ [34] and IntFlow [27]
intend to cut down reported benign overflows. Both use the assumption that an
overflown value is benign unless it is used in a sink. IntFlow combines static and
dynamic analysis to determine if any overflown value flows into a sink. IntEQ
relies on symbolic execution to achieve this goal. It computes a value flown into
a sink in both high and low precision and compares the two values. Both these
tools rely on the user to provide input (test cases) for finding overflows. Integrity

Integrity 377

overcomes this limitation by triggering arithmetic errors automatically through
program instrumentation targeting arithmetic errors.

z3 [22] is a tool for solving integer-related symbolic constraints. IntScope [36]
uses symbolic execution to detect integer overflow. Unlike IOC, IntScope does not
rely on source code but translates x86 binary to an intermediate representation
called PANDA first, then symbolically executes PANDA to detect possible arith-
metic errors. Since Integrity uses fuzzing, it inherits the advantages of fuzzing
over symbolic execution, such as faster execution and tolerating obscure code
(e.g., external libraries, system API, etc.).

6.2 Coverage-Directed Fuzzers

A coverage-directed fuzzer mutates the input to explore paths in the hope to
trigger bugs on some of these paths [1,5,10–14,28,30,33,37]. If a mutated input
explores a new path, the fuzzer keeps the input as a seed. AFL [1] and Lib-
Fuzzer [5] employ evolutionary algorithms to mutate input. Driller [33] and
QSYM [37] try to solve complex path constraints by concolic execution. VUzzer
[28] and REDQUEEN [10] learn magic bytes and generate satisfying input with-
out symbolic execution. AFLGo [11] and Hawkeye [12] direct fuzzing to a set
of target program locations efficiently. Angora [13] models a path constraint as
a black-box function, and uses optimization methods such as gradient descent
to solve it. NEUZZ [30] also uses gradient descent to explore new paths and
approximates the target program’s branch coverage by a neural network.

Many coverage-directed fuzzers can turn on various sanitizers to detect bugs
during exploration [7,8,18,29,31,32]. For example, Address Sanitizer [29], Mem-
ory Sanitizer [32], Thread Sanitizer [7], and Undefined Behavior Sanitizer [8]
detect invalid memory addresses, use of uninitialized memory, data races, and
undefined behavior, respectively. However, those fuzzers only passively detect
those bugs when they are triggered by random mutation. By contrast, Integrity
instruments arithmetic operations with potential errors to triggers them actively.

6.3 Bug-Directed Fuzzers

Besides integer arithmetic errors, researchers developed fuzzers to exploit other
vulnerabilities. SlowFuzz [26] targets algorithmic complexity vulnerabilities
guided by resource usage. RAZZER [20] guides fuzzing towards potential data
races in the kernel, then deterministically triggers a race. NEZHA [25] exploits
the behavioral asymmetries between multiple test programs to focus on inputs
that are more likely to trigger semantic bugs. Tensorfuzz [23] use coverage-guided
fuzzing methods for neural networks to find numerical errors in a trained neural
network. Dowser [17] determines “interesting” array accesses that likely harbor
buffer overflow, and triggers overflow by taint tracking and symbolic execution.
TIFF [19] infers input types by dynamic taint analysis, and sets input bytes
with defined interesting values based on its type to maximize the likelihood of
triggering memory-corruption bugs. Compared with those fuzzers, which were
built to detect those specific bugs, Integrity reduces the problem of exploitation

378 Y. Rong et al.

to the problem of exploration, and therefore can work with most fuzzers and can
benefit from the advances of exploration technologies.

7 Conclusion

We designed and implemented Integrity for triggering integer arithmetic errors
using fuzzing. By finding and instrumenting integer arithmetic operations with
potential errors, Integrity passes critical information to the fuzzer to help it
trigger potential bugs. Integrity found all the integer errors in the Juliet test
suite with no false positive. On 9 popular open source programs, Integrity found
a total of 174 true errors, including 8 crashes and 166 non-crashing errors. To
make progress on the challenge of determining if a non-crashing error is harmful,
we proposed two methods to find potentially harmful errors, based on the statis-
tics of traces produced by the fuzzer and on comparing the output of indepen-
dent implementations of the same algorithm on the same input. Our evaluation
demonstrated that Integrity is effective in finding integer errors.

Acknowledgment. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1801751 and 1956364.

References

1. American fuzzy lop. http://lcamtuf.coredump.cx/afl/
2. Batchoverflow exploit creates trillions of ethereum tokens, major exchanges

halt erc20 deposits—cryptoslate. https://cryptoslate.com/batchoverflow-exploit-
creates-trillions-of-ethereum-tokens/

3. Beautychain (bec) withdrawal and trading suspended. https://support.okex.com/
hc/en-us/articles/360002944212-BeautyChain-BEC-Withdrawal-and-Trading-
Suspended-Update-

4. Cwe - common weakness enumeration. https://cwe.mitre.org/
5. libfuzzer – a library for coverage-guided fuzz testing, https://llvm.org/docs/

LibFuzzer.html
6. LLVM dataflowsanitizer https://clang.llvm.org/docs/DataFlowSanitizer.html
7. LLVM threadsanitizer. https://clang.llvm.org/docs/ThreadSanitizer.html
8. LLVM undefinedbehaviorsanitizer. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html
9. Software assurance reference dataset. https://samate.nist.gov/SARD/testsuite.

php
10. Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: Redqueen:

fuzzing with input-to-state correspondence (2019)
11. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox

fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329–2344. ACM (2017)

12. Chen, H., et al.: Hawkeye: towards a desired directed grey-box fuzzer. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2095–2108. ACM (2018)

http://lcamtuf.coredump.cx/afl/
https://cryptoslate.com/batchoverflow-exploit-creates-trillions-of-ethereum-tokens/
https://cryptoslate.com/batchoverflow-exploit-creates-trillions-of-ethereum-tokens/
https://support.okex.com/hc/en-us/articles/360002944212-BeautyChain-BEC-Withdrawal-and-Trading-Suspended-Update-
https://support.okex.com/hc/en-us/articles/360002944212-BeautyChain-BEC-Withdrawal-and-Trading-Suspended-Update-
https://support.okex.com/hc/en-us/articles/360002944212-BeautyChain-BEC-Withdrawal-and-Trading-Suspended-Update-
https://cwe.mitre.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php

Integrity 379

13. Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 711–725. IEEE (2018)

14. Chen, P., Liu, J., Chen, H.: Matryoshka: fuzzing deeply nested branches. In: ACM
Conference on Computer and Communications Security (CCS), London, UK

15. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in C/C++.
In: 34th International Conference on Software Engineering, ICSE 2012 (2012)

16. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in C/C++.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 25(1), 2 (2015)

17. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows: a
guided fuzzer to find buffer boundary violations. In: USENIX Security, pp. 49–64
(2013)

18. Han, W., Joe, B., Lee, B., Song, C., Shin, I.: Enhancing memory error detection
for large-scale applications and fuzz testing. In: Symposium on Network and Dis-
tributed Systems Security (NDSS), p. 148 (2018)

19. Jain, V., Rawat, S., Giuffrida, C., Bos, H.: Tiff: Using input type inference to
improve fuzzing. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, pp. 505–517. ACM (2018)

20. Jeong, D.R., Kim, K., Shivakumar, B., Lee, B., Shin, I.: Razzer: finding kernel
race bugs through fuzzing. In: Razzer: Finding Kernel Race Bugs through Fuzzing.
IEEE (2018)

21. Martin, B., Brown, M., Paller, A., Kirby, D., Christey, S.: 2011 CWE/SANS top
25 most dangerous software errors. Common Weakness Enumer 7515 (2011)

22. Moy, Y., Bjørner, N., Sielaff, D.: Modular bug-finding for integer overflows in the
large: Sound, efficient, bit-precise static analysis. Microsoft Res. 11, 57 (2009)

23. Odena, A., Goodfellow, I.: Tensorfuzz: debugging neural networks with coverage-
guided fuzzing. arXiv preprint arXiv:1807.10875 (2018)

24. Peng, H., Shoshitaishvili, Y., Payer, M.: T-fuzz: fuzzing by program transformation.
In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 697–710. IEEE (2018)

25. Petsios, T., Tang, A., Stolfo, S., Keromytis, A.D., Jana, S.: Nezha: efficient domain-
independent differential testing. In: 2017 IEEE Symposium on Security and Privacy
(SP), pp. 615–632. IEEE (2017)

26. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: automated domain-
independent detection of algorithmic complexity vulnerabilities. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2155–2168. ACM (2017)

27. Pomonis, M., Petsios, T., Jee, K., Polychronakis, M., Keromytis, A.D.: Intflow:
improving the accuracy of arithmetic error detection using information flow track-
ing. In: Proceedings of the 30th Annual Computer Security Applications Confer-
ence, pp. 416–425. ACM (2014)

28. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:
application-aware evolutionary fuzzing. In: NDSS, February 2017

29. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: a fast
address sanity checker. In: USENIX ATC 2012 (2012)

30. She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: Neuzz: efficient fuzzing
with neural program learning (2019)

31. Song, D., et al.: SoK: sanitizing for security (2019)
32. Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-

ory use in C++. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 46–55. IEEE Computer
Society (2015)

http://arxiv.org/abs/1807.10875

380 Y. Rong et al.

33. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: Proceedings of the Network and Distributed System Security Symposium
(2016)

34. Sun, H., Zhang, X., Zheng, Y., Zeng, Q.: Inteq: recognizing benign integer overflows
via equivalence checking across multiple precisions. In: Proceedings of the 38th
International Conference on Software Engineering, pp. 1051–1062. ACM (2016)

35. Wang, T., Wei, T., Gu, G., Zou, W.: Taintscope: a checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In: 2010 IEEE symposium on
Security and privacy (SP), pp. 497–512 (2010)

36. Wang, T., Wei, T., Lin, Z., Zou, W.: Intscope: automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution. In: NDSS. Citeseer
(2009)

37. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 18), pp. 745–761. USENIX Association, Baltimore, MD (2018)

	Integrity: Finding Integer Errors by Targeted Fuzzing
	1 Introduction
	2 Background
	2.1 Integer Arithmetic Errors
	2.2 Fuzzing

	3 Design
	3.1 Exploitation
	3.2 Exploration

	4 Implementation
	5 Evaluation
	5.1 Juliet Test Suite
	5.2 Real World Applications
	5.3 Which Non-crashing Error Is Harmful?
	5.4 Comparison with Angora + UBSan
	5.5 Instrumentation Reduction

	6 Related Work
	6.1 Detecting Integer Overflow
	6.2 Coverage-Directed Fuzzers
	6.3 Bug-Directed Fuzzers

	7 Conclusion
	References

