
SurgeScan: Enforcing Security Policies on Untrusted Third-Party Android Libraries

Jonathan Vronsky∗, Ryan Stevens†, Hao Chen‡
Department of Computer Science, University of California, Davis

Email: ∗jvronsky@ucdavis.edu. †rcstevens@ucdavis.edu, ‡chen@ucdavis.edu,

Abstract—Many Android apps include third-party libraries for
advertising, payment, social media, etc. However, since the
library code runs with the same privilege as the app code,
the app developer has to either trust the library, a potential
security risk, or refrain from using untrusted libraries. We
designed and implemented SURGESCAN, a framework for
specifying and enforcing security policies on untrusted third-
party code. We call this third-party code plugins, as SURGES-
CAN supports both statically and dynamically loaded code.
SURGESCAN consists of a static analysis component and code
rewriting component. To use SURGESCAN, the app developer
selects a security policy that declares security-sensitive methods
in the Android API. Then, using static analysis, SURGESCAN
finds all the Android API calls in the plugin binary that may
reach those security-sensitive methods, and generates AspectJ
code for enforcing the security policy on those API calls. Next,
SURGESCAN runs AspectJ to weave the policy into the plugin.
After that, the app can safely load the plugin. SURGESCAN
requires no modification to the OS and incurs negligible
runtime overhead. We describe our algorithms for achieving
high accuracy in our static analysis. To evaluate SURGES-
CAN, we designed policies on network and sensor access and
applied them to open source apps. We demonstrated various
use scenarios for SURGESCAN, including securing distributed
network measurement, securing ad libraries, controlling UI
and screen estate, and patching applications.

1. Introduction
Android developers rely on third-party libraries for ads,

analytics, payment, and social media. However, not all these
libraries are trustworthy. For example, some ad libraries
were found to exfiltrate user data silently when included
in an application [23, 11]. This is possible because library
code runs with the same privileges as its embedding ap-
plication. Researchers proposed approaches to contain un-
trusted Android code. Layercake ran the library code in a
separate process, but it required platform modifications [21].
AndroidLeaks checked permissions required by an app but
was unable to prevent dangerous calls [10]. Retroskeleton
provided a framework to automatically rewrite security-
sensitive method calls [6]. However, Retroskeleton did not
provide as in depth analysis to find all the security-senstive
methods. We present SURGESCAN, a framework for enforc-
ing security policies on untrusted third-party code. SURGES-
CAN consists of two components: a static analysis tool for
implementing the developer’s security policies by analyzing

the Android API implementation, and an instrumentation
tool for weaving the policy into third-party Java bytecode.
We refer to the third-party code as a plugin, since an app can
either statically link it or dynamically load it. SURGESCAN
allows the app developer to place his trust in his security
policy instead in the authors of the untrusted plugin.

SURGESCAN makes the policy writing as trouble free
as possible by finding dangerous code paths automatically
from APIs that are discovered to be risky. The policy writer
provides a policy declaration, which specifies security-
sensitive Android API methods (sinks). Any method visible
internally to the Android API may be used as a sink, notably
low-level calls to the Dalvik virtual machine and libcore,
which implement most of API’s functionality. SURGESCAN
identifies code paths through both the Android API and the
plugin to find all relevant callsites. Then, SURGESCAN’s
static analysis tool uses a bottom-up data flow analysis to
find all the methods (super-sinks) and the subset of their
parameters (data sources) that will eventually flow into the
sinks. For each super-sink, SURGESCAN automatically gen-
erates an AspectJ file (policy implementation) to implement
a default policy, which denies the call, and to annotate the
data sources. The policy writer may customize the AspectJ
file, e.g., to control access based on the values in the data
sources. Finally, SURGESCAN identifies where in each code
path it can inject a security policy, respecting the fact that
the Android API cannot be modified. Developers may share
a security policy if their apps have similar plugin usage and
security concerns.

Since SURGESCAN requires no modification to the An-
droid framework, it enables new paradigms of code sharing
and distribution in the Android ecosystem. For example, it
allows apps to securely run ad code that is either statically
linked in the app or dynamically loaded at runtime. Market
owners can use SURGESCAN to patch a vulnerable library
in all of its apps automatically without the help from the
app developers (subsection 6.1).

We evaluated SURGESCAN by specifying a policy dec-
laration for restricting network and sensor access. Then,
SURGESCAN automatically generated the default policy
implementation, which we then manually revised for finer
access control. Finally, SURGESCAN weaved the policy
into open-source applications. We verified that the policy
enforcement worked as expected, and observed that the
memory and run time overhead of policy enforcement was
negligible.

SURGESCAN has the following advantages:



• Deployability. It modifies neither the Android platform
nor the app code. Instead, it instruments only the plugin,
which the app either links statically or loads dynamically.
This improves its deployability.

• Precision and Customization. It automatically generates
AspectJ code to implement the security policy, and
weaves the policy into the plugin. Moreover, it uses an
accurate bottom-up data flow analysis to identify the data
sources, which the policy writer can use to customize
the policy in AspectJ to implement fine-grained access
control.

• Expressiveness. It provides a more expressive security
model than Android’s permission model. For example,
the policy could grant the INTERNET permission while
blocking certain Internet domains (See Listing 4). We
demonstrated that SURGESCAN could be used in many
scenarios, such as securely running distributed network
measurement and ad libraries, controlling the UI and
screen estate of libraries, and patching a vulnerable library
in many apps without the help from the app developers.

2. Background
Android is a smartphone platform based on the Linux

kernel. Android sandboxes apps by installing each app under
a separate Linux user. Android requires each app to spec-
ify permissions, which determine which security-sensitive
information or action the app may access.

In order to enforce the policies we used AspectJ [14]. As-
pectJ is an aspect oriented programming extension to Java.
The language allows for specifying rules to be executed at
a particular point in the code.

The control flow analysis of our code is done by Soot [12]
and platformed developed on top of soot.

3. Goals
SURGESCAN is a framework for Android app developers

to enforce access control policies on untrusted plugins,
which are third-party libraries to be included in the app.
At a high level, SURGESCAN operates in three steps: The
policy writer declares an access control policy, SURGESCAN
automatically generates code implementing the policy and
weaves the code into the plugin, the app either links the
instrumented plugin statically or loads it at runtime.

3.1. Motivation
Android apps use many external libraries. SURGESCAN

provides a customizable, portable, accurate approach to
modify untrusted libraries to make them safer without mod-
ifying the Android framework. Use scenarios include: filter-
ing Internet communications, controlling access to sensitive
data sources (e.g., sensors or GPS) and others described in
more details in Section 6.1

3.2. Threat model
SURGESCAN involves three parties: app developer, policy

writer, and plugin developer. We assume that the app devel-
oper and the policy writer are trusted. Since the developer
wants to protect her app and the policy writer wants to sat-
isfy the developer requirement. By contrast, we assume that

the plugin developer is untrusted. The goal of SURGESCAN
is to prevent the plugin from violating the security policy.

3.3. Non-goals
SURGESCAN provides a framework for specifying and

automatically enforcing security policies. However, it does
not provide a comprehensive set of security policies for all
plugins, because those depend on the specific requirements
by individual apps. We will showcase a few policies, notably
for securing network and sensor access. One can easily ex-
tend these policies to restrict the plugin’s use of permissions.

SURGESCAN does not handle code invoked via Java
reflection or loaded dynamically by the plugins, because
AspectJ can only intercept call sites that are visible in the
code at weaving time. However, it is easy to intercept and
block Java reflection and dynamic code loading in the policy
because they rely on a few specific API calls.

SURGESCAN does not provide its own call-graph con-
struction algorithm and instead is built on top of soot. As a
result SURGESCAN inherits soot’s limitation.

4. Design
SURGESCAN takes the following inputs:

• Plugin, an untrusted library (as Java bytecode) to run in
the app, and all the libraries used by the plugin.

• Compiled full android.jar binary for the target device and
Android API specification (as Java byte code, also named
android.jar). We can extract the former binary from the
emulator and the latter is provided by Android.

• Policy. The policy writer may specify his security policy
in two stages. First, he specifies a policy declaration
containing (1) entry points into the plugin from the app,
and (2) sinks, which are Android API methods that are
security sensitive and that the developer wishes to inter-
pose on. SURGESCAN analyzes the policy declaration,
the plugin, and android.jar, and then outputs a default
policy implementation, which denies all the Android API
function calls that eventually flow into the sinks. If the
developer wishes for finer-grained access control than
simply denial, he may add arbitrary code to the policy
implementation.
SURGESCAN outputs the plugin with the policy imple-

mentation weaved into it. SURGESCAN does not take into
account the operating system files and hence cannot block
native code calls. Moreover, because reflection code might
not be available in static time SURGESCAN cannot block
code calls through reflection.

4.1. Stages
Figure 1 shows the stages when using SURGESCAN.

4.1.1. Find Super-Sinks by Bottom Up Flow Analysis
As mentioned above, a sink is an Android API method

that consumes data and therefore may cause security risks.
A naive approach is to look for all the sinks in the plugin’s
jar file. However, sometimes a plugin invokes a method
in the Android SDK and this method invokes a sink, but
the SDK bytecode isn’t in the plugin’s jar file because
it is dynamically linked. As a result, SURGESCAN cannot
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Figure 1: Oveview of the SURGESCAN workflow.

apply the security policy, as the bytecode is unavailable at
compile time. One solution would be to modify the Android
platform using SURGESCAN. However, we want to avoid
such changes as they hurt the portability and flexibility.

To overcome this problem, we developed a bottom up flow
analysis algorithm to find super-sinks. The analysis is built
on top of soot. SURGESCAN currently uses soot SPARK [15,
8] to compute call graphs. The bottom up flow analysis
we developed for the data flow analysis portion uses super-
sinks, which are method calls that may eventually reach a
sink. Each super-sink contains a set of parameters and fields
that it might leak. To find super-sinks, the analysis begins at
each sink specified by the developer and traverses upwards
towards all the methods that might eventually call a sink.
The call-graph required for such analysis is initiated in the
entrypoint defined by the developer. We assume it should be
easier for the policy writer to find entrypoints as they are the
locations in the code where the app would access the plugin.
The algorithm finds pairs of caller and callee methods and
computes the data flow from the parameters of the callers
into the parameters of the callee. When SURGESCAN finds
a flow from caller values to a super-sink parameter that
may leak data, it marks those values as possible leaks too.
We refer to these parameters as marked parameters. The
algorithm also track fuzzy flows, which are flows that are
not yet a leak but could become one if an already computed
parameter becomes marked. subsection 5.1 will explain this
algorithm in detail, and Listing 2 provides an example. At
the end of the analysis, the algorithm adds all the fuzzy flows
that became leaks to the set of super-sinks. Algorithm 1
shows the pseudo code. Since it computes each caller-callee
pair separately, we can trivially modify it to compute all the
pairs in parallel.
4.1.2. Apply the policy

We weave the security policy on each super-sink in the
plugin. First, for each super-sink, SURGESCAN generates
access control code as an AspectJ file. The file consists of
the name of the super-sink, pseudo-dynamic analysis code
(subsubsection 4.1.3), potentially risky variables (in com-
ments), and a default action of denying the call by throwing
a security exception. While this default action may cause

Algorithm 1 Bottom Up Data Flow
1: procedure BOTTOMUPDATAFLOW(S,E, P ) ▷ S-sinks,E-entrypoints,P -binaries
2: callGraph ← constructCallGraph(E, P )
3: callerCalleePairs ← findPairsWithBFS(S, callGraph)
4: for each caller, callee ∈ callerCalleePairs do
5: flowResults ← intraProceduralFlow(caller, callee)
6: for each result ∈ flowResults do
7: if result flows into marked parameter then
8: callee.mark(result.flowingV ariable)
9: else

10: callee.addFuzzyFlow(result.flowingV ariable, callee)
11: end if
12: end for
13: end for
14: Set superSinks ← ∅
15: for each caller, callee ∈ callerCalleePairs do
16: superSinks.add(caller)
17: superSinks.add(callee)
18: end for
19: foundNewFlow ← true
20: while foundNewFlow do
21: foundNewFlow ← false
22: for each superSink1 ∈ superSinks do
23: for each superSink2 ∈ superSinks do
24: if superSink1 has fuzzy flow to superSink2 then
25: superSink1.mark(fuzzyFlowParameter)
26: remove fuzzy flow from superSink1
27: foundNewFlow ← true
28: end if
29: end for
30: end for
31: end while
32: end procedure

unexpected behavior, it is easy to detect during runtime.
Moreover, the developer can change this default action by
modifying the AspectJ file. After the policy modification,
SURGESCAN weaves the AspectJ code into the plugin.
Finally, SURGESCAN converts the weaved plugin into dex
bytecode and then a library jar. The developer may link the
library jar statically or load it dynamically.
4.1.3. Pseudo Dynamic Analysis

Defining good policies for abstract methods is challeng-
ing. Abstract methods are unresolved at compile time and
so cannot be statically analyzed. To handle this issue, we
use AspectJ’s abstract method handling, which allows us
to specify one policy for an abstract method and all of
its implementers. In the policy implementation, we use
dynamic cast to delegate to the best specific policy for the
specific class. This provides more functionality and flexibil-
ity to the developer. For example, a developer can specify
different policies for different concrete implementations of
the abstract class URLConnection.
4.1.4. Find Super-Sinks in Plugin

After the bottom-up flow analysis outputs all the super-
sinks, SURGESCAN looks for the super-sinks in the plugin



to weave the security policy into. We scan only Android
API available to the app.

5. Implementation
5.1. Computing Super-Sinks

Super-sinks are API methods that can potentially leak
data into one of the sinks defined by the policy writer in
the policy declaration. The use of super-sinks allows us
to propagate sinks up to Android API used by the app.
SURGESCAN computes super-sinks on a per plugin and
policy declaration basis. The reason behind re-computing
super-sinks for each policy is that different policies may
have a different set of sinks, which may result in a different
set of super-sinks. One could make a general policy for a
set of sinks using all the public methods in the Android API
as entry points, but this implementation would reduce the
analysis’s accuracy, because it may include extra methods
for objects that are irrelevant to the plugin. Our analysis
uses SPARK, a points-to analysis framework provided by
soot [15, 8]. The advantage of using a points-to analysis is
that only objects that can be created in the code will be
included in the call graph. Reducing entry points minimizes
the call graph, which prevents the analysis from expanding
to irrelevant objects and makes the analysis more granular.
Listing 1 shows an example where our analysis will give a
more accurate result.

// This class is in the plugin.
public class PointsToExample {

public void A(int a) {
BaseClass c = new FirstClass(); C(c, a);

}
public void B(int b) {

BaseClass c = new SecondClass(); c.foo(b);
}
public void C(BaseClass c, int c) {

c.foo(c)
}

}
// The following two classes are in the Android SDK.
public class FirstClass extends BaseClass {

@Override public foo(int f) { /*nothing.*/ }
}
public class SecondClass extends BaseClass {

@Override public foo(int f) { sink(f); }
}

Listing 1: Advantages of Points-To analysis

In the example, if we assume that method A is the only
entry point, then method C will never be tainted, as the
only BaseClass instance is of type FirstClass but none
of its methods ever reaches a sink. However, if we also
include B as an entry point, then once we get to method
C we will have to taint it as it calls the abstract method
BaseClass.foo(). At this point our analysis will in-
clude foo as a super-sink as type SecondClass consists a
sink within method foo. Therefor we could not verify the
origin of the BaseClass instance. Re-computing the super-
sinks for each plugin prevents this issue as we construct a
call graph only to the relevant methods. Another issue in this
example is that BaseClass has two implementations. Using
SPARK as our call graph algorithm allows us to pick only
the child classes that are actually initiated. In this case this
is FirstClass because A is the only entry point. Hierarchy-
based call graph will have to consider both implementations
because it does not know the context. SPARK allows us to
have more accurate results by ignoring the part of the code

that has no effect on our analysis.
We use breadth-first search (BFS) to find the caller-callee

pairs. We could not use topological sort due to possible
cycles.

The lack of order can lead to missing some flows, so
we use a technique called fuzzy matching to finalize our
analysis. Listing 2 shows an example of such a case. Method
A and B could be analyzed in either order. Assuming
we analyze method A before B, we will miss the flow
of variable a into B because B was never marked as a
super-sink. However, in a deeper look we can see that B’s
parameters were not marked as flowing into the sink because
B was not analyzed yet. We can conclude that even if B
was a super-sink with no marked variables this flow would
still be missed. We solve this problem by re-visiting A at
the end of our analysis once we’ve determined there is a
data flow path from B to sink in the analysis of B. Then
we can look at the fuzzy flows from A to B and determine
that they are now leaks. We repeat this re-visiting step until
we reach a fixed point, when we uncover no new paths.
Once the bottom up data flow analysis completes, we get
the set of super-sinks and their marked dangerous fields and
parameters.

public class FuzzyMatchExample {
public void A(int a) {

B(a); sink(a);
}
public void B(int b) {

sink(b);
}

}

Listing 2: Fuzzy match code example

5.2. Policy Definition and Generation
Now that we have a set of super-sinks, we search for

where they are called from within the plugin code, as
described in subsubsection 4.1.4. The important difference
here is the granularity of the analysis. While in the previous
step we have used the entire SDK, here we only scan the
available code in the plugin’s binary. This step is important
so we will apply the AspectJ policy files only to methods
that actually exist in the plugin’s binary. Once we have all
the super-sinks within the binary, we can organize them to
generate the default policy implementations as follows.

First, for each method we determine its highest super
method and add the super method to its declaring class
policy file. We add each child method of the super method
as a concrete implementation of the method. For example,
the super method of HttpURLConnection.connect is
URLConnection.connect, so the former is a concrete
implementation of the latter. Later, we use that relation
towards the pseudo dynamic analysis in subsubsection 4.1.3.
Each class declaration now has all its methods, and each
method has all of its dangerous concrete implementations.
Finally, we iterate through all the methods to generate the
default policy implementation as a privileged aspect in As-
pectJ for each class. Within each privileged aspect we define
the AspectJ policy for each method of this class. The default
policy denies all calls by throwing SecurityException as a
fail-safe default, which allows the user to detect unexpected
behavior more easily than logging.



5.2.1. Risky Parameters and Fields
Finally, for each super-sink, we computed, we now com-

pute a set of fields and parameters that flow into the sinks
declared by policy writer. These variables could potentially
be dangerous, so they are very useful to policy writer for re-
fining the policy implementation. We record these variables
as comments in the AspectJ files.

6. Evaluation
We tested SURGESCAN on both real world apps and apps

that we wrote to demonstrate specific properties.

6.1. Application Scenarios and Example Policies
6.1.1. Secure Distributed Network Measurement

This test shows a use scenario for SURGESCAN: se-
cure distributed network measurement. A scalable, open
platform for network measurement from mobile devices is
very valuable, e.g., Mobilyzer [19]. It provides a library
to be embedded into existing apps, where the library con-
trols measurements and gathers results locally. Although
Mobilyzer provides a great service to network researchers,
app developers may be wary because of security concerns.
SURGESCAN can help overcome this deployment obstacle
by allowing the developer to enforce his desirable security
policy on the library. For example, the policy writer may
specify the following policies: the library may not read from
any sensor except the accelrometer, and the library may not
connect to a certain IP addresses.

Listing 3 shows a simple implementation of the first
policy, where getDefaultSensor was the sink that the
policy writer specified. First, SURGESCAN automatically
generated this file and suggested that the variable arg0
contains the sensor type. Then, the policy writer inserted
the three highlighted lines, which throw a security exception
when the sensor type isn’t accelerometer.

Listing 4 shows a simple implementation of the second
policy, where we used the same sink as before. Again,
SURGESCAN automatically generated the file except for the
three highlighted lines (added by the policy writer), which
throw a security exception when the policy is violated.
We omitted less important methods in Listing 4. We note
that the approach discussed in this section could be easily
extended to other sensor-based distributed measurements,
such as distributed barometer measurement.

privileged aspect androidHardwareSensorManagerPolicy {
android.hardware.Sensor around(
android.hardware.SensorManager obj, int arg0):

target(obj) && args(arg0)
&& !within( androidHardwareSensorManagerPolicy)
&& call(public android.hardware.Sensor
android.hardware.SensorManager
+.getDefaultSensor(int)) {

/* VAIRABLE arg0 MIGHT BE DANGEROUS */
if(obj instanceof android.hardware.SensorManager) {
if(arg0!=

android.hardware.Sensor.TYPE_ACCELEROMETER)
{

throw new SecurityException(
"Unauthorized");

}
}
return proceed(obj, arg0);

}
}

Listing 3: A policy blocking all sensors except the
accelerometer. Manually modified lines are highlighted

privileged aspect javaNetURLPolicy {
java.net.URL around(java.lang.String arg0): args(arg0)

&& !within(javaNetURLPolicy)
&& call(public java.net.URL.new(java.lang.String)) {
/* VARIABLE arg0 MIGHT BE DANGEROUS */
if(arg0.equals("http://169.237.4.76")) {

throw new SecurityException("Unauthorized");
}
return proceed(arg0);

}
}

Listing 4: A policy blocking network calls to illegal
domains. Manually modified lines are highlighted

6.1.2. Secure Ad Libraries
This test shows the ability of SURGESCAN to secure

private information while using ad libraries. Ad libraries are
pervasive in Android apps, but Android’s sandbox model
allows all the libraries to run with the same privilege as
their embedding app. Since many ad libraries abuse this
privilege to leak sensitive information [23, 11], the policy
writer wishes to grant certain permissions (e.g., to access the
GPS sensor) to the app but not to its ad library. SURGESCAN
can modify the ad library according to the security policy
that the developer specifies. We demonstrate a policy in
Listing 5, which limits access to GPS.

privileged aspect androidContentContextPolicy{
java.lang.Object around(android.content.Context obj,

java.lang.String arg0): target(obj) &&
args(arg0) && !within(androidContentContextPolicy) &&

call(public java.lang.Object android.content.
Context.getSystemService(java.lang.String)) {

if(arg0.equals(
android.content.Context.LOCATION_SERVICE)) {
return new

CustomizedLimitedLocationService(obj);
}
return proceed(arg0);

}
}

Listing 5: A policy blocking GPS access.
We applied the policy to Mobfox [18], a popular library

that supports native ads. We wrote a simple application im-
plementing native ads. We verified that Mobfox functioned
correctly while enforcing our policy implementation.
6.1.3. Control UI and Screen Estate

This test shows how SURGESCAN can address UI con-
cerns. Screen estate (the amount of screen space used)
is highly valuable for Android apps, especially on small
devices. Unscrupulous libraries may grab more screen space
than desired by the app developer. For example, ad libraries
may get more clicks and raise the value of impressions
by increasing its window size. Since many libraries do not
allow the app developer to customize its windows size, the
developer can use SURGESCAN to resize ads and other
graphics.

Modifying the UI is challenging, because the UI and
plugin run in different threads, but SURGESCAN does not
modify the UI code.1 Instead, our policy hooks on the call
in the plugin to set up the UI.

To demonstrate the feasibility, we wrote a plugin that
loads an image from the Internet and displays it on the
screen in full size. Our policy implementation hooks on the
method that sets up the image on the screen
(LayoutParameters), and then changes the size and
position of the image (Listing 6).

1. To increase deployability, SURGESCAN modifies only the plugin code
but not either the Android platform or app code.



privileged aspect androidViewViewGroupPolicy {
void around(android.view.ViewGroup obj,

android.view.View arg0): target(obj) &&
args(arg0) &&

!within(androidViewViewGroupPolicy) && call(public
void

android.view.ViewGroup+.addView(android.view.View)) {
arg0.setLayoutParams(new
android.view.ViewGroup.LayoutParams(300,

300));
proceed(obj, arg0);

}
}

Listing 6: A policy resizing and repositioning images
displayed by the plugin. Manually modified lines are
highlighted.
6.1.4. Patch Applications

This test shows our ability to update apps using the same
technology that SURGESCAN is built on. App markets are
the primary channel for distributing Android apps. Good
markets endeavor to keep its apps benign and secure by
diligently removing malicious ones. However, when a vul-
nerability is found in a popular library, the market is at the
mercy of all the developers to update and upload their apps.

SURGESCAN provides a better alternative. The market
owner specifies a policy that declares the method containing
the vulnerability. Then, he runs SURGESCAN to generate a
default policy implementation, refines the implementation to
incorporate his patch, and weaves the patch into the library.
The owner can automate this process on all the apps on her
market.

Listing 7 demonstrates a simple refined policy implemen-
tation that changes the behavior of the URL.new(java.lang.
String) method only within the com.seccess.marketer.testad.
LoadImpl package. The line highlighted in red restricts the
policy to only a specific package in the plugin. Our test
confirmed that calls to URL.new were modified only when
they came from the package com.seccess.marketer.testad.
LoadImpl.

Deploying a patched app faces a practical problem, be-
cause the new app is not signed by its original developer. We
could overcome this problem by introducing a trusted-third
party, e.g., the market, who signs the app.

privileged aspect javaNetURLPolicy {
java.net.URL around(java.lang.String arg0): args(arg0)

&& !within(javaNetURLPolicy) &&
within(com.seccess.marketer.testad.LoadImpl)

&& call(public java.net.URL.new(java.lang.String)) {
/* VARIABLE arg0 MIGHT BE DANGEROUS */
if(arg0.equals("http://169.237.4.76")) {

throw new SecurityException("Unauthorized");
}
return proceed(arg0);

}
}

Listing 7: Policy blocking network calls to illegal domains
only within a certain package. Manually modified lines
are highlighted in yellow and red, where the yellow lines
describe the new behavior and red line restricts the policy
to a certain package.

6.2. Accuracy
The purpose of this test was to ensure that the policy

was applied only to the third-party plugin but not the app
code. During this test, we focused on policies that restrict
the Internet use for the plugin. We wrote a simple test app
that loads a plugin and makes one method call to invoke
the plugin. We examined logs to see whether Internet

connections were established. We chose the following
open-source applications from F-droid [9] as plugins:
URLEvaluator, External IP, CineCat, and Flashlight. Only
the first three may reach the Internet, but we also analyzed
the last one (Flashlight) to evaluate SURGESCAN when the
sink isn’t expected to be present. We used the following
sink for all the plugins: libcore.io.IoBridge:
boolean connect( java.io.FileDescriptor,
java.net.InetAddress,int,int)

Our tests used Android level 21. We extracted android.jar
from the emulator. We ran netstat [16] to see which applica-
tion listened on a specific port. By checking the active ports,
we learned if the test app established network connections.
• URLEvaluator: This app evaluates short URLs. SURGES-

CAN created 8 output policy implementations containing
all the network methods. However, it also tainted some
more generic methods, all of which came from either
java.lang or java.util. After ignoring the generic
methods, we easily modified the URL and HTTP con-
nection methods, and then verified that we successfully
blocked Internet connections.

• CineCat: This app provides information about Cata-
lan movies. It uses the Internet and SQL database as
well as makes calls to resources. SURGESCAN gener-
ated policy implementations for all the expected net-
work classes, SQL classes and Android resource getters.
We saw generic methods similar to what we found in
URLEvaluator. We were able to modify the network
methods and successfully block network connections.

• ExternalIP: This app displays the local and external IP
addresses of the network interfaces. It uses org.apache
Internet methods provided by Android. SURGESCAN
found all these methods as we expected. However, we
did not expect SURGESCAN to also taint a constructor to
java.util.Calender. We found that it was tainted because
when it accesses resources on the device, it uses an API
method similar to that of network access. SURGESCAN
also found some policies around classes that access IO
resources. This is because the sink we used is also a
method used for IO communication, so it is unsurprising
that SURGESCAN found methods dealing with IO.

• Flashlight: This app uses the camera flash as a flashlight.
This app does not use the Internet, but SURGESCAN
generated policy implementations for setting and getting
parameters from the camera. This is because most com-
munications inside the android system are done using
sockets.

6.2.1. Automated Testing
SURGESCAN can be used to secure not only plugins but

also entire apps. This automatic test evaluated the ability
of SURGESCAN to find all the potential risky points in
real-world apps. We crawled 274 random apps from Baidu
market, a top Chinese market [5]. We chose Baidu instead
of Google Play because apps on Baidu were reportedly less
well regulated and analyzed, so they were more likely to
derail automated tools, such as SURGESCAN. Of these apps,
9 either had corrupt APK files or included dex code that soot
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Figure 2: Memory and run time overhead
could not parse, 6 could not be unpacked and repacked, and
34 could not be installed or run even without modification.
We applied SURGESCAN to the remaining 225 apps success-
fully. We determined the launching and call-back methods
using soot-android-infoflow[1] and used them as the entry
points. We used the same sink as before. For each app,
we first ran the original app and then ran the app with
the policy weaved in, while monitoring network activities
during each run. We observed that 101 apps established
internet connections when we ran the original version. After
applying SURGESCAN, we observed no internet connection
from these apps. This demonstrates SURGESCAN’s high
accuracy.

6.3. Performance
We evaluated the impact of SURGESCAN on the per-

formance of apps. We wrote a plugin that downloaded a
20-byte webpage from a local server. The app that loaded
the plugin recorded memory usage and other statistics. We
tested this plugin in the following three scenarios: Run the
plugin without any policy, apply a policy that checks the
destination of the connection and then allows the connection
through and apply a policy that denies access to our local
server by raising a security exception. We ran each scenario
several thousands times to take the average measurement.

Figure 2a and 2b show that executing the policy has a
negligible performance penalty on the app. As expected the
third scenario reduces both the memory and run time.

7. Discussion
7.1. Data Flow Analysis

As discussed in subsubsection 4.1.1, SURGESCAN’s cur-
rent bottom-up data flow analysis can be easily parallelized
to increase its speed significantly. Since data flow analysis is
critical for SURGESCAN, a more accurate data flow analysis
could improve the accuracy of SURGESCAN.

Currently, the developer has to find all the sinks man-
ually, which demands high familiarity with the Android
API. Pscout is a tool for mapping Android API methods to
permissions that guard those methods via static analysis [2].
When the developer wishes to restrict certain permissions

used by the plugin, he could provide the corresponding API
methods as sinks to SURGESCAN. Another approach is to
help the developers detect sinks. SuSi is making progress
in this direction, which attempts to detect sources and sinks
automatically using machine learning [20].

7.2. Policies
To write good policies for SURGESCAN, the developer

may need to be familiar with the code of the plugin.
SURGESCAN currently prints the name of each method for
which it has applied a policy, but it could use a more com-
plex trace analysis using AspectJ to provide a great starting
point to better understand the plugin’s code interaction [24].

Policies regarding the UI-thread are difficult to imple-
ment, because UI modifications have to occur on the UI-
thread, but SURGESCAN runs the dynamically loaded plu-
gin on its own thread. subsubsection 6.1.3 uses the trick
of interposing on UI setup to overcome this difficult, but
more general modifications of UI behavior would be more
challenging.

8. Related Work
AndroidLeaks [10] found privacy leaks by finding flow

of data between sources and sinks by mapping specific
permissions to data getters in the Android SDK. However,
permission checks could be implemented in native code
which would be overlooked by AndroidLeaks. SURGESCAN
can detect calls to permission checked by the Android
API. SURGESCAN is able to detect all permission checks.
Even though some permission checks are done in the native
code, SURGESCAN can find the calls that link the Android
API into the native code. Therefore given the correct sinks
SURGESCAN can easily detect permission checks.

As mentioned in subsection 7.1, Pscout [2] could help
simplify writing the policy declaration.

I-arm-droid [7], RetroSkeleton [6], and AppGuard [4]
explored applying policies to Android apps. They focused on
rewriting Dalvik bytecode in released Android apps. These
systems could be used as a replacement for AspectJ in
SURGESCAN, requiring we change our policy language.

Aframe [25] and AdSplit [22] isolated a process from the
running app. Both used ad library as an example of a process
worth isolating. Aframe achieved isolation via modifications
to the Android OS while AdSplit did not. SURGESCAN
has the same advantage as AdSplit as it does not require
OS modification. However, SURGESCAN provide more fine-
grained control over access control.

Dr. Android and Mr. Hide [13] and PEDAL [17] are tools
also developed to allow for finer permission access control.
However, Dr. Android and Mr. Hide stil provided a premade
set of permissions and PEDAL removed permission from
certain portions of the app. SURGESCAN allows the user to
define her own permissions based on the wanted parameters,
thus allowing more control.

Boxify [3] is a platform that restricts app resources
through sandboxing the app. While Boxify can address sim-
ilar security concerns by blocking the app calls for resources
or system calls, the main difference lies in SURGESCAN’s



extra capabilities to also interpose on the app code itself,
such as UI calls.

9. Conclusion
Many Android apps use third-party libraries (plugins),

but untrusted plugins can compromise app security. We
proposed SURGESCAN to instrument the plugins with the
developer’s security policy, therefore relieving the trust that
the developer must place in the plugin.

SURGESCAN is easily deployable because it requires
modification to neither the Android platform nor the app
code. SURGESCAN allows highly customizable policies,

We developed a bottom-up data flow analysis to find
the data sources that are security-sensitive in the plugin.
Based on the analysis, SURGESCAN automatically enforces
the policies using AspectJ and allow for the developer to
impleent fine-grained access control with negligble runtime
overhead.
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