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Abstract—Greybox fuzzing has received much attention from
developers and researchers due to its success in discovering bugs
within many programs. However, randomized algorithms have
limited fuzzers’ effectiveness. First, branch coverage feedback that
is based on random edge ID can lead to branch collision. Besides,
state-of-the-art fuzzers heavily rely on randomized methods to
reach new coverage. Even fuzzers with a solver rely on incorrect
assumptions, limiting their ability to solve branches and forcing
them to turn to randomness as a last resort.

We believe deterministic techniques deliver consistent, pre-
dictable, reproducible results. We propose Valkyrie, a greybox
fuzzer whose performance is boosted primarily by deterministic
techniques. Valkyrie combines collision-free branch coverage with
context sensitivity to maintain accuracy while introducing an
instrumentation removal algorithm to reduce overhead. It also
pioneers a new mutation method, compensated step, allowing
fuzzers that use solvers to adapt to real-world fuzzing scenarios
without using randomness. We implement and evaluate Valkyrie’s
effectiveness on the standard benchmark Magma, and a wide
variety of real-world programs. Valkyrie triggered 21 unique
integer and memory errors, 10.5% and 50% more than AFL++
and Angora, respectively. Valkyrie shows little to no variance
across ten trials and is the fastest to trigger half of the bugs.
Valkyrie reached 8.2% and 12.4% more branches in real-world
programs, compared with AFL++ and Angora, respectively. We
also verify that our branch counting and mutation method is
better than the state-of-the-art, which shows that deterministic
techniques trump random techniques in consistency, predictability,
reproducibility, and performance.
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I. INTRODUCTION

Greybox fuzzing has achieved much progress over the past
few years, becoming more accepted in industry applications
while receiving much attention in academia. Fuzzing’s scal-
ability and soundness have led security researchers to find
a multitude of vulnerabilities in a wide variety of software,
including IoT devices [6, 27], Android apps [19], kernels [16,
29, 30], and application software [2, 4, 7, 13, 21].

Many state-of-the-art greybox fuzzers are based on American
Fuzzy Lop (AFL) [2]. AFL is a classic mutation-based greybox
fuzzer offering a versatile and robust architecture that allows
developers to port its design to numerous platforms and operate
on vastly different fuzzing targets. This has sparked interest in
the research community, conceiving a number of AFL-derived
fuzzers with numerous improvements [3, 4, 7, 13, 14, 21].

However, their respective strategies are limited by ran-
domized algorithms. For example, AFL-based fuzzers obtain

program feedback in the form of branch coverage by recording
the hit counts of each branch in a fixed-size bitmap called
branch count table. Branches’ IDs are determined randomly at
static time to index the table. Randomly assigned IDs result
in potential collisions where two branches correspond to the
same ID, also known as the branch collision problem. On the
other hand, the importance of context-sensitive branch counting
can be corroborated by its extensive implementation in newer
fuzzers [7, 13]. The increased unique branches brought by this
new context information exacerbate branch collision problem.

An intuitive solution to mitigate this problem is to increase
the branch count table’s size, which is state-of-the-art fuzzers’
approach. However, during our tests with programs such as
tcpdump, the utilization rate of bitmaps can reach up to 36.6%
even when enabling context-sensitivity using an enlarged 1MiB
bitmap. As shown by Gan et al. [14], such utilization rates
can induce very high collision rates, while an enlarged buffer
reduces execution throughput by 30% on some programs.
AFL++’s LTO mode statically assigns each branch a unique
ID to achieve collision-free. However, its design does not
accommodate for context-sensitivity, which is important for the
fuzzer to detect subtle but important changes in a program’s
execution state.

Therefore, fuzzer developers have to face a trade-off between
fine-grained but slow feedback or a fast but inaccurate one.
Such trade-off has been carefully studied in [26]. Thus,
there is a need for a better solution that takes a principled
approach towards providing detailed, accurate, and efficient
branch counting.

On the other hand, little effort is put into mutators. AFL-
based fuzzers generally use heuristic methods, most of which
are based on randomization. Even fuzzers with solvers have
unrealistic assumptions, which often lead to failure and force
the fuzzer to turn to randomization as a last resort. For example,
in Angora, lots of “odd heuristics and parameters” [32] are
added to the code. These heuristics caused uneven performances
across trials. Therefore, [17] proposes a series of methods
including repeated trials to guarantee the comparison is fair.
However, real-world bugs are far and rare. Even ten repeated
trials cannot guarantee a bug being found.

We carefully study the state-of-the-art fuzzers with embedded
solvers and find these fuzzers generally work in the following
fashion. First, the fuzzer picks an unsatisfied branch predicate



to solve. Then, it identifies the input sections that can affect the
predicate’s outcome through techniques such as dynamic taint
analysis. Next, the fuzzer uses the solver to identify and exploit
certain features of the predicate to solve it. The fuzzer continues
to solve the target predicate until either the predicate is satisfied
or the solver has exhausted its time budget. It then picks another
predicate and repeats the process mentioned above. For instance,
REDQUEEN attempts to identify and tackle checksums and
hashes through techniques similar to magic byte matching, but
it cannot solve general arithmetic predicates [3]. QSYM uses
a modified concolic solver to solve the target predicate, but
these solvers cannot solve constraints with complicated forms
such as nonconvexity [31]. Angora converts the predicate to
an objective function f(x) to optimize using gradient descent,
where x represents sections of input bytes [7]. Using numerical
differentiation, Angora approximates the objective function’s
gradient and performs descent by mutating the corresponding
input sections.

Some solvers fall back to random mutation when their
assumptions do not hold for scenarios in real-world programs.
Mathematical methods such as gradient descent are designed
to work on functions in the real domain, which renders these
solving methods ineffective against real-world constraints where
many are in the bounded integer domain. Therefore, fuzzers that
utilize these methods can only solve a subset of the predicates
for the following reasons. 1) They believe the mutation amount
∆x is always an integer, and 2) the predicate may overflow
when the mutation amount derived from an integer ∆x is
too large. Therefore we need to find a way to allow solvers
assuming real domain to work with branch predicates in real-
world programs, allowing the fuzzer to release its full potential
instead of rolling a dice and hoping for the best.

These problems are the current blocking issues when we
hope to improve fuzzing effectiveness. A collision-prone and
imprecise branch coverage feedback mechanism will cancel
out the benefits of improved mutation methods, as the fuzzer
would likely miss the resulting increased program states. A
more sophisticated mutator cannot deliver its promise unless
the fundamental assumptions hold under most circumstances.
We believe deterministic algorithms produce more consistent,
predictable, reproducible results. Therefore, we wish to elim-
inate the randomness used in these two components. After
re-evaluating these methods, we design techniques that address
each aspect of the issues mentioned above:

First, we combine the best of two worlds by designing a
branch coverage feedback mechanism that is collision-free and
context-sensitive. We use static analysis to identify all possible
branches present within the program. Instead of assigning each
branch a static ID like current approaches, we give each branch
a relocatable, function-local incremental ID. Additionally, we
statically determine all possible first-order function contexts,
i.e., function contexts are determined solely by the call site.
For each function, we identify its direct call sites at static time.
For indirect function calls, we assume any function with the
same signature may be called at runtime. Thus, each branch’s
context-sensitive ID at runtime is determined by its function-

local ID and the current function context. Furthermore, we
develop an algorithm to remove unnecessary instrumentations
while maintaining accuracy to reduce the table size. We also
prove the correctness of the algorithm. To adapt to more
extensive programs, we statically determine the required size
for the branch counting table and negotiate a suitably-sized
buffer automatically with the fuzzer at initialization. This
approach allows for more fine-grained feedback while reducing
overhead, improving the fuzzer’s ability to observe execution
state changes in the program.

Next, we design a compensated step method that adapts
solver algorithms developed for values in the real domain
to integer domains, where many real-world programs run.
To demonstrate the effectiveness of this approach, we use
a gradient descent solver and apply our modifications. The
high-level idea of this method is to clip the fractional values
that could not be applied to integer values and compensate
them to other components of the input vector. We denote
the input vector as x, the original mutation amount as
∆x ∈ Rn, where n is the dimensions of the input vector,
i.e., the number of input bytes of a predicate. Our target is
to find a compensated mutation amount ∆x′ ∈ Zn, such that
f(x+∆x) ≈ f(x+∆x′). We also make some modifications
to the original gradient descent solver such that compensated
mutation can perform well in real-world situations. Specifically,
we first modify the initial step size such that it is set to the
smallest possible value by which the predicate can change,
then doubling the step size value upon each successful descent
step. We also used a different differential approach to get a
more precise gradient.

We implement a prototype fuzzer Valkyrie to deliver better
performance through our improvements. We evaluate Valkyrie’s
effectiveness on standard dataset Magma and real-world
programs. On Magma, Valkyrie found 21 unique integer and
memory errors with no need for any randomization methods,
10.5% and 50% more than AFL++ and Angora, respectively.
We also examine the performance of Valkyrie on real-world
programs. First, our tests show that Valkyrie increased branch
coverage by 8.2% compared with AFL++, and 12.4% compared
with Angora. Second, we demonstrate that Valkyrie’s branch
counting mechanism allows for collision-free branch counting.
At the same time, when using a bitmap with comparable size
to Valkyrie’s, AFL and Angora result in significant bitmap
utilization rates, leading to high occurrences of collisions.
Finally, we compared Valkyrie’s solver with Angora’s to show
that even without any heuristics, our compensated step mutation
can still do better than Angora.

This paper, makes the following contributions:
1) We propose a collision-free branch counting method and

an algorithm to reduce branch count table size.
2) We propose an efficient mutation method for predicate

solver. With the new solver, we can effectively target
some memory and integer bugs during fuzzing.

3) We implement a prototype fuzzer Valkyrie using these
deterministic techniques and evaluated its effectiveness
and performance.



4) We demonstrate Valkyrie delivers a more stable and
uniform performance than other commonly seen fuzzers
on benchmarks and real-world programs.

II. BACKGROUND AND MOTIVATION

AFL is a classic mutation-based greybox fuzzer. AFL
monitors the program state by inserting light instrumentation
and monitoring branch coverage states. It then uses a series of
heuristics and randomized methods to mutate existing seeds.
The instrumented program is executed using the mutated seed.
AFL will save the new seed if a new branch state is triggered.

Most fuzzers in the AFL family inherit these techniques
with some modifications. For instance, fuzzers in the AFL
family generally use a fixed-sized bitmap to record branch
coverage information, allowing the fuzzer the identify new
triggered states and save the mutated input as a seed for further
mutation. During program execution, the instrumentation code
increments the branch’s bitmap entry whenever a new branch
is executed. Some AFL-derived fuzzers implement context-
sensitive branch counting [7, 13] to assist in discerning more
unique states.

However, since the branch ID is determined randomly
during instrumentation, it is not unique and can lead to
branch collision. Gan et al. demonstrated that collisions
are non-trivial and increase with the number of branches
present within a program [14]. Paired with context-sensitivity,
which significantly increases the number of unique branches
observable by the fuzzer. Branch collisions pose a significant
challenge when improving fuzzing effectiveness.

There are several attempts to mitigate the problem. For
instance, Angora defaults to a larger bitmap size, which
has been proved ineffective by Gan et al. since it does
not eliminate collisions and slows down execution speed
significantly. Gan et al. proposed CollAFL, which assigns IDs
using non-random algorithms that greatly reduces collisions.
AFL++ offers an optional LTO mode that provides collision-
free branch counting [13]. However, the former cannot adjust
to programs automatically, while the latter is experimental and
buggy. Besides, both approaches lack context-sensitivity.

Fuzzers in the AFL family randomly mutate the entire input.
Random mutation becomes somewhat ineffective after the
“easy” branches are solved. More recent developments focus on
using solvers to solve branch predicates to dive deeper into the
code. It is guaranteed to alter the control flow once the predicate
is solved and possibly yield a new path. Many solvers have
been proposed, including input-to-state-correspondence [3],
concolic solvers [31], and gradient methods [7]. These fuzzers
generally operate using the following workflow: 1) it identifies
the corresponding input sections of the target predicate, 2)
then it derives relevant properties of the predicate, such as the
gradient, and 3) it mutates the input sections with its predicate
solver using the above information.

However, these methods are limited in real-world scenarios.
For example, the gradient method used in Angora assumes
the input domain to be continuous when it is discrete in most
cases. This limits its ability to solve many real-world predicates,

1 static unsigned int NEXTBYTE (void);
2 static void process_SOFn (...) {
3 unsigned int length = (NEXTBYTE() << 8) + NEXTBYTE();
4 unsigned int num_components = NEXTBYTE();
5 if (length != 8 + num_components * 3)
6 ERREXIT("Bogus SOF marker length");
7 }

Listing 1: Code snippet copied from libjpeg-9d. The program
requires the length to be a specific amount to continue.

which becomes difficult and almost impossible to solve using
continuous domain assumptions. Listing 1 is an example code
copied from libjpeg, where three input bytes are involved,
two of which describes the buffer length and the other is
the number of components in the buffer. There is a sanity
check before the program consumes the buffer. Angora may
convert the check into an objective function f(x) = |gxT − 8|
where g = [256, 1,−3] is the gradient. Then Angora tries
to minimize it using classic gradient descent, where one can
move input in arbitrarily small steps. Suppose the initial point
is xinit = [0, 12, 1]. When trying to take a small step −αg,
say α = 0.1, −αg = [0,−0.1, 0.3], later two dimensions will
find it unable to accept a fractional value and thus floored
step to [0,−1, 0] and result to x = [0, 11, 0]. Angora would
stagnate at this point. Since the first and the second dimensions
are going in opposite directions, and all dimensions must be
positive, Angora can’t find a next step.

One may argue that in this situation, we can use ceiling
or rounding to solve this problem. However, we can always
find code snippets where one operation works and the other
two fail. The root cause is not clipping operations we choose
to use, but that the assumption Angora made is not true in
real-world programs, as each byte is bounded to [0, 255] and
the smallest step by which one input byte can change is either
1 or −1.

III. DESIGN

To overcome the limitations of state-of-the-art fuzzers, we
propose the following improvements:

1) a branch counting mechanism that combines collision-
free and context-sensitivity, with an instrumentation
removal algorithm to reduce memory overhead while
maintaining accuracy,

2) a predicate solver that adapts traditional optimization
techniques designed for the real domain to bounded
integer domain.

A. Collision-free context-sensitive branch counting

Following the common practice in fuzzing, we record the
visit counts of branches and use them to approximate the
state of the program. We designed our mechanism to be both
context-sensitive and collision-free to improve the accuracy of
the branch counting feedback. In current collision-free branch
counting techniques, each branch is given a static unique ID
b. Context-sensitive branch counting techniques generally use
a context identifier c to differentiate between branches when



appearing in different function contexts. Thus, we denote the
tuple (c, b) as the context-sensitive branch. Our mechanism
ensures that we record the visit count of each unique context-
sensitive branch separately.

In contrast to AFL-derived branch counting mechanisms
which use fixed-size branch counting tables, we wish to find the
minimal space required for storing all the visit counts, allowing
the fuzzer to adapt to any given program automatically. We
achieve this in three steps. First, we identify all the unique
context-sensitive branches. Then, in each function, we find
the branches that don’t need to be instrumented. Finally, for
those branches that need instrumentation, we assign a unique
sequential ID to each context-sensitive branch. This ID serves
as the index of the branch in the branch-counting table.

1) Calculate the number of context-sensitive branches:
Let F be the set of all functions in the program, f ∈ F
be a function, branch count(f) be the number of branches
in f , and context count(f) be the number of different call-
ing contexts of f . Then the amount of branches is n =∑

f∈F context count(f) · branch count(f).
We calculate branch count(f) through the control flow

graph of f . Calculating context count(f) is more involved:
To avoid the explosion of the number of calling contexts

(e.g., caused by recursion), we consider only one-level context,
i.e., the context is determined by the call site only. Thus, we
can determine explicit call sites easily.

2) Indirect function call context generation: To assign
function context offsets for indirect function calls, we must
identify all possible functions an indirect call site can call.
To determine implicit call sites precisely, we would need
precise points-to analysis. However, that is both difficult and
expensive [12, 25].

Therefore, to find possible function contexts within a reason-
able amount of time, we employ our method of approximating
all candidate values of function pointers in indirect call sites.
First, we determine the number of branch table entries that
are required for each function in each context by taking the
maximum number of branches of all functions. Then, we iterate
over all function declarations in the program or library and
classify them according to their function prototypes. Next, we
find all operations that take the address of any function and add
the respective functions to the candidate list. Finally, we find
all candidate functions for each indirect function call site with
the same function prototype. We reserve the amount of branch
table entries required for each context. The function base offset
is resolved at runtime by matching the actual pointer value
with all possible candidate values.

3) Calculate the ID of each context-sensitive branch:
Conceptually, for each function, we reserve a contiguous region
of IDs that can store all the context-sensitive branches in the
function.

To implement this, during instrumentation,

• In each function f

– for each branch b, we sequentially assign a function-
local ID, ID(b), starting from 0.

– for each potential call site c, we sequentially assign
a context ID, IDf (c), starting from 0.

• We arbitrarily assign an order to all the functions,
and assign an ID offset, offset(f), to each function in
the following way: for each function fi, we set its
offset offset(fi) = offset(fi−1) + context count(fi−1) ·
branch count(fi−1). We initialize offset(f0) as 0.

At runtime, the ID of the context-sensitive branch (c, b) in
function f is:

offset(f) + IDf (c) · branch count(f) + ID(b)

4) Redundant branch instrumentation removal: The benefit
of instrumentation removal is twofold. First, it allows us to
shrink the branch count table’s size, reducing the memory
overhead. Besides, branch counting is a time-consuming job
where the program has to calculate the offset, fetch the entry,
and save the result. Therefore, the removed instrumentation
saves runtime by not reporting some edges’ status.

However, we would like to find a minimal set of edges to
instrument without affecting the distinguishability of different
paths. Here, we formally define path and distinguishability:

Definition III.1 (Path). For a program with a CFG, the set of all
edges are E. A complete path is a sequence of edges between
basic blocks that represents one execution of a program. A
compressed path is a subsequence of a complete path where
only edges in E′ ⊂ E are kept.

Definition III.2 (Distinguishability). Suppose we have two
complete paths P and Q, and their compressed paths P ′ and
Q′. P ′ and Q′ are said to be distinguishable when P = Q if
and only if P ′ = Q′.

We do not need to instrument an edge if whether it is taken
does not distinguish two different paths. This means there
are two requirements for our instrumentation removal. First,
for each loop, at least one edge needs to be instrumented.
Otherwise, we wouldn’t distinguish how many times the loop
has been executed. We use LLVM’s definition of the loop1

here and assume each loop has one and only one header block.
Besides, for any basic block, exactly one of its outgoing edges
needs no instrumentation. Because we can infer the status of
that edge from other edges’ status. For a basic block, if none
of its instrumented outgoing edge is executed, then the only
one that is not instrumented must be executed, and vice versa,
if any instrumented edge is executed, then the edge without
instrumentation is not executed. To satisfy both properties, we
put labels on the edges before we instrument them. Algorithm 1
shows the algorithm.

For instance, in Figure 1, we only need to instrument and
record the visit counts of branches a, c and g to sufficiently
distinguish different paths. Our algorithm would work in the
following fashion to achieve this result. Initially, all edges are
labeled as delete. We iterate over all loops’ header block(A and
C) first and mark the loops’ outgoing edges(a and g) as keep.

1https://llvm.org/docs/LoopTerminology.html

https://llvm.org/docs/LoopTerminology.html


Algorithm 1 Procedure for determining which branches to
instrumentation in a function.
1: function FINDEDGESTOINSTRUMENT(CFG)
2: Mark all edges as delete.
3: for Loop l ∈ CFG do
4: h← l’s header block
5: for Edge e = (h, b) ∈ h’s outgoing edge do
6: Mark edge (h, b) as keep.
7: for Block b ∈ CFG do
8: E = set of all outgoing edges of b
9: if ∃e1 ̸= e2 ∈ E, both are markded as delete then

10: ∀e ∈ E, mark e as keep
11: mark e1 as delete
12: Instrument all edges marked with keep

Then for each basic block, we have exactly one outgoing edge
labeled as delete and mark others as keep. Thus only c is kept.
Notice that whether we keep c or b doesn’t change the branch
table’s size, nor the distinguishability of the instrumentation. We
will prove this property in Theorem 1. Finally, we instrument
all edges marked as keep, including branches a, c and g.

We formally prove the algorithm’s correctness:

Theorem 1. Let P and Q be two paths. Let E be the set of
all edges in the CFG, and E′ ⊂ E be the set of edges kept
by Algorithm 1. Let P ′ and Q′ be the compressed path of P
and Q, respectively, generated from E′. Then P = Q if and
only if P ′ = Q′.

Proof. Necessity (the right direction): Since P = Q, their
subsequence on E′ must also be equal.

Sufficiency (the left direction): Prove by contradiction.
Assume P ̸= Q but P ′ = Q′. Let P = (A, p1, · · · ),
Q = (A, q1, · · · ), where A is the longest common prefix of P
and Q. Therefore, p1 and q1 are different but they start from
the same basic block B, so B must have n > 1 outgoing edges.
Line 7– 11 of Algorithm 1 guarantees that at least n− 1 of
the edges are marked keep, so at least one of p1 and q1 is
marked as keep.

If both p1 and q1 are marked as keep, then they both appear
in E′, so P ′ = (A′, p1, · · · ) and Q′ = (A′, q1, · · · ) where A′

is the compressed path of A. Since p1 ̸= q1, P ′ ̸= Q′, but this
contradicts our assumption.

If only one of p1 and q1 are marked as keep. Without loss of
generality, let p1 be marked as keep. So P ′ = (A′, p1, · · · ). The
assumption P ′ = Q′ implies that Q = (A, q1, B, p1, · · · ), i.e.,
Q contains a cycle (q1, B) and no edge in the cycle is marked
as keep. But line 3–6 of Algorithm 1 prevented this.

B. Compensated mutation assisted solver

While random mutation operators generally used by the
AFL family of fuzzers can quickly solve “easy” predicates,
predicates with a small feasible input space are difficult for
them to solve, especially when the predicate is an equality
comparison. As shown in Listing 1, there are only 256 feasible
inputs out of all 2563 possible inputs to satisfy the comparison.
On the other hand, even state-of-the-art fuzzers with a solver
may fail because their assumptions are not true.

A B2

B1

B3

C D
in

a
d

b
e

c

f h

g

out

Figure 1: Examples of branches that do not require instrumen-
tation. Only thickened edges need instrumenting.

TABLE I: Conversion table between branch predicate ex-
pressions, their corresponding objective functions and solver
targets. δ represents the smallest possible positive value that
the numerical type can represent. For integers, δ = 1.

Predicate Objective Angora’s constraint Valkyrie’s constraint

a > b f = b− a f < 0 f < 0
a < b f = a− b f < 0 f < 0
a = b f = a− b |f | ≤ 0 f = 0
a ≥ b f = b− a− δ f < 0 f < 0
a ≤ b f = a− b− δ f < 0 f < 0
a ̸= b f = a− b −|f | < 0 f < 0 or f > 0

Therefore, we need a new solver that properly handles
the bounded integer domain that largely exists in real-world
programs. We use the notation f(x) to represent its objective
function for each predicate.

x is a vector determined by a subset of the input bytes. The
fuzzer maps input bytes to x by dynamic taint analysis tools
like DataFlowSanitizer [10]. The range of each dimension of x
is determined by its type, bit width, and signs, which Valkyrie
computes by static analysis. For simplicity, we refer to the
maximum and minimum value that can be represented by xi

as mini and maxi.
f is a blackbox function determined by the predicate as

shown in Table I. When the predicate becomes unreachable
because a new input alters the program path, we set f(x) to
a value that violates the objective. For example, when the
objective is f(x) < 0, then we set f(x) = +∞.

The effectiveness of state-of-the-art predicate-solving fuzzers
implies that many predicates in the program are solvable using
principled methods. For example, Angora assumes that the
objective functions of predicates are continuous, therefore
it uses a gradient-descent-derived solver. However, program
inputs usually take the form of byte values that are bounded
and discrete. Therefore, solvers developed with a continuous
range assumption require modifications to adapt to real-world
situations.

We design a compensated mutation technique that mitigates
this problem. The main idea of compensated mutation is when
given a target step ∆x ∈ Rn that the solver wants to apply
to the input, we find a ∆x′ ∈ Zn such that f(x + ∆x) ≈
f(x + ∆x′). To do this, we clip the fractional values that
could not be applied to integer values and compensate them to
other components of the input vector. To demonstrate how this
approach works and its effectiveness, we apply this technique



to a gradient descent solver, albeit with some modifications.
1) Compensation from real domain to integer domain:

Current methods resort to integer flooring when given a vector
of fractional numbers ∆x ∈ Rn to apply to a vector of integer
numbers. However, we cannot guarantee that the floored value
⌊∆x⌋ will result in a similar function value, especially when
components have large coefficients in the function. To avoid
precision loss due to rounding techniques of any kind, we wish
to find an integer vector ∆x′ ∈ Zn such that f(x + ∆x) ≈
f(x+∆x′). The main idea behind the compensated step is that
for a ∆x as well as its gradient on the function, we traverse
through each component, apply a suitable integer mutation
value, and compensate the fractional values that were not
applied into other components. We denote ri as the amount
that we intend to add to xi and ∆x′

i for the actual integer
value that is added. The difference between ri and ∆x′

i is the
value that needs to be compensated to another component of
the input vector. We call this difference carry amount and use
notation ci. Thus we have:

ci = ri −∆x′
i

If we apply the carry amount ci to the ith component, we
should have changed the objective function value by cigi,
where gi is the partial derivative of dimension i. Since ci is
a fractional value that cannot be applied, when we carry this
amount over to dimension j, To move the function value by
the same amount, we should add xj by another cigi

gj
. We can

write the compensation process in Equation 1:

r1 = ∆x1

ri = ∆xi +
ci−1gi−1

gi

ci = ri −∆x′
i

(1)

Finally, to obtain the integer value ∆x′
i, most of the time

we use ∆x′
i = ⌊ri⌋. This is different than ⌊∆xi⌋. As shown

in Equation 1, ri is the sum of the target value ∆xi and
the amount carried over from the previous component ci−1

corrected by the fraction of gradients gi−1

gi
. There are few

exceptions where we don’t floor ri:
1) xi + ⌊ri⌋ > maxi. This means we could overflow this

dimension, thus we set ∆x′
i = maxi − xi.

2) xi + ⌊ri⌋ < mini. Similarly, we set ∆x′
i = mini − xi.

3) The carry amount ci is so large that all the dimensions
will be overflown by it. In this case we try ∆x′

i = ⌈ri⌉.
It is not hard to derive the following relation using calculus

and Equation 1:

f(x+∆x′) ≈ f(x) + gT∆x′ = f(x) +
∑
i

gi(ri − ci)

= f(x) +
∑
i

[(gi ·∆xi + gi ·
ci−1gi−1

gi
)− gici]

= f(x) +
∑
i

∆xigi − gncn = f(x+∆x)− gncn

(2)

Algorithm 2 Compensated step
1: function COMPENSATEDSTEP(x ∈ Zn,∆x,g ∈ Rn)
2: P ← Permutation matrix s.t. ∀i < j, |Pgi| ≥ |Pgj |
3: x← Px,∆x← P∆x, g ← Pg ▷ Sort dimensions in the

descending order of the absolute value of the gradient
4: c0 ← 0,g0 ← 1
5: for i in 1..n do
6: ri ← ∆xi +

ci−1gi−1

gi
7: ∆x′

i = ⌊ri⌋
8: if xi +∆x′

i > maxi then
9: ∆x′

i = maxi − xi

10: else if xi +∆x′
i < maxi then

11: ∆x′
i = mini − xi

12: else if ri −∆x′
i is too large for the rest dimensions then

13: ∆x′
i = ⌈ri⌉

14: ci = ri −∆x′
i

15: return P−1∆x′

Therefore, the loss of our method can be as low as |gncn|.
In practice, we use a permutation matrix to sort the components
in the descending order of the absolute value of their gradients
for the following reasons:

1) Since in most cases ci−1 < 1, we need gi−1

gi
> 1,

otherwise the compensation won’t affect ri too much.
2) We also want gi−1

gi
to be as small as possible, so it would

not amplify ri too much that we have to push x′
i to its

bound.
3) As shown in Equation 2, a small |gn| would reduce the

error incurred by compensated step.
The whole process is described in Algorithm 2. First, we

sort the inputs based on the gradient. Then we calculate ri
for each dimension based on Equation 1. We then choose ∆x′

based on ri as described before.
This method is applicable to any solver that can obtain the

gradient of each input component. The gradient can be obtained
using a variety of methods, such as using white-box analysis
and receiving an explicit expression, or through numerical
methods to approximate the gradient. In our approach, we use
a numerical estimation. In the following section, we describe
our modifications for improved numerical differentiation in
real-world fuzzing scenarios in the following part.

2) Compensated gradient descent: With the compensated
step, here we modify the traditional gradient descent solver to
tackle real-world scenarios. Although compensated step can be
applied to any solvers, we find gradient descent better suited
for our needs. Compensated step heavily rely on a gradient to
work, which is the same for gradient descent.

Modified differentiation for a more accurate gradient.
Since the predicates’ mathematical expressions are unknown
and we treat them as black-box functions, we cannot derive a
gradient symbolically. However, the traditional differentiation
method lack accuracy since a valid gradient’s absolute value
may be less than 1. For example x = 5, f(x) = ⌊x/4⌋, where
flooring the result is the semantic of integer division in C
programs. In this case, we find f(x+1) = f(x) = f(x−1) = 1
and end up with zero gradient. We need an approximated
gradient instead of a zero gradient to keep the algorithm going.

Therefore, to obtain the partial gradients of a particular



predicate, we use a modified numerical differentiation method
on each dimension to derive a partial gradient. When calculating
differentiation for dimension i, we create a unit vector ei ∈ Rn

where only the i-th element is 1 and all other elements is 0. We
add and subtract x with this ei and observe f ’s value change
to derive a gradient.

Furthermore, we introduce amplifiers β+ and β− to increase
the unit step size. β+ and β− starts with 1. We keep doubling
β+ and β− until we find a non-zero f(x+ β+ei)− f(x) or
f(x) − f(x − β−ei). Then we can compute the gradient in
the i-th dimension, gi, using Equation 3:

gi =
f(x+ β+ei)− f(x− β−ei)

β+ + β−
(3)

If the amplifier β grows very significant without finding
a practical value, we consider the gradient to be zero. β is
considered large if β > 1

2 (maxi −mini). If both directions
turn out to be zero, we assume this direction to have zero
gradient. By repeating this process on all dimensions, we get
a differentiation vector g.

Determine the step size in descent. In the state-of-the-art
solver, it takes a step ∆x = −αg to descend in each iteration.
However, it is challenging to set α. If we set it too small, x may
move slowly or even stagnate. For example, f(x) = ⌊x/4⌋, if
we move x by 1, f(x) will not change. But if we set it too
large, we may overshoot, causing the function to descend more
than intended.

Therefore, we take the advantage of the fact that given a
small step ∆x, f is approximately linear. There is an ϵ ball
Bϵ(x) such that for small enough ϵ ∈ R such that given
||∆x||∞ < ϵ, we have f(x+∆x) ≈ f(x) + gT∆x where g
is the gradient.

We select an α such that f(x) will change approximately
by the smallest possible increments or decrements.

v = max(1, min
gk ̸=0

(|gk|))

α =
v

gTg

(4)

If v is small, f(x − αg) − f(x) ≈ −v by Equation 2. We
introduced a minimum non-zero gradient gk because if |gk| >
1, the minimal change possible to f(x) is |gk| instead of
1, since f(x) is a discrete function. In each iteration, we
double the step size to descend quicker. We revert the descent
parameters to the initial state when we can no longer descend.

For non-linear functions, we may encounter the following
problems when descending:

1) The execution path changes and the predicate is unreach-
able. In this case, we stop descending and use the value
from the previous step as a result.

2) The function value drops less than expected or even
increases. In this case, we test if the new function value
is still descending; if not, we return the previous step.

3) The function value drops more than expected. Since our
goal is to do gradient descent instead of keeping the
function linear, we are fine with this step and keep going
until we run into case 1 or 2.

Algorithm 3 Descent routine
Require: f
1: function DESCENT(x,g ∈ Rn)
2: v ← max(1,mini s.t.gi ̸=0 |gi|)
3: α← v/gT g
4: xprev ← x, fprev = f(xprev),
5: loop
6: ∆x′ ←COMPENSATEDSTEP(xcurr,−αg,g)
7: xcurr ← xcurr +∆x′, fcurr = f(xcurr)
8: if fcurr =∞ or |fprev | ≤ |fcurr| then ▷ Next step doesn’t

exist or the function is not descending.
9: return xprev

10: else if ISSOLVED(fcurr) then
11: return xcurr

12: α← 2α, xprev ← xcurr , fprev ← fcurr

The overall modified gradient algorithm is listed in Algo-
rithm 3. We start by calculating the step size using Equation 4.
Then we would decide whether to ascend or descend based
on the current status of the function. Once the actual step
∆x is determined, we calculate the compensated step using
Algorithm 2. Finally we apply the integer step.

3) Solving motivating example: In the case of the example
in Listing 1, we first formalize it as “given f(x) = gTx− 8,
find xeq , s.t. f(xeq) = 0 ” Suppose the input has been sorted
by gradient, thus g = [256,−3, 1] and the initial point is
xinit = [0, 1, 13], f(xinit) = 2.

We start with v = 1, α = v
gT g

, i.e. we try to decrease
function’s value by only 1. The first dimension will have
r1 = ∆x1 = − g1

gT g
. We find x1 is already 0 and can’t decrease

more. Thus we carry all the r1 to the next dimension, i.e.
c1 = r1,∆x′

1 = 0.
c1 is then applied to the next dimension, thus r2 = ∆x2 +

c1g1

g2
= 1

3 (1 − 1
gT g

). r2 is again floored to 0, leaving c2 =
r2,∆x′

2 = 0.
Interestingly, we have r3 = c2g2

g3
− ∆x3 = −1 + 1

gT g
−

1
gT g

= −1, which counters all the fractional value we had.
Therefore ∆x′

3 = ⌊r3⌋ = −1 and we end up with ∆x′ =
[0, 0,−1]. This would give us x = [0, 1, 12], f(x) = 1.

Since the descent is successful, we would double the step
size, i.e. set v = 2 and descent again. Following similar process
would give us x = [0, 1, 10], f(x) = −1. Because the absolute
value is not descending, we would abort the descent instead
of taking the step. We calculate the gradient again and restart
the descend using v = 1. The final step would give us xeq =
[0, 1, 11], f(xeq) = 0.

IV. EVALUATION

We implemented Valkyrie to conduct a series of experiments
to analyze the effectiveness of the entire fuzzer and individual
components. We have open-sourced Valkyrie in Github2. Due to
space limits, we also open-sourced the fuzzers’ and softwares’
versions we used in this section. We also open-sourced all
build scripts, test settings, initial seeds, and docker images we
used.

2https://github.com/ValkyrieFuzzer

https://github.com/ValkyrieFuzzer


We are interested to know how well Valkyrie works in
practice. Thus we propose the following research questions to
help us understand the results and implications of our designs:

• RQ1: Is Valkyrie state-of-the-art? How does it fare on
benchmarks such as Magma?

• RQ2: How does Valkyrie perform against similar fuzzers
on real-world open-source programs?

• RQ3: Is our branch counting mechanism a better trade-off
than that of AFL++ or Angora?

• RQ4: Is the solver assisted with compensated step better?
To answer these questions, we designed experiments to

examine Valkyrie’s performance on Magma and a select
group of open-source programs. We then conducted two close
examinations to address the latter two questions adequately.

First, we test Valkyrie on benchmark Magma v1.1 [15],
then on real-world programs. We intend to test Valkyrie on
a more robust benchmark FuzzBench [22], but Angora is not
provided in the benchmark. The reason is that FuzzBench
only allows programs to be compiled once, but Angora
requires two compilations to generate two versions of binaries.
For fairness of the testing, we borrow the framework from
Unifuzz [18] to test real-world programs. Each fuzzer runs in
a containerized environment with one core. Each experiment
lasted 24 hours and was repeated ten times, as suggested by [15].
In both experiments, we select AFL, AFL++, and Angora for
comparison. We choose AFL as the reference fuzzer since it
is a source of inspiration for many others. We also include
AFL++, which has merged many improvements and function
enhancements developed for AFL. We enabled llvm mode,
with AFLfast’s power scheduling [4], MOpt’s mutator [21],
and non-colliding branch counting for AFL++. Angora is also
a solver-based fuzzer with similar design goals to Valkyrie. We
intend to compare to one of Angora’s successors Matryoshka
[8]. However, the tool is not available to us.

A. Magma benchmark

To test whether Valkyrie is state-of-the-art, we would
like to work on a benchmark with ground truth first. We
examined Valkyrie’s performance against other popular fuzzers
on Magma v1.1 [15]. Magma is a collection of targets with
real-world environments. It contains seven libraries and 16
binaries. Magma manually forward-ported these bugs in older
versions to the latest versions. Unlike LAVA-M [11] where
all bugs are synthetic and magic byte comparison, Magma
has a spectrum of bugs covering most categories in Common
Weakness Enumeration (CWE). Magma contains 118 bugs in
total. There are 15 integer errors, six of which are divide-by-
zero, and 58 memory overflows. The rest 45 bugs include
use-after-free, double-free, 0-pointer dereference, etc.

However, Angora is a coverage-guided fuzzer that isn’t
designed to trigger bugs. We borrow ideas from [24, 20], for
each potential bug, e.g. buffer overflow, we would insert a
branch if (ptr > buf_len)report(); so that Angora can see
and solve the predicate. Therefore, for a fair comparison, we
only tested on 15 integer errors and 58 memory bugs that can
be converted to a predicate.

TABLE II: Average time used to trigger a bug in Magma.
Bolded text shows the fastest to trigger a bug.

Bug ID Valkyrie angora aflplusplus moptafl afl

AAH037 15s 15s 39s 20s 20s
AAH041 15s 15s 1m 33s 21s
JCH207 5m 16m 3m 1m 53s
AAH055 4h 8h 27m 4m 43m
AAH015 7h 6h 4m 1m 1h
MAE016 20s - 1m 1m 3m
AAH020 8h 11h 2h 23m 3h
MAE008 20s - 6h 27m 5m
AAH024 15s 15s 1m 16h -
AAH045 49s 15s 15h 3h -
MAE014 20s - 23h 2h 2h
AAH032 5h 21h 1h 28m -
MAE104 3m 2m 22h 13h 16h
AAH014 20h 5h 21m 21h 14h
AAH026 46s 40s 22h 22h -
AAH007 1m 2m 22h - -
MAE115 9h 15h - 19h 12h
AAH017 7h - 21h 10h 20h
JCH201 4h - - 19h 21h
AAH001 1h - 23h - -
AAH010 22h - 9h - -

Figure 2: Arithmetic mean of number of integer and memory
bugs triggered per trial per day. The black line shows 95%
confidence interval. Valkyrie’s performance is the same across
ten trials.

MoptAFL is also reported to be the best in the bench-
mark [15], therefore we included MoptAFL in this evaluation.
We used the version provided in the benchmark. We want to
see how Valkyrie compares with the state-of-the-art fuzzers.

We list Valkyrie’s performance on Magma in Figure 2. We
calculate the arithmetic mean number of bugs found per trial
per day. However, state-of-the-art fuzzers rely on randomized
methods, a bug found in one trial may not be triggered in
the another. Therefore, we also list all the unique bugs found,
including bug id and the time used to trigger it in Table II.
The time shown is the arithmetic mean time to trigger a bug.
If the fuzzer did not trigger a bug, then the time to trigger is
set to 24 hours for that fuzzer. Therefore, for non-deterministic
fuzzers, the mean time to trigger a bug becomes large when
the bug is triggered only a few times. For example, AFL++
triggered the bug AAH001 in a few minutes in only one trial,
so the mean is 23h across 10 trials.

Valkyrie finds 21 unique integer and memory errors in
Magma, while AFL, ALF++, MoptAFL, and Angora found 14,
19, 18, and 14 errors, respectively. Overall, Valkyrie ranked #1
and found 10.5% and 50% more errors compared with AFL++
and Angora, respectively. We conduct the Mann-Whitney U test
to obtain p-value between each pair of fuzzers. Of 7 libraries,



1 // AAH001
2 size_t row_factor_l = 1 + (png_ptr->interlaced? 6: 0)
3 + (size_t)png_ptr->width
4 * (size_t)png_ptr->channels
5 * (png_ptr->bit_depth > 8? 2: 1);
6 size_t row_factor = (png_uint_32)row_factor_l;
7 if (png_ptr->height > PNG_UINT_32_MAX/row_factor) {...}

Listing 2: Two seemingly easy bugs in Magma. With Valkyrie’s
solver these bugs can be triggered yet it would took randomized
fuzzers hours to trigger.

Valkyrie ranked #1 on libpng, libxml2, and poppler (p < 0.001
compared with #2); tied #1 on openssl and php (p < 0.01
compared with #3); tied #2 on libtiff. No fuzzer found any
integer or memory errors on sqlite3. We want to emphasize
that Valkyrie achieved the result with no randomization design.

Bug AAH001 demonstrates that not only randomness is
not required in certain bugs, but also that compensated steps
can be effective in predicate solving. AAH001 is a divide-
by-zero in libpng. We listed the code snippet of AAH001 in
Listing 2. To trigger it the mutator must change png_ptr->

width to 0x5555_5555 and png_ptr->channels to 3, and the
later two conditions to false. [15] proved that it is hard for
the randomized method to trigger it and claimed that only a
fuzzer with a solver could trigger this easily. However, Angora
failed to trigger it. When Angora mutates the value close to
0x5555_5555, even a small step in png_ptr->channels will
overshoot and overflow the result. When it happens, Angora
may get the wrong gradient and cannot progress correctly.
However, Valkyrie knows the upper bound of the unsigned
value and forces the solver not to exceed it using compensated
steps. Thus Valkyrie is able to solve it and triggered this bug
within the hour in all ten trials.

Valkyrie found four unique errors on libtiff (AAH010,
AAH014, AAH015, and AAH020), the same number as other
state-of-the-art fuzzers. However, on average, only three errors
are triggered per trial because 24 hours timeout is not enough
for Valkyrie. The seeds corresponding to AAH010 and AAH014
are scheduled with the same priority. There is no guarantee
which one is taken out first. In any trial, if one seed was taken,
the other would not be taken before timeout. Thus the mean
time to trigger these two bugs are both 20+ hours.

We want to comment on another interesting finding regarding
MoptAFL and AFL++. MoptAFL is reported to be the
best fuzzer in this benchmark, however, in our experiment,
MoptAFL found fewer bugs than AFL++. We carefully com-
pared [15]’s result with ours and find that, in our experiment,
AFL++ found several bugs that were reported as untriggered.
Some examples include AAH001, AAH007 in libpng, both
of which are only triggered once by AFL++ across ten trials.
The difference is surprising considering we used the same
configuration provided by [15]. This further proves that
randomized methods are volatile and unstable, while our
deterministic approach is simpler and more reliable.

In summary, Valkyrie found 21 unique integer and memory
errors on Magma, the most compared with other state-of-
the-art fuzzers. Also, Valkyrie had little to no variance
across ten trials, while others showed unstable performance.
Therefore, we can answer RQ1 with confidence that
Valkyrie is state-of-the-art on Magma.

B. Real-world open-source programs

While performing well on Magma is sufficient to claim
Valkyrie is state-of-the-art, we would like to evaluate on real-
world programs and see the branch coverage data. Therefore,
to demonstrate Valkyrie’s effectiveness on real-world programs
already in production, we selected a series of open-source
programs to evaluate Valkyrie and demonstrate the effectiveness
of its methods and techniques in real-world situations. Of
these open-source programs, there are image processors (jhead,
imginfo), binary file processing programs (nm, objdump,
size, readelf ), structured text parsing utilities (xmllint), pdf
parsers(pdftotext), network utilities(tcpdump). Because different
tools count branches differently, for fairness of comparison, all
branch coverage reported are generated by afl-cov [1].

The results of these experiments are shown in Figure 3.
We obtain p-value between each pair of fuzzers using Mann-
Whitney U test. Valkyrie ranked #1 on seven out of ten
applications (p < 0.01 compared with #2), #1 tied with Angora
(p = 0.0011 compared with #3) on jhead, #2 on cjpeg and
imginfo (p < 0.05 compared with #3).

In summary, the geometric mean number of branches
Valkyrie reached per target is 2452, 8.2% and 12.4% more
than AFL++ (2266) and Angora (2181), respectively. We
can answer RQ2 with confidence that Valkyrie is the
state-of-the-art on real-world open-source programs.

C. Effectiveness of deterministic branch counting

We wish to understand the advantages of Valkyrie’s branch
counting mechanism quantitatively. We first controlled the
variable to see how much improvement collision-free context-
sensitive branch counting design contributes. Therefore, we
disabled our improved solver and compared it with Valkyrie and
Angora. The result is shown in Figure 3, the modified version
is labeled as Valkyrie-br. We find that Valkyrie-br outperformed
Angora in all cases, proving that this design is effective. Our
study shows the improvement is contributed by two designs:
branch instrument optimization and context-sensitive collision-
free branch counting.

We first examined the effectiveness of our branch table
optimization strategies by obtaining the buffer sizes required
by Valkyrie, as shown in Column 2-4 in Table III. We observe
that our optimization strategies can reduce the bitmap size
by 69% on average. We used seeds generated by AFL++ to
evaluate how much runtime is reduced. Column 5-7 in Table III
show that we reduced runtime by 28% on average. Thus, given
the same amount of time, Valkyrie can test the program more.

We then analyzed the buffer utilization rates of AFL and
Angora under the evaluated programs. By default, AFL uses a



Figure 3: Branch coverage of six fuzzers in 24 hours time. Valkyrie-br is Valkyrie with only branch coverage improvement,
Valkyrie-solver is Valkyrie with only solver improvement. Both design increased branch coverage compared with Angora in all
programs. Overall, Valkyrie ranked #1 on geometric mean number of branches reached.

TABLE III: Bitmap size for Valkyrie before and after optimiza-
tion. On average we reduced 69% of all instrumentations and
28% of runtime.

Program Valkyrie bitmap size (B) Valkyrie bitmap runtime (µs)

Original Optimized Reduction Original Optimized Reduction

cjpeg 254 874 74 576 70.74% 10 331 7918 23.35%
imginfo 133 010 34 690 73.92% 20 769 12 583 39.41%
jhead 13 620 4396 67.72% 1124 776 30.92%
nm 1 758 594 542 688 69.14% 1491 1270 14.84%
objdump 2 196 528 691 048 68.54% 1405 1374 2.24%
pdftotext 400 858 112 808 71.86% 6312 5663 10.29%
readelf 353 222 132 352 62.53% 1229 902 26.57%
size 1 750 206 540 180 69.14% 1687 1359 19.44%
tcpdump 1 554 400 506 468 67.42% 1278 972 23.93%
xmllint 3 323 032 996 220 70.02% 1439 1115 22.52%

Total 11 738 344 3 635 426 69.03% 47 065 33 932 27.90%

64K buffer. Angora uses 1M to allow context-sensitivity. The
utilization rate is shown in Columns 2 and 4 in Table IV.
Many programs’ utilization rates exceed the recommended
limit of 4%, even ranging up to nearly 34%, indicating that a
newly found branch has a nearly 34% chance of colliding with
existing branches. Under the default settings, many instances
have a high potential for branch collisions, as evidenced by the
high bitmap utilization rate of up to around 36%. Therefore,
the default buffer sizes are too small for ordinary programs.

We further resized their bitmaps according to the size
required by Valkyrie to achieve collision-free branch counting
and analyzed their utilization rates. Their bitmap sizes should
be a strict power of 2, so we found the closest value possible
for each program, as listed in Column 7 in Table IV. We list the
utilization rate under such sizes Column 3 and 5 in Table IV.
The utilization rates have dropped to under 4% since we
increased AFL’s buffer size for most programs. However,
AFL lacks context-sensitivity and can potentially lose the
capability to identify branches that increase the overall coverage.
Angora, on the other hand, still exceeds the recommended limit
greatly in many cases, resulting in significant accuracy loss. In
comparison, Valkyrie guarantees accuracy while maintaining
context-sensitivity, which is the second reason why the branch
coverage increased in Figure 3.

TABLE IV: Bitmap utilization for AFL and Angora on open-
source programs. We evaluated their respective utilizations
under default sizes and adjusted sizes. “*” indicates failure,
AFL refuses to run jhead with only 8K bitmap.

Program AFL utilization Angora utilization Bitmap size (B)

Default (64K) Adjusted Default (1.0M) Adjusted Valkyrie Adjusted

cjpeg 2.11% 1.06% 0.24% 1.88% 74K 128K
imginfo 10.23% 10.30% 1.68% 23.94% 34K 64K
jhead 0.45% * 0.54% 49.51% 4.2K 8.0K
nm 7.92% 0.49% 33.14% 33.14% 542K 1.0M
objdump 5.26% 0.33% 24.98% 24.96% 691K 1.0M
pdftotext 3.30% 0.83% 18.88% 56.67% 112K 256K
readelf 10.92% 2.73% 4.05% 15.24% 132K 256K
size 4.49% 0.28% 14.75% 14.72% 540K 1.0M
tcpdump 20.85% 2.59% 34.64% 57.13% 506K 512K
xmllint 6.51% 0.41% 18.30% 18.29% 996K 1.0M

Therefore, we can answer RQ3 with confidence that
Valkyrie’s branch counting mechanism is a better trade-off
and outperforms that of comparable fuzzers.

D. Effectiveness of deterministic solver

In Figure 3, we evaluated Valkyrie with only solver enabled.
The modified version is tagged as Valkyrie-solver. Since
Valkyrie-solver and Angora have the same scheduling algorithm
and branch counting method, comparing them will tell us how
much improvement our solver had.

The result shows that we improved branch coverage com-
pared with Angora in all open source programs. We obtained p-
value for each program using Mann-Whitney U test, all of them
showing less than 0.02 except for jhead, where branch coverage
is statistically insignificant. On geometric mean, Valkyrie-
solver reached 2608 branches, 19.5% more than Angora (2181
branches). On readelf and size, Valkyrie-sover even ranked #1
compared with all other fuzzers.

On average, Valkyrie-solver can execute more branches
than Angora. This gives us a positive answer to RQ4, the
compensated step does improve the solver performance.



E. Discussion

We further studied the reason why Valkyrie-solve can surpass
Valkyrie in some cases. Although the only difference between
Valkyrie-solver and Valkyrie is that our branch counting method,
it does not suggest our method is less effective. Valkyrie-
solver performed better because branch counting with branch
collisions may miss many branches. These missed branches
have two-sided effects. On the one hand, there may be key
branches that lead to more coverage, thus limiting solver’s
ability. On the other hand, some difficult conditions are not
generated in the first place, thus saving fuzzer’s time. When
the former effect is in dominance, Valkyrie will outperform
Valkyrie-solver, and vice versa. These two-sided effects are
neither predictable nor desirable, which further justifies our
motivation to eliminate branch collisions.

F. Summary

In the previous sections, we have addressed all research
questions. Our results show that Valkyrie triggers 21 unique
integer and memory errors, 10.5% and 50% more than AFL++
and Angora, respectively. In real-world programs, Valkyrie
reached 2431 branches per target on average, 8.2% and
12.4% more compared with AFL++ and Angora, respectively.
We demonstrated that our branch counting mechanism is a
better solution for efficient and accurate feedback. Finally,
we demonstrated that our predicate solving algorithms works
effectively on real-world branch predicates, allowing Valkyrie
to perform better than the other fuzzers we use for evaluation.
Thus we claim that Valkyrie, which utilizes accurate and
efficient feedback and effective predicate solving, is principled
and reliable.

V. RELATED WORK

Since AFL, much work has been devoted to strike a balance
between branch counting sensitiveness and the probability of
colliding. Angora updated AFL’s method by adding a function
context to the branch counting table [7]. CollAFL proposed
replacing AFL’s random ID generation with a non-random algo-
rithm that attempts to mitigate branch collisions [14]. However,
unlike Valkyrie, neither Angora nor CollAFL is collision-free.
Wang et al. formalized branch counting methods and discussed
the trade-offs between granularity and performance [26].

Many work focuses on predicate solving. REDQUEEN
solves hashes and checksums through input-to-state-
correspondance [3]. KLEE uses symbolic execution to solve
predicates in the program to generate seeds [5], but symbolic
execution can be ineffective when program path is deep and
nested. Angora solves branch predicates using principled
methods such as gradient descent [7], yet in this paper we show
that without continuous assumption Angora’s solver may fail
some simple cases. Matryoshka proposes procedural methods
for solving nested constraints in real-world situations [8].

Ever since AFL family [2, 4], fuzzers have evolved into two
main streams: solver-based fuzzer and targetted fuzzer. solver-
based fuzzers aim at better solvers on branch predicates to
reach high code coverage. However, Angora cannot effectively

solve branches that are nested together. Matryoshka [8] solved
this problem by a slightly modified gradient solver, which is
ad hoc and unjustifiable.

Targeted fuzzers attempt to target the potentially buggy code.
ParmeSan use a spectrum of sanitizers to help it find possible
buggy codes and put most energy in exploring and exploiting
those codes [23]. However, only identifies potential bugs and
use branch counting as an incentive to reach bugs instead of
using a solver to trigger it like Valkyrie does. Savior also targets
potential bugs, but it focuses on using seed scheduling to find
those that lead to potential buggy code [9]. TOFO proposed a
method to calculate the distances between all basic blocks in
seed and target basic block and reaches its target by always
selecting the closest seed [28]. None of the tools try to target
the buggy code by using a new solving method.

VI. CONCLUSION

In this paper, we identify the challenges that state-of-
the-art mutation-based greybox fuzzers face when finding
vulnerabilities in real-world scenarios and propose our solution
to address these issues. State-of-the-art fuzzers cannot achieve
better performance mainly due to the following reasons: 1) they
lack accurate and fine-grained branch counting feedback, and
2) their respective mutation strategies are not well-suited to
real-world scenarios. We propose Valkyrie, a prototype fuzzer
to address these issues. First, Valkyrie implements collision-free
context-sensitive branch counting, which eliminates branch col-
lision while capable of preserving context-sensitivity. Second,
Valkyrie implements a predicate solver for fuzzing that adapts
optimization algorithms for the real domain to the integer
domain. Finally, we use the solver to help us trigger bugs by
converting potentially exploitable code into predicates.

We evaluated Valkyrie on the Magma benchmark as well as
real-world programs. Our results show that Valkyrie triggers
21 unique integer and memory errors, 10.5% and 50% more
than AFL++ and Angora, respectively. In real-world programs,
Valkyrie’s branch counting mechanism proved effective by
eliminating branch collisions and keeping context-sensitivity,
while AFL and Angora incur high bitmap utilization rates, in-
dicating significant branch collision probabilities. For coverage
statistics, Valkyrie reached 8.2% more branches on average
compared with AFL++, and 12.4% compared with Angora.
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