
AnDarwin: Scalable Detection of Android
Application Clones Based on Semantics

Jonathan Crussell, Clint Gibler, and Hao Chen

Abstract—Smartphones rely on their vibrant application markets; however, plagiarism threatens the long-term health of these

markets. We present a scalable approach to detecting similar Android apps based on their semantic information. We implement our

approach in a tool called AnDarwin and evaluate it on 265,359 apps collected from 17 markets including Google Play and numerous

third-party markets. In contrast to earlier approaches, AnDarwin has four advantages: it avoids comparing apps pairwise, thus greatly

improving its scalability; it analyzes only the app code and does not rely on other information—such as the app’s market, signature, or

description—thus greatly increasing its reliability; it can detect both full and partial app similarity; and it can automatically detect library

code and remove it from the similarity analysis. We present two use cases for AnDarwin: finding similar apps by different developers

(“clones”) and similar apps from the same developer (“rebranded”). In 10 hours, AnDarwin detected at least 4,295 apps that are the

victims of cloning and 36,106 rebranded apps. Additionally, AnDarwin detects similar code that is injected into many apps, which may

indicate the spread of malware. Our evaluation demonstrates AnDarwin’s ability to accurately detect similar apps on a large scale.

Index Terms—Program analysis, clustering, plagiarism detection, mobile applications

Ç

1 INTRODUCTION

AS of March 2012, Android has a majority smart phone
marketshare in the United States [15]. The Android

operating system provides the core smart phone experience,
but much of the user experience relies on third-party apps.
To this end, Android has an official market and numerous
third-party markets where users can download apps for
social networking, games, and more. In order to incentivize
developers to continue creating apps, it is important to
maintain a healthy market ecosystem.

One important aspect of a healthy market ecosystem is
that developers are financially compensated for their work.
Developers can charge directly for their apps, but many
choose instead to offer free apps that are ad-supported or
contain in-app billing for additional content. There are sev-
eral ways developers may lose potential revenue: a paid
app may be “cracked” and released for free or a free app
may be copied, or “cloned”, and re-released with changes
to the ad libraries that cause ad revenue to go to the plagia-
rist [19]. App cloning has been widely reported by develop-
ers, smart phone security companies and the academic
community [8], [10], [11], [16], [20], [31], [32]. Unfortunately,
the openness of Android markets and the ease of repackag-
ing apps contribute to the ability of plagiarists to clone apps
and resubmit them to markets.

Another aspect of a healthy market ecosystem is the
absence of low-quality spam apps which may pollute search
results, detracting from hard-working developers. Of the
569,000 apps available on the official Android market,

23 percent are low-quality [7]. Oftentimes, spammers will
submit the same app with minor changes as many different
apps using one or more developer accounts.

To improve the health of the market ecosystem, a scal-
able approach is needed to detect similar app for use in
finding clones and potential spam. As of November, 2012,
there are over 569,000 Android apps on the official Android
market. Including third-party markets and allowing for
future growth, there are too many apps to be analyzed
using existing tools.

To this end, we develop an approach for detecting simi-
lar apps on a unprecedented scale and implement it in a
tool called AnDarwin. Unlike previous approaches that
compare apps pair-wise, our approach uses multiple clus-
terings to handle large numbers of apps efficiently. Our effi-
ciency allows us to avoid the need to pre-select potentially
similar apps based on their market, name, or description,
thus greatly increasing the detection reliability. Addition-
ally, we can use the app clusters produced by AnDarwin to
detect when apps have had similar code injected (e.g., the
insertion of malware). We investigate two applications of
AnDarwin: finding similar apps by different developers
(cloned apps) and groups of apps by the same developer
with high code reuse (rebranded apps). We demonstrate the
utility of AnDarwin, including the detection of new variants
of known malware and the detection of new malware.

2 BACKGROUND

2.1 Android

Android users have access to many markets where they can
download apps such as the official Android market—
Google Play [2], and other, third-party markets such as
GoApk [1] and SlideME [3].

Developers must sign an app with their developer key
before uploading it to a market. Most markets are
designed to self-regulate through ratings and have no

� The authors are with the Computer Science, University of California,
Davis, Davis, CA 95616 USA.
E-mail: {jcrussell, cdgibler, chen}@ucdavis.edu.

Manuscript received 20 Dec. 2013; revised 5 Nov. 2014; accepted 20 Nov.
2014. Date of publication 17 Dec. 2014; date of current version 31 Aug. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2014.2381212

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015 2007

1536-1233� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



vetting process which has allowed numerous malicious
apps onto the markets [33]. Google Play has developed a
Bouncer service [25] to automatically analyze new apps.
However, its effectiveness for finding similar apps, such
as spam and clones, which may not be malicious, has
not been studied.

2.2 Program Dependence Graphs

A Program Dependence Graph (PDG) represents a method
in a program, where each node is a statement and each edge
shows a dependency between statements. There are two
types of dependencies: data and control. A data depen-
dency edge between statements s1 and s2 exists if there is a
variable in s2 whose value depends on s1. For example, if s1
is an assignment statement and s2 references the variable
assigned in s1 then s2 is data dependent on s1. A control
dependency between two statements exists if the truth
value of the first statement controls whether the second
statement executes.

2.3 Code Clones and Reuse Detection

Many approaches have been developed over the years to
detect code clones [18], [21], [23], [24]. A code clone is two
or more segments of code that have the same semantics but
come from different sources. Finding and eliminating code
clones has many software engineering benefits such as
increasing maintainability and improving security, as vul-
nerabilities in clones only need to be found and patched
once. Plagiarism and code clone detection share the same
common goal: detecting reused code. However, code clone
detection is largely focused on intra-app reuse, while pla-
giarism detection focuses on inter-app reuse, where the
apps have separate code bases and have been identified as
having different authors.

Tools that detect code clones generally fall into one of
four categories: string-based, token-based, tree-based and
semantics-based with semantics-based detection being
potentially the most robust and often the most time consum-
ing. Early approaches considered code as a collection of
strings, usually based on lines, and reported code clones
based on identical lines [9]. More recently, DECKARD [21]
and its successor [18] use the abstract syntax tree of a code
base to create vectors which are then clustered to find simi-
lar subtrees.

3 THREAT MODEL

Our goal is to find Android apps that share a nontrivial
amount of code, published by either the same or different
developers. Our adversaries include plagiarists, who clone
other developers’ code, and spammers, who release many
copies of similar apps. These adversaries may try to obfus-
cate their code to subvert clone detection. We determine
similarity based on code alone and do not use meta data
such as market, developer, package or description for any
purpose other than analyzing the results of AnDarwin’s
clusters of similar apps. We consider only similarities
between the DEX code of apps. We choose to leave native
code to future work as only a small percentage (7 percent)
of the 265,359 apps we analyzed include native code.

4 METHODOLOGY

AnDarwin consists of four stages as depicted in Fig. 1. First,
it represents each app as a set of vectors computed over the
app’s Program Dependence Graphs (Section 4.1). Second, it
finds similar code segments by clustering all the vectors of
all apps (Section 4.2). Third, it eliminates library code based
on the frequency of the clusters (Section 4.3). Finally, it
detects apps that are similar, considering both full and par-
tial app similarity (Section 4.4). Additionally, we describe a
post-processing methodology for detecting apps that have
had similar code injected (Section 4.5) and analyze the total
time complexity of AnDarwin (Section 4.6).

We base the first two stages of AnDarwin on the
approaches of Jiang et al. [21] and Gabel et al. [18] to find
code clones in a scalable manner. AnDarwin uses these
results to detect library code and, ultimately, to detect simi-
lar apps.

4.1 Extracting Semantic Vectors

The first stage of AnDarwin represents each app as a set of
semantic vectors as follows. First, AnDarwin computes an
undirected PDG of each method in the app using only data
dependencies for the edges (as control dependencies edges
may be easier to modify). Each PDG is then split into con-
nected components as multiple data-independent computa-
tions may occur within the same method. We call these
connected components semantic blocks since each captures a
building block of the method and represents semantic

Fig. 1. Overview of AnDarwin.

2008 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



information stored in the PDG. Finally, AnDarwin computes
a semantic vector to represent each semantic block. Each node
in the semantic block represents a statement in the method
and has a type corresponding to that statement. For example,
a node representing an addmight have the type binary opera-
tion. To capture this information, semantic vectors are calcu-
lated by counting the frequency of nodes of each type in the
semantic block. Continuing the above example, a semantic
block with just x adds would have an x in the dimension cor-
responding to binary operations. AnDarwin uses the T. J.
Watson Libraries for Analysis (WALA) [14] to construct
PDGs. WALA’s PDGs contain a total of 20 node types so
AnDarwin’s semantic vectors have 20 dimensions. To
increase the precision of the semantic vectors, we could use
more information that WALA stores for each node, such
as the specific binary operation performed. Doubling or
even tripling the number of dimensions would not dramati-
cally increase the overall time complexity of AnDarwin
(Section 4.6). AnDarwin discards semantic blocks with fewer
than 10 nodes as small semantic blocks typically represent
trivial and uncharacteristic code. We determined this thresh-
old through manually analyzing apps and discovering that
even a few lines of code can result in fairly large semantic
blocks once the code is translated into static single assign-
ment form, a requirement for the construction of PDGs. In
Section 5.10, we explore ways to capture edge information
from the PDGs in the semantic vectors.

4.2 Identifying Similar Code

When two semantic blocks are code clones, they share the
majority of their nodes and, thus, their semantic vectors will
be similar. Therefore, by finding the nearest neighbors of a
semantic vector, we can identify potential code clones. Not
all of the nearest neighbors will be code clone as two
completely unrelated semantic blocks could have the same
frequency of node types. This is due to the lossy nature of
our semantic vector characterization: many PDGs may gen-
erate the same semantic vector. Specifically, the number of
PDGs that generates a given semantic vector increases com-
binatorially with the magnitude of the semantic vector. For-
tunately, our evaluation shows that these collisions are
infrequent in practice (Section 5.10).

To determine all the nearest neighbors, we could attempt
to compute similarity pairwise between all the semantic
vectors. However, this approach is quadratic in the number
of vectors which is computationally prohibitive given that
there can easily be millions of vectors. Instead, we leverage
Locality Sensitive Hashing (LSH), which is an algorithm to
efficiently find approximate nearest neighbors in a large
number of vectors [5]. LSH achieves this by hashing vectors
using many hash functions from a special family that have a
high probability of collision if the vectors are similar. To
identify nearest neighbors, LSH first hashes all the vectors
with the special hash functions and then looks for nearest
neighbors among the hash collisions. This allows LSH to
identify approximate clusters of similar vectors (code
clones) which AnDarwin will use to detect similar apps.

Since semantic blocks of vastly different sizes are
unlikely to be code clones, we can improve the scalability
further by grouping the vectors based on their magnitudes
[21]. To ensure that code clones near the group boundaries

are not missed, we compute groups such that they overlap
slightly. LSH can then cluster each group quickly as each
individual group is much smaller than the set of all vectors.
Moreover, each LSH computation is independent which
allows all the groups to be run in parallel. This also has the
added benefit that we can tailor the clustering radius for
each group to the magnitude of the vectors within the
group—potentially allowing us to detect more code clones.

From LSH, AnDarwin identifies a number of clusters of
semantic vectors representing semantic blocks that could be
code clones. However, AnDarwin’s goal is not to identify
code clones—we wish to identify app clones. Therefore, we
must determine a representation of apps in feature space.
Fortunately, we can use the code clones to represent apps.
Specifically, we can assign each code clone an index and
then represent each app as a binary vector where the ith
dimension is 1 if the app contains a semantic block whose
semantic vector is a member of the ith code clone and 0 oth-
erwise. This binary vector has many dimensions, one for
each code clone; however, it will be very sparse as each app
will only have a relatively small number of semantic blocks.
Therefore, to save space, we can store this vector for each
app using a set containing the indices of the non-zero
dimensions. We refer to this set as the app’s feature vector.

4.3 Excluding Library Code

A library is a collection of code that is designed to be shared
between many apps. In Android, libraries are embedded in
apps which makes it difficult to distinguish app code from
library code. This is problematic because app similarity
detection tools should not consider library code when ana-
lyzing apps for similarity. Prior approaches [16], [31] identi-
fied libraries using white lists and manual efforts; however,
these approaches are inherently not scalable and prone to
omission. In contrast, AnDarwin automatically detects
libraries by leveraging the results of its clustering of similar
code (Section 4.2).

A library consists of many semantic blocks which are
mapped to semantic vectors by AnDarwin. When an app
includes a library it inherits all the semantic vectors derived
from library code. Therefore, when we compute the feature
vectors for apps, features from library code will appear in
many more feature vectors than non-library code (recall
that a feature represents a code clone identified by LSH).
Additionally, features representing boilerplate code and
compiler-generated constructs will appear much more fre-
quently. To exclude these uncharacteristic features, AnDar-
win ignores any feature that appears in more than a
threshold number of apps.

4.4 Detecting Similar Apps

The previous sections describe how AnDarwin creates fea-
tures by clustering semantic vectors and how characteristic
features are selected. AnDarwin determines app similarity
based on these characteristic features using two approaches,
one for full app similarity and the other for partial app
similarity.

Full app similarity detection. For full app similarity detec-
tion, AnDarwin represents each app as a set of features. In
the simplest case, two very similar apps will have mostly or

CRUSSELL ET AL.: ANDARWIN: SCALABLE DETECTION OF ANDROID APPLICATION CLONES BASED ON SEMANTICS 2009



completely overlapping feature sets. Dissimilar apps’ fea-
ture sets, on the other hand, should have little to no overlap.
This is captured in the Jaccard Similarity of their two feature
sets FA and FB, which reduces the problem of finding simi-
lar app to that of finding similar sets

JðA;BÞ ¼ jFA \ FBj
jFA [ FBj : (1)

Partial app similarity detection. The above approach suc-
cessfully finds apps that share most of their code but it is
not robust enough to find clones that share only a part of
their code. For example, consider an app and a copy of it
that has added many methods and also removed many orig-
inal methods to maintain a similar size. Although the app
feature sets of these two apps agree on many features, their
Jaccard Similarity may be low. To detect partial similarity,
for each feature not excluded in the previous section,
AnDarwin computes the set of apps that contain the feature.
If two features have similar app sets, as determined by the
Jaccard Similarity, these two features are shared by the
same set of apps. If enough features share the same set of
apps, AnDarwin has discovered a non-trivial amount of
code sharing of non-library code. Therefore, by creating
clusters of features based on their app sets, AnDarwin can
detect partial app similarity by finding similar sets.

Finding Similar Sets. Both full and partial app similarity
detection require finding similar sets. As in Section 4.2, we
could attempt to compute similarity pairwise between all
the sets, however, this is again computationally prohibitive.
Fortunately, this can be approximated efficiently using Min-
Hash [12], [13].

MinHash is another Locality Sensitive Hashing algo-
rithm that was originally developed at Alta Vista to detect
similar websites when represented as a set of features. As
with the LSH algorithm described in Section 4.2, the Min-
Hash algorithm starts by computing a signature for each set
based on hashing and random permutations of the feature
space. It then identifies nearest neighbors among sets that
have hash collisions. Using Minhash, AnDarwin can effi-
ciently detect both full and partial app similarity.

The output of MinHash is a list of pairs of sets that are
similar which we combine to create clusters of similar sets.
To do so, we initialize a union-find data structure, which
enables fast cluster merging and element lookup, with each
set in a cluster by itself. We then process each pair, ðX;Y Þ
and merge the two clusters that contain X and Y if they are
not already in the same cluster. By merging clusters in this
way, the average similarity of sets within each cluster is
decreasing with each pair processed. For example A may be
similar to B, B to C, and C to D but this does not mean that
A must be similar to D. We believe this is an acceptable
trade off and leave alternative approaches to future work.

4.5 Detecting Commonly Injected Code

Once AnDarwin has clustered apps, it would be useful to
automatically detect if similar code has been injected into
many apps. For example, a malware author may download
many innocuous apps, inject malware and then upload
these spiked apps. We introduce two concepts: cores and
diffs. Each app cluster computed by AnDarwin has a core

which represents the code common to all apps in the cluster.
AnDarwin computes the core by calculating the intersection
of the feature sets of the apps in the cluster. Using this core
as a point of reference, AnDarwin calculates a diff for each
app in the cluster by subtracting the cluster’s core from the
app’s feature set. This new set represents a superset of the
code that is modified in the app.

AnDarwin calculates these cluster cores and correspond-
ing app diffs for each app cluster for both full and partial
similarity detection. Then, it clusters the diffs with MinHash
to find apps that have had similar code injected.

4.6 Time Complexity

In this section, we examine the total time complexity of
AnDarwin. LetN be the number of apps analyzed. Then, the
complexity of extracting semantic vectors is trivially
OðN �mÞ, where m is the average number of methods per
app (m is independent of N). The complexity of identifying
similar code with LSH is: OðdPg2G jgjr log jgjÞ [21]. Where d

is the dimension of the semantic vectors (20), G is the set
of vector groups, jgj is the size of the vector group
(jgj <¼ N �m) and 0 < r < 1. This produces at most
OðN �mÞ clusters when there are no code clones at all.
Finally, the complexity of MinHash is: Oðn lognÞ where n is
the number of sets. For full app similarity detection where
there is one set per app, n ¼ N , and for partial app similarity
detection where there is one set per code clone, n <¼ N �m.
Therefore, the total time complexity of AnDarwin is linear-
ithmic,OðN logNÞ, in the number of apps analyzed.

4.7 Online Clone Detection

So far we have described AnDarwin as an offline tool,
because we must collect all the apps before running AnDar-
win. More likely in the real-world, however, new apps are
uploaded or crawled continuously. To meet this need, we
extend AnDarwin to have an online mode, which processes
apps as they come in.

Online clone detection works in three steps. First, it
determines an app’s feature vector. Recall that this is based
on the clusters of semantic vectors (Section 4.2). Each new
app has a number of semantic blocks and the semantic vec-
tor for each block may or may not have already been seen
before in another app. If a semantic vector has been seen
before, we need no further processing for that vector as we
already know the feature index. For new semantic vectors,
we must run LSH to identify the nearest neighbors for the
vector. We then either merge the semantic vector into an
existing cluster based on its neighbors and thus assign it to
a feature, or, if it has no close neighbors, create a new fea-
ture. Applying this process to each of the semantic vectors
for a new app produces a feature vector for the app.

Once AnDarwin computes the app’s feature vector, it
then excludes features previously identified as library fea-
tures. There is a chance that this new app might help to
identify a new library. As we expect this to happen rarely,
we rerun the library detection component periodically
rather than when every new app is added.

Finally, we identify similar apps based on full and partial
app similarities. Finding full app similarity matches is
straightforward: we compute the MinHash signature for the

2010 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



app’s feature set and then check for collisions with previ-
ously analyzed apps. Partial app similarity detection is
more difficult—the introduction of one new app with n fea-
tures causes n updates to the feature-to-app sets used by
partial app similarity. For this reason, we run the partial
app similarity detection periodically rather than when each
each new app is added.

5 EVALUATION

We have implemented our approach in a tool called AnDar-
win. AnDarwin uses dex2jar [27] version 0:9:8 to convert
DEX byte code to Java byte code. To build the PDGs
required to represent apps as a set of semantic vectors,
AnDarwin uses the T. J. Watson Libraries for Analysis [14].
WALA supports building PDGs from Java byte code, elimi-
nating the need for decompilation. Once AnDarwin has
converted all the apps and represented them as sets of
semantic vectors, AnDarwin uses the LSH code from [5] to
cluster the semantic vectors to create features. These cluster-
ing results are then used to create the feature sets and app
sets described in Section 4.4. Finally, to detect full and par-
tial app similarity, AnDarwin uses MinHash, which we
implemented based on [28].

AnDarwin has many parameters, each of which can be
tuned based on the dataset AnDarwin is applied to. Many
of the parameters, such as those used for the LSH-based
clustering of the semantic vectors, were determined based
on trial-and-error. This involved running the analysis with
different parameters and manually investigating the results.
For some of the parameters, such as those used for Min-
Hash, there are equations that can be used select the appro-
priate parameters. For full app similarity, we wished to find
apps that share at least 50 percent of their features using at
most 200 permutations. Using these values and the equation
in Section 3.4.3 of [28] we could select the appropriate num-
ber of bands to break the MinHash signature into. An inter-
esting direction for future work would be to find a way to
automatically tune the parameters of AnDarwin to reach a
desired false positive or false negative rate. This is inher-
ently difficult as clustering is unsupervised—there is no
ground truth about what is the correct clustering.

We crawled 265,359 apps from 17 Android markets
including the official market and numerous third-party
markets (Table 1).

5.1 Semantic Vectors

There are a total of 87,386,000 methods included in the
265,359 apps. These methods produced a total of 90,144,000

semantic vectors, meaning that on average amethod has 1.03
connected components. Among the 90,144,000 semantic vec-
tors, there are 4,825,000 distinct vectors. The average size of
these 4,825,000 vectors is 77.87 nodes. The largest has 17,116
nodes. When we manually investigated the largest method,
we found that the app builds a massive five-dimensional
array using hard coded values depending on different flags.
Although perhaps not the best coding style, this large seman-
tic vector does represent valid code that could be copied.

5.2 Code Features

In total, AnDarwin found 87,386,000 methods included in
the 265,359 apps that are clustered into 3,085,998 distinct
features by LSH. 133,753 (4.3 percent) of these features are
present in more than 250 apps and thus are not used in
either full or partial app similarity detection. We selected
this threshold based on the following insight: only features
from library code tend to map to methods that share the
same method signatures. Therefore, if the ratio of the num-
ber of apps a feature appears in to the number of distinct
method signatures for that feature is large, it is highly
likely that the feature represents library code. To select a
library code threshold, we select a value and then count
the number of excluded features for which this ratio is
large and evaluate whether the threshold is acceptable.
Using a ratio of four, we selected the threshold such that at
least 50 percent of the excluded features exhibit this trait.
We note that this threshold may be easily tweaked depend-
ing on false positive and false negative requirements.

5.3 App Complexity

Overall, AnDarwin found that a large number of apps are not
very complex. Fig. 2a shows the number of features per apps
for the 265,359 apps before common feature exclusion. On
average, apps have 2,045 features and the largest app has
23,918 features. Once libraries are excluded, the number of
apps with at least one feature drops to 231,184. Fig. 2b shows
that the average complexity drops dramatically once common
features are excluded. The average number of features for
these apps is 148, with the largest app having 7,908 features.

This is interesting from a software development point of
view because it suggests that through libraries and good
API design, most Android apps do not have to be very com-
plex in order to perform their function.

5.4 Full App Similarity Detection

Using full app similarity detection (Section 4.4), AnDarwin
found 28,495 clusters consisting of a total of 150,846 distinct

TABLE 1
Market Origins of the Apps Analyzed by AnDarwin

Market Apps Market Apps Market Apps

Google Play 224,108 SlideME 16,479 m360 15,248
Brothersoft 14,749 Android Online 10,381 1Mobile 9,777
Gfan 7,229 Eoemarket 5,515 GoApk 3,243
Freeware Lovers 1,428 AndAppStore 1,301 SoftPortal 1,017
Androidsoft 613 AppChina 404 ProAndroid 370
AndroidDownloadz 245 PocketGear 227

Since some apps appear on multiple markets, the total apps in the table is slightly more than the total 265,359 apps analyzed.

CRUSSELL ET AL.: ANDARWIN: SCALABLE DETECTION OF ANDROID APPLICATION CLONES BASED ON SEMANTICS 2011



apps. Fig. 3a shows the sizes of the clusters. As expected, the
majority of clusters consist of just two apps. Surprisingly,
some clusters are much larger, the largest of which consists
of 281 apps. We will investigate these clusters in Section 6.2.

To evaluate the quality of the clusters, we compute intra-
cluster app similarity based on the average Jaccard Similar-
ity (Equation (1)) between each pair of apps. For each cluster
C, we compute the similarity score, SimðCÞ, as

SimðCÞ ¼ avgfðA;BÞ 2 C : JðA;BÞg: (2)

The similarity scores are between 0 and 1, where a score
close to 1 indicates that all apps in the cluster have almost
identical feature sets. Fig. 3b shows the cumulative distribu-
tion of the similarity scores of the 28,495 clusters. It shows
that almost no clusters have similarity scores below 0.5, and
more than half of the clusters have similarity scores of over
0.80. This demonstrates the effectiveness of AnDarwin in
clustering highly similar apps.

5.5 Partial App Similarity Detection

Using partial app similarity detection, AnDarwin found
11,848 clusters consisting of 88,464 distinct apps. Figs. 4a
and 4b show the sizes and similarity of these clusters,
respectively. As partial app similarity is designed to detect
app pairs that share only a portion of their code, we cannot
measure them with Equation (1). Consider the scenario
where an attacker copies an app but adds an arbitrarily
large amount of code. In this case, Equation (1) will be small
even though the original and clone share all of the original
app’s features. Therefore, for each cluster C, we compute

the similarity score, SimpðCÞ, as

SimpðCÞ ¼ avg ðA;BÞ 2 C :
jFA \ FBj

minðjFAj; jFBjÞ
� �

: (3)

Fig. 4b shows the cumulative distribution function of
SimpðCÞ for the partial app similarity detection clusters.
Comparing Fig. 3b to Fig. 4b, we observe that some clusters
based on partial app similarity have low intra-cluster simi-
larity scores while almost no cluster based on full app simi-
larity has similarity scores below 0.5. On the surface, this
might suggest that partial app similarity produces lower
quality clusters. However, this in fact shows the power of
partial app similarity. When a cluster has a low similarity
score, it indicates that the common features among the apps
in this cluster are relatively small compared to the app sizes,
so full app similarity detection cannot identify these com-
mon features.

5.6 Performance

We evaluated AnDarwin’s performance on a server with
quad Intel Xeon E7-4850 CPUs (80 logical cores with hyper
threading) and 256 GB DDR3 memory. Using 75 threads, it
took 4.47 days to extract semantic vectors (Stage 1) from all
265,359 apps (only 109 seconds per thread to process each
app). We note that this stage only occurs once for each app,
regardless of changes to subsequent stages and can be paral-
lelized to any number of servers to reduce the total time.

The next most expensive stages are the LSH clustering in
Stage 2 (Section 4.2) and the two MinHash-based clusterings
in Stage 4 (Section 4.4). LSH clusters all 4,825,000 distinct

Fig. 2. Distribution of the number of features per app on logarithnic scale.

Fig. 3. Full App Similarity Detection.

2012 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



vectors in just over 49 minutes. This time could be reduced
to seven minutes if we were to run all the groups in parallel,
rather than serially (as done in our current implementation).
Full app similarity detection runs in just over 35 minutes. In
total, it takes under 10 hours to complete full app similarity
detection including all the database operations and data
transformations. On its own, partial app similarity detection
took seven hours but this is expected as it clusters 2,952,245
sets whereas full app similarity detection only clusters
265,359. Interestingly, this time estimates how long it would
take to run MinHash for full app similarity detection on
2,952,245 apps. Both MinHash times could be improved by
using more than our single server.

5.7 Accuracy

Full app similarity detection. To measure the false positive rate
of AnDarwin’s full app similarity detection, we leverage
DNADroid [16], a tool that robustly compares Android
apps pairwise for code reuse. DNADroid uses subgraph iso-
morphism to detect similarity between the PDGs of two
apps. In the author’s evaluation of DNADroid, it had an
experimental false positive rate of 0 percent, making it an
ideal tool for evaluating AnDarwin’s accuracy.

Unfortunately, DNADroid is too computationally expen-
sive to apply to all the pairs of apps AnDarwin found.
Instead, we randomly selected 6,000 of the 28,495 clusters

and then randomly selected one app from each cluster to
compare against all the other apps in the cluster. This
resulted in a total of 25,434 pairs which it took DNADroid
83 hours to analyze.

DNADroid assigns each app in a pair a coverage value
which indicates how much of the app’s PDG nodes appear
in the other app. To assess AnDarwin, we use the maximum
of these two coverage values for each pair. When we com-
pared the randomly selected app from each cluster to all the
other apps in the cluster using DNADroid, we found that
96.28 percent of the clusters had at least 70 percent of the
coverage values over 50 percent. This threshold is the same
as the Jaccard Similarity used by AnDarwin. Furthermore,
95.50 percent of the clusters had 90 percent of the coverage
values over the same threshold. Using the 70 percent crite-
ria, only 3.72 percent of AnDarwin’s full app similarity
detection clusters were not verified by DNADroid and,
therefore, are considered false positives.

In Fig. 5a, we plot the CDF of the individual similarities
for AnDarwin and DNADroid for the 25,434 pairs of apps.
Interestingly, AnDarwin’s similarities are consistently lower
than DNADroid’s. There are two possible causes for this:
AnDarwin’s semantic vector approach fails to find method
matches that are subgraph isomorphic and thus found by
DNADroid or AnDarwin’s and DNADroid’s library exclu-
sion methodologies produce different results. DNADroid

Fig. 4. Partial App Similarity Detection.

Fig. 5. Comparison of AnDarwin and DNADroid similarities.

CRUSSELL ET AL.: ANDARWIN: SCALABLE DETECTION OF ANDROID APPLICATION CLONES BASED ON SEMANTICS 2013



excluded libraries using signatures calculated over the byte-
code of known library package names. This means that
DNADroid is limited to well-known libraries that have
been available for a longer period of time. It also means that
libraries that have had their package names changed are
undetectable to DNADroid. AnDarwin’s library exclusion,
on the other hand, does not require the knowing the library
package names in advance making it much more robust.
Since AnDarwin’s library exclusion is more complete and
may also include trivial code that gets reused often, we
would expect AnDarwin’s similarities to be consistently
lower than DNADroid’s.

In Fig. 5b, we plot the CDF of the difference between
AnDarwin’s similarity and DNADroid’s. In a majority of
pairs (60 percent), for an individual pair of apps,
AnDarwin’s similarity is lower than DNADroid’s. In a large
number of pairs (30 percent), AnDarwin and DNADroid
agree almost exactly, showing virtually no difference
between the computed similarities. Finally, in a small num-
ber of pairs (10 percent), DNADroid’s similarity is actually
lower than AnDarwin’s. With a margin of +/�10 percent,
AnDarwin and DNADroid agree on over 50 percent of the
app pairs.

We do not attempt to measure the false negative rate of
AnDarwin as there is no feasible way to find ground truth,
e.g., all the similar apps in our collection of 265,359 apps.

Partial app similarity detection. Unfortunately, DNADroid
and its coverage values are inappropriate for evaluating the
accuracy of partial app similarity detection. DNADroid con-
siders apps as a whole and calculates similarity based on the
matched portion to the size of the whole app. If DNADroid
were used to verifying partial app similarity detection, we
would incorrectly report a false positive in the case where
two apps share a part of their code but not a significant
(over the DNADroid coverage threshold of 50 percent)
amount of their total code. Again, due to the lack of ground
truth, we do not attempt to measure the false positive or
false negative rate of partial app similarity detection.

5.8 Manual Analysis

As an additional analysis of the false positive rate of
AnDarwin’s full app similarity detection, we manually
investigate 50 app pairs. In order to select these app pairs,
we leverage the results of the previous section to select pairs
that have the largest reported differences between
AnDarwin’s and DNADroid’s similarities. Specifically, we
sort the pairs by the differences and take the top 25 pairs
and the bottom 25 pairs. To manually investigate each app
pair, we opened the two apps side-by-side in the Android
emulator to determine if they were visually similar. In
many cases clones will not bother changing the UI which

makes such pairs easy to confirm. When the UIs are not sim-
ilar, we manually interact with the apps to determine their
behaviors given the same input. If the apps behave simi-
larly, we also treat this as a true positive.

The results of our manual analysis are presented in
Table 2. For pairs where DNADroid’s similarity is much
higher, we found all pairs to be visually similar. These pairs
are potential false negatives of AnDarwin. Recall that these
pairs were determined using the clusters produced by full
app similarity detection and that for a pair to be analyzed,
the two apps must have appeared in the same cluster. This
means that AnDarwin correctly put these 25 pairs in the
same cluster, despite reporting a low similarity. We call
these pairs potential false negatives because these pairs
were only placed in the same cluster after they were found
similar to intermediate apps that caused the clusters con-
taining each app in the pair to be merged. Therefore, if these
intermediate apps were not included in our analysis, these
pairs would have been false negatives of AnDarwin. In the
other set of pairs where AnDarwin’s similarity is much
higher, we had to manually interact with many of the apps
but were still able to determine that 96 percent were similar.
These are confirmed false negatives of DNADroid. As dis-
cussed earlier in the previous section, we used DNADroid
to verify the clusters produced by full app similarity detec-
tion and found a false positive rate of 3.72 percent. This
includes the 24 pairs that are confirmed false negatives of
DNADroid implying that the actual false positive rate of
AnDarwin is even lower than 3.72 percent.

5.9 Commonly Injected Code

In this section, we describe the results of our commonly
injected code detection. In this evaluation, we use the full
app similarity detection clusters as input although the same
methodology applies to the partial app similarity detection
clusters. In total, we found 14,402 clusters using commonly
injected code detection. Unsurprisingly, many of these clus-
ters overlap with the full app similarity detection clusters.
This occurs when there are at least three apps in a cluster,
A, B and C and two of the apps, say B and C, have the
same injected code that A does not. Then, the diffs for B
and C will be identical, and they will be clustered together.
Therefore, we filter the diff clusters using the original app
clusters yielding a total of 694 clusters containing a total of
3,927 apps. This approach allows us to find apps with com-
monly injected code even when the injected code accounts
for a very small percentage of the apps’ code base. In one
case, during full app similarity detection, AnDarwin placed
app A and B in one cluster and app C andD in another one.
Then, during commonly injected code detection, AnDarwin
placed A�B and C �D in the same cluster. Our

TABLE 2
Results of Manual Analysis on App Pairs Where AnDarwin’s and DNADroid’s Similarities Have the Largest Differences

Similarity Score Application Pairs

Comparison Average of (AnDarwin - DNADroid) Total Visually Similar Behaviorally Similar True Positives

AnDarwin << DNADroid �84% 25 25 N/A 100%
AnDarwin >> DNADroid 68% 25 11 13 96%

“True positives” is the percentage of pairs that were visually or behaviorally similar.

2014 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



examination shows that app A and C have 366 and 308 fea-
tures, respectively, while the common features among A
and C (A \ C) are only 8. Since the common features among
A and C account for just 2 percent of all the features in
either A and C, they cannot be typically considered clones.
However, by extracting the diffsA�B and C �D, our com-
monly injected code detection algorithm exposes the rela-
tionship between A and C, i.e., they contain similarly
injected code.

5.10 Alternative Semantic Vectors

As stated in Section 4.1, we compute semantic vectors by cre-
ating a frequency vector over the different node types for a
connected component in a PDG. This captures which node
types are present in the PDG but does not capture any infor-
mation about the structure of the graph. Without any struc-
tural information, AnDarwin may falsely say two methods
are similar simply because they have the same number of
nodes of each type. Therefore, we explore different ways in
which we could capture the edge information to improve the
semantic vectors to reduce the potential for false positives in
the semantic vector clustering stage. For example, Fig. 6
shows two PDGs that generate the same semantic vector but
have different structures, so they are not subgraph isomor-
phic (see Section 7.2 for a discussion of these feature collisions).
Reducing false positives at this stage allows AnDarwin to
form more precise features, which will improve the final
quality of the clusterings that identify similar apps.

Total degree. A simple approach to add structural infor-
mation to the semantic vectors is to include the total degree
for nodes of each type. This is very similar to the approach
taken with the nodes. This approach should perform well
differentiating graphs with vastly different structures even
if the node counts are the same; however, it may be less
robust than other approaches. It gives nodes and edges
equal weight in the semantic vector, which may reduce the
work that a plagiarist has to do to modify the PDG such that
it will not generate similar semantic vectors. This is because
for every node added, multiple edges can be added.

Average In- or Out-Degree. As pointed out in the previous
approach, edges and nodes should not be weighted equally
in the semantic vector. To reduce the influence of the edges,
we could normalize the total degrees using the number of
nodes of the given type. Alternatively, we could normalize
using the total number of edges in the graph. In this experi-
ment, we choose to split degree counts for incoming edges
and outgoing edges and include the normalized values using
the number of nodes of the given type. This creates two
approaches, one for the normalized degree of incoming edges
for nodes of each type and the other for outgoing edges.

Max in- or out-degree. Our final approach uses the maxi-
mum degree of incoming or outgoing edges of each node
type. We believe this approach will be the most robust
against plagiarist modifications as it captures information
about the most important nodes of each type in the vector.
If a plagiarist wants to alter one of these new dimensions,

Fig. 6. Example of two PDGs that generate the same semantic vectors but are not subgraph isomorphic. Nodes in the graphs are colored according
to their node types. PHI nodes are created when there are branches in the bytecode. Param Callee nodes show dependencies on method parame-
ters. Neither PHI nor Param Callee nodes are used when building semantic vectors.

CRUSSELL ET AL.: ANDARWIN: SCALABLE DETECTION OF ANDROID APPLICATION CLONES BASED ON SEMANTICS 2015



she must add enough nodes and edges to create a new node
that has more incoming or outgoing edges than the existing
node in the graph. Depending on the size of the original
graph, this may require significant additional code. One
potential weakness of this approach is that some nodes may
not be present in the original PDG, making the dimensions
for the edge counts of those node types easier to change.

5.10.1 Experiment

To evaluate which approach is the most promising for
improving our semantic vectors in future work, we per-
formed the following experiment. We took 1,000 random
APKs from our dataset and computed the semantic vectors
using each of the above alternative approaches. We then
clustered these semantic vectors to form six sets of features.
To test the precision of each approach, we sampled 4,000
random features, looked up the semantic vectors repre-
sented by that feature, and then randomly selected a pair of
methods whose PDGs were in that set of semantic vectors.
We then compared each pair of PDGs using subgraph iso-
morphism provided by DNADroid [16].

Table 3 shows the results of this experiment. The second
column shows the number of features that were found from
the clusters of semantic vectors produced by LSH. The sin-
gletons column shows the number of sampled features for
which there was only a single semantic vector in a single
APK. These, by definition, cannot be considered false posi-
tives of the approach. Next, we report the number of sam-
pled features whose random PDG pair were matched by
subgraph isomorphism. Last, we calculate the true positive
rate for each approach, counting both singletons and
matches.

Table 3 shows all of the new approaches outperform the
current approach, which includes no edge information. The
total degree approach had the highest true positive rate, a
12.7 percent improvement over the current approach. While
the total degree approach outperformed the other
approaches, it is likely to be the least robust to plagiarist
modification. Therefore, the max out-degree approach with
a 8.2 percent higher true positive rate shows the most prom-
ise for replacing our current approach.

All of these suggestions double the size of the semantic
vectors from 20 to 40, adding one new dimension for each
node type. As stated in Section 4.6, the complexity of the

LSH clustering stage of AnDarwin depends linearly on the
size of the vectors. Therefore, none of these proposed
semantic vectors would have a significant impact on the
overall scalability of AnDarwin. In fact, in future work, we
could explore combining multiple representations of the
graph structure information such as max in-degree and max
out-degree without significantly impacting performance.

5.11 Online Clone Detection

We evaluated the online clone detection described in Sec-
tion 4.7. Starting with a database of semantic vectors and
features computed from 265,359 apps used earlier, we
selected 150 random new apps and ran them through online
clone detection. Note that online clone detection is cumula-
tive: after we run an app through, its semantic vectors and
features become part of the database.

Fig. 7 shows the CDF of the time for running online clone
detection on these apps. The times range from 14.4s to
332.0s with a median of 86.4s.

6 FINDINGS

6.1 Clone Victims

One use case of AnDarwin is finding clones on a large scale.
Clones are different apps (not different versions of the same
app) that are highly similar but have different owners. We
determine ownership using two identifiers associated with
each app we crawl: 1) the developer account name plus the
market name and 2) the public key fingerprint of the private
key that digitally signed the app. Assuming that a devel-
oper’s account and her private key are not compromised,
no two apps with different owners can share both of these
identifiers. Therefore, we assume apps have different own-
ers if they do not share either identifier.

Definitively counting the number of clones is non-trivial
as it requires knowing which apps are the originals. Instead,
we estimate the number of apps that are the victims of clon-
ing. Each app belongs to at most one cluster and each app
in a cluster is similar to at least one other app in the cluster.
Therefore, each cluster is a family of similar apps which
must have a victim app, the original app, even if we have
not crawled the victim app. Then, the number of victims is

TABLE 3
Evaluation of the True Positive Rates for the

Alternative Semantic Vectors

Approach Features

Total Singletons Matched True Positives

No edges 78,365 2,427 606 75.8%
Total degree 164,692 2,802 742 88.5%
Avg in-degree 112,874 2,496 675 79.3%
Avg out-degree 122,129 2,505 711 80.4%
Max in-degree 119,349 2,514 713 80.7%
Max out-degree 132,130 2,594 765 84.0%

For each approach, we randomly selected 4,000 features and determined
whether a random pair of PDGs represented by the feature are subgraph iso-
morphic. No edges is the currently used approach. The true positive rate is
the percentage of pairs that were singletons (feature that represent a single
PDG) or matched.

Fig. 7. CDF of running time of online clone detection.

2016 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



at least equal to the number of clusters where there is more
than one owner, as determined by the two identifiers above.
Using just the full app similarity clusters, which were vetted
in Section 5.7, AnDarwin found that at least 4,295 apps have
been the victims of cloning.

6.2 Rebranded Apps

Using full app similarity detection, AnDarwin found 764
clusters containing more than 25 apps. Our investigation of
these large clusters found a trend that some developers
rebrand their apps to cater to different markets. The idea of
rebranding is not a new concept—it has been widely used
on the web (e.g., WordPress blogs). For example, one cluster
consists of weather apps each targeting a different city. Sim-
ilarly, we found clusters for news, trivia, books, radio sta-
tions, wallpapers, puzzles, product updates and even
mobile banking apps. Some of these rebrandings are as triv-
ial as just swapping the embedded images.

To estimate the number of rebranded apps, we use the
owner identifiers described in Section 6.1 to map each app
to an owner. If at least 25 apps in a cluster have the same
owner, we consider those apps to be rebranded. Using this
metric, 599 of the 764 clusters with at least 25 apps include
rebranded apps. In total, we found 36,106 rebranded apps.

A surprising example of app rebranding is a cluster of
mobile banking apps. This cluster contains 109 distinct apps
that share a common package name prefix. Searching by
this prefix, we found 175 apps on the Google Play Store,
which includes 80 of the 109 apps present in our clusters.
Interestingly, several of the apps were available on both
1Mobile and Play, and two of the apps are signed by a dif-
ferent key than the other 107 apps.

6.3 New Variants of Known Malware

Once malware has been discovered, it is important to use
this knowledge to identify variants of the malware in an
automated way. We hypothesize that by analyzing the clus-
ters produced by AnDarwin containing known malware we
may automatically discover new variants of those malware.
Using the malware dataset from [33], we found 333 apps
were clustered with known malware and were not included
in the malware dataset.

We uploaded these 333 apps to VirusTotal [4], a website
for running a suite of anti-virus software on files. It recog-
nized 136 as malware, with 88 never having been uploaded
to VirusTotal before. Among the 136 malware, approxi-
mately 20 are variants of the DroidKungFu family [22].
Approximately another 20 are identified as belonging to var-
ious malware families described in [33]. The remaining apps
are identified as adware that contains either AirPush or
AdWo. These advertising libraries show ads even when the
app is not running [29] and have been known to have
misleading ad campaigns [30]. These results demonstrate
AnDarwin’s utility for discovering new variants of malware.

6.4 New Malware Detection in Clones

Zhou and Jiang [33] found that 86.0 percent of their mal-
ware samples were repackaged versions of legitimate apps
with additional malicious code, aiming to increase their
chances of being installed by providing useful functionality.

Since malware often requires many more permissions than
regular apps, we hypothesize that we may detect new mal-
ware by searching for apps that require more permissions
than the others in the same cluster. Intuitively, apps that are
clustered together have similar code and for some to require
more permissions is suspicious. To investigate this hypothe-
sis, we searched for apps that require excessive permissions
as follows (using clusters from both full and partial app
similarity detection). First, for each cluster, we compute the
union of the permissions required by all its apps. Then, we
identify apps that require at least 85 percent of the permis-
sion union. Finally, if the apps identified in the previous
step are fewer than 15 percent of the total apps in the clus-
ter, we mark these apps as suspicious. Using this criterion,
we found 608 suspicious apps. Sixteen of these apps overlap
with the malware dataset from [33] and one overlaps with
the previous section.

As before, we uploaded these apps to VirusTotal and it
identified 243 as malware. Furthermore, 169 of these had
never been seen before. This represents a lower bound on
the actual number of malware in the suspicious apps as we
did not investigate the suspicious apps for new malware
which may not be identified by VirusTotal. The identified
malware is from known families such as DroidKungFu [22],
BaseBridge [17] and Geinimi [26]. By searching for apps
with excessive permissions, AnDarwin identified known
malware as suspicious without prior knowledge of their
existence. This result demonstrates that AnDarwin is an
effective tool for identifying suspicious apps for more
detailed analysis.

7 DISCUSSION

7.1 Adversarial Response

A specific use case of AnDarwin is to find plagiarized apps
in a scalable manner. Based on our implementation details,
plagiarists may attempt to evade detection using obfusca-
tion. Some of these obfuscation techniques are effective
against AnDarwin, however, they are difficult to perform
automatically.

Futile obfuscations. AnDarwin is robust against all trans-
formations that do not alter methods’ PDGs, which is the
basis for our similarity detection. This includes, but is not
limited to, (1) syntactical changes such as renaming pack-
ages, classes, methods and variables, (2) refactoring changes
such as combining or splitting classes and moving methods
between classes, and (3) method restructuring such as split-
ting methods with multiple connected components into sep-
arate methods and reordering code segments within a
method that are data and control independent.

AnDarwin is also robust against code addition. A plagia-
rist may add a few methods or a new library to their plagia-
rized app. Since the original and the plagiarized app still
share a core of similar code, AnDarwin would still detect
them using partial app similarity detection.

Potentially effective obfuscations. AnDarwin is less robust
against obfuscations that dramatically alter methods’ PDGs.
For example, plagiarists may be able to alter app methods
to mimic the semantic vectors of library code or use PDG
node splitting to increase the distance between the original
semantic vector and the plagiarized one. Additionally,

CRUSSELL ET AL.: ANDARWIN: SCALABLE DETECTION OF ANDROID APPLICATION CLONES BASED ON SEMANTICS 2017



plagiarists could artificially join connected components
within methods using dead code to increase the distance
between the semantic vectors or split each connected com-
ponent into a set of very small methods that are too small to
be considered by AnDarwin. Ultimately, plagiarists could
reimplement the original app.

The subversions listed above are difficult for most simi-
larity detection tools to detect, including AnDarwin. Fortu-
nately, all these subversions require substantial effort on the
part of the plagiarists as it would be difficult for tools to do
this automatically. Further, such a tool would require inti-
mate knowledge of the targeted app to ensure that the pla-
giarized app still functions correctly.

7.2 Probability of a False Positive

In this section, we examine the probability that two dissimi-
lar apps are clustered together by full app similarity detec-
tion. Consider two similar apps that share n features.
Assuming that features are independent, which is the case
when library code is excluded, then

Pr½share n features� ¼ Pr½share feature�n (4)

¼ Pr½share close SV�n; (5)

where “close SV” means two semantic vectors that will be
clustered together by LSH or are identical. Now, consider
the case where two apps are not similar, but are clustered
together anyway. This means they must still agree on n fea-
tures, where each of these n agreements is a false positive
which we shall refer to as a feature collision. Feature colli-
sions can occur in two ways: (1) semantic vector collision
and (2) non-code clone semantic blocks generating “close”
semantic vectors. Fortunately, even if the probability of a
feature collision is very high, n feature collisions must hap-
pen to create a false positive. We have found that, on aver-
age, apps contain 148 features after excluding common
features. Therefore, in order for two unrelated apps to have
a Jaccard Similarity above our threshold of 50 percent, there
must be approximately 100 feature collisions. Even if the
probability of a feature collision was 95 percent, the proba-
bility of a false positive with this many features would be
less than one percent.

8 RELATED WORK

There have been several approaches proposed recently to
find similar Android apps. Closest to AnDarwin is [32].
They use a heuristic based on how tightly classes within the
app are coupled (using its call graph) to split apps into pri-
mary and rider sections. Then, they represent the primary
section as vectors which they cluster in linearithmic time.
This heuristic allows [32] to detect some partial app similar-
ity, however, it would be easy for a plagiarist to circumvent
these heuristics by adding dead code to the call graph to
artificially couple unrelated classes. In contrast, AnDarwin’s
partial app similarity does not rely on heuristics. Addition-
ally, while AnDarwin’s features represent the functionality
of methods of an app and are thus difficult to change, [32]’s
features include the app’s permissions, the Android API
calls used and several other features, all of which may be
easily changed. [32] can also detect commonly injected code

by clustering the rider sections, however, they use the same
features and heuristics which are easily changed and cir-
cumvented, respectively. All other related work described
below compares applications pairwise, yielding significant
scalability problems. Additionally, neither [32] nor any
other related work provides the ability to robustly find par-
tial app similarity, as AnDarwin does.

Androguard [6] currently supports two methods of simi-
larity detection: comparing apps using the SHA256 hashes
of methods and basic blocks and using the normal compres-
sion distance of pairs of methods between apps. Droid-
MOSS [31] computes a series of fingerprints for each app
based on the fuzzy hashes of consecutive opcodes, ignoring
operands. Apps are then compared pairwise for repackag-
ing by calculating the edit distance between the overall fin-
gerprint of each app. DNADroid [16] compares apps based
on the PDGs of their methods. Juxtapp [20] compares apps
based on sets of features created from k-grams of the opco-
des inside the disassembled app’s methods. All of these
approaches except DNADroid are vulnerable to plagiarism
that involves moderate amounts of adding or modifying
statements, though DNADroid’s comparison is computa-
tionally expensive.

9 CONCLUSION

We present AnDarwin, a tool for finding apps with similar
code on a large scale. In contrast with earlier approaches,
AnDarwin does not compare apps pairwise, drastically
increasing its scalability. AnDarwin accomplishes this
using two stages of clustering: LSH to group semantic
vectors into features and MinHash to detect apps with sim-
ilar feature sets (full app) and features that often occur
together (partial app). We evaluated AnDarwin on 265,359
apps crawled from 17 markets. AnDarwin identified at
least 4,295 apps that have been cloned and an additional
36,106 apps that are rebranded. From the clusters discov-
ered by AnDarwin, we found 88 new variants of malware
and could have discovered 169 new malware. We also pre-
sented a cluster post-processing methodology for finding
apps that have had similar code injected. AnDarwin has a
low false positive rate—only 3.72 percent for full app simi-
larity detection. Our findings indicate that AnDarwin is
an effective tool to identify rebranded and cloned apps
and thus could be used to improve the health of the mar-
ket ecosystem.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful feedback. For their help obtaining
Android apps, they would like to thank Liang Cai, Dennis
Xu, Ben Sanders, Justin Horton, and Jon Vronsky. For her
ideas of alternative approaches to create semantic vectors,
they would like to thank Julia Matsieva. Finally, they
would like to thanks Sam Dawson for his work to manu-
ally investigate app similarity. This paper is based upon
work supported by the US National Science Foundation
under Grant No. 1018964. Any opinions, findings, and con-
clusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the
views of the US National Science Foundation.

2018 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015



REFERENCES

[1] (2012, Apr.). Goapk market [Online]. Available: http://market.
goapk.com

[2] (2012, Apr.). Google play [Online]. Available: https://play.
google.com/store/apps

[3] (2012, Apr.). Slideme: Android community and application mar-
ketplace [Online]. Available: http://slideme.org/

[4] (2012, Jun.). Virus total [Online]. Available: https://www.
virustotal.com

[5] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” in Proc. 47th
Annu. IEEE Symp. Found. Comput. Sci., 2006, pp. 459–468.

[6] Androguard. (2012, Apr.). Androguard: Manipulation and protec-
tion of android apps and more... [Online]. Available: http://code.
google.com/p/androguard/

[7] AppBrain. (2012, Nov.). Number of available android applications
[Online]. Available: http://www.appbrain.com/stats/number-
of-android-apps

[8] BajaBob. (2012, May). Smalihook.java found on my hacked appli-
cation [Online]. Available: http://stackoverflow.com/questions/
5600143/android-game-keeps-getting-h acked

[9] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Proc. 2nd Working Conf. Reverse Eng., 1995,
pp. 86–95.

[10] S. Beard. (2012, May). Market shocker! iron soldiers xda
beta published by alleged thief [Online]. Available: http://
androidheadlines.com/2011/01/market-shocker-iron-soldiers-
xda-be ta-published-by-alleged-thief.html

[11] The Lookout Blog. (2012, Apr.). Security alert: Gamex trojan hides
in root-required apps—Tricking users into downloads [Online].
Available: http://blog.mylookout.com/blog/2012/04/27/

[12] A. Z. Broder, “On the resemblance and containment of doc-
uments,” in Proc. IEEE Compression Complexity Sequences, 1997,
pp. 21–29.

[13] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” in Proc. 13th Annu. ACM
Symp. Theory Comput., 1998, pp. 327–336.

[14] IBM T. J. Watson Research Center. (2012, Apr.). T. J. Watson librar-
ies for analysis (WALA) [Online]. Available: http://wala.
sourceforge.net

[15] comScore. (2012, May). Comscore reports march 2012 U.S. mobile
subscriber market share [Online]. Available: http://www.
comscore.com/Press_Events/Press_Releases/2012/4/comScore_
Reports_March_2012_U.S._Mobile_Subscriber_Market_Share

[16] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detect-
ing cloned applications on android markets,” in Proc. Comput.
Security, 2012, pp. 37–54.

[17] S. Doherty and P. Krysiuk. (2012, Nov.). Android.basebridge
[Online]. Available: http://www.symantec.com/security_respo
nse/writeup.jsp?docid=2011-060915 -4938-99

[18] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in Proc. ACM/IEEE 30th Int. Conf. Softw. Eng., 2008,
pp. 321–330.

[19] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi,
“Adrob: Examining the landscape and impact of android applica-
tion plagiarism,” in Proc. 11th Int. Conf. Mobile Syst., Appl. Services,
2013, pp. 431–444.

[20] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp:
A scalable system for detecting code reuse among android
applications,” in Proc. 9th Conf. Detection Intrusions Malware Vul-
nerability Assessment, 2012, pp. 62–81.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proc. 29th
Int. Conf. Softw. Eng., 2007, pp. 96–105.

[22] X. Jiang. (2012, Nov.). Droidkungfu [Online]. Available: http://
www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html

[23] R. Komondoor and S. Horwitz, “Using slicing to identify duplica-
tion in source code,” in Proc. 8th Int. Symp. Static Anal., 2001,
pp. 40–56.

[24] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans.
Softw. Eng., vol. 32, no. 3, pp. 176–192, Mar. 2006.

[25] H. Lockheimer. (2012, Apr.). Android and security [Online].
Available: http://googlemobile.blogspot.com/2012/02/android-
and-security.html

[26] G. OGorman and H. Honda. (2012, Nov.). Android.geinimi
[Online]. Available: http://www.symantec.com/security_respo
nse/writeup.jsp?docid=2011-010111 -5403-99

[27] pxb1988. (2012, Apr.). dex2jar: A tool for converting android’s .
dex format to java’s .class format [Online]. Available: https://
code.google.com/p/dex2jar/

[28] A. Rajaraman, J. Leskovec, and J. Ullman. (2012). Mining of mas-
sive datasets [Online]. Available: http://infolab.stanford.edu/
~ullman/mmds/book.pdf

[29] T. Spring. (2012, Jun.). Sneaky mobile ads invade android phones
[Online]. Available: http://www.pcworld.com/article/245305/
sneaky_mobile_ads_invade_android_ phones.html

[30] Android Threats. (2012, Feb.). Android/adwo [Online]. Available:
http://android-threats.org/androidadwo/

[31] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proc. 2nd ACM Conf. Data Appl. Security Privacy, 2012, pp. 317–326.

[32] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in Proc. 3rd ACM
Conf. Data Appl. Security Privacy, 2013, pp. 185–196.

[33] Y. Zhou, and X. Jiang, “Dissecting android malware: Characteri-
zation and evolution,” in Proc. 33rd Symp. Security Privacy, 2012,
pp. 95–109.

Jonathan Crussell received the BS, MS, and the
PhD degrees in computer science from the Uni-
versity of California, Davis. He is a Senior Mem-
ber of the Technical Staff at Sandia National
Laboratories. His primary interests are in mal-
ware analysis and mobile systems.

Clint D. Gibler received the BS degree from
Case Western Reserve University and the MS
and PhD degrees in computer science at the
University of California, Davis. He is a software
security engineer at NCC Group Domain Serv-
ices. His primary interests are in computer secu-
rity and mobile computing. He received an US
NSF Graduate Research Fellowship Honorable
Mention in 2010.

Hao Chen received the BS and MS degrees from
Southeast University and the PhD degree from
the Computer Science Division, University of
California, Berkeley. He is an associate professor
in the Department of Computer Science at the
University of California, Davis. His primary inter-
ests are computer security and mobile comput-
ing. He won the US National Science Foundation
CAREER award in 2007, and UC Davis College
of Engineering Faculty Award in 2010.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CRUSSELL ET AL.: ANDARWIN: SCALABLE DETECTION OF ANDROID APPLICATION CLONES BASED ON SEMANTICS 2019



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


