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Abstract—Modern browsers implement private mode to pro-
tect user privacy. However, they do not agree on what protection
private mode should provide. We performed the first study
on comparing private modes in popular desktop and mobile
browsers and found many inconsistencies between different
browsers and between the desktop and mobile versions of the
same browser. We show that some inconsistencies result from the
tradeoff between security and privacy. However, even if private
mode leaks no information about the user, the attacker could still
track the user by fingerprinting the browser. Recent work sug-
gested that a browser could report randomized configurations,
such as font sizes and installed plugins, to defeat fingerprinting.
To show that randomizing configuration reports is insecure, we
propose an attack that estimates the true configuration based on
statistical methods. We demonstrated that this attack was easy
and effective.
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I. INTRODUCTION

Modern browsers introduced private browsing mode to
protect user privacy. From the user’s perspective, a browsing
session in private mode looks like a session on a public
computer: the browser isolates all the data created or modified
during the session, and destroy them after the session ends.
Private mode defends against two types of attackers: 1) Web
attacker: a malicious website trying to link a private mode
session to other current or future sessions of the same browser;
2) Local attacker: a local user trying to read information about
a private mode session after the session ends.

In 2010, Aggarwal et al. analyzed the implementation of
private browsing mode of four desktop browsers — Chrome,
Firefox, Safari, and IE — and found several inconsisten-
cies [2]. They showed that both web and local attackers
can take advantage of these inconsistencies to read user data
in private mode. Since their work, mobile browsers became
popular and are commanding a growing market share. Major
vendors support private mode in both desktop and mobile
versions of their browsers.

We performed the first study on analyzing private modes in
both the desktop and mobile versions of popular browsers. We
found many implementation inconsistencies between different
browsers as well as between the desktop and mobile versions
of the same browser. These inconsistencies allow a web or
local attacker to compromise user privacy even when the

Name Version Platform Name of private browsing

Chrome 52 Windows 8.1 IncognitoChrome (M) 52.0 Android 5.0 (HTC)

Firefox 48 Windows 8.1 Private BrowsingFirefox (M) 48.0 Android 5.0 (HTC)

Safari 10.0 MacOS 10.11.6 Private BrowsingSafari (M) 10 iOS 10 (iPhone 7)

Edge 38 Windows 10 InPrivate

TABLE I: Browsers whose private modes we compared

user browses in private mode. We will show that some
inconsistencies result from the tradeoff between security and
privacy.

Even if private mode completely isolates users’ private
data, it may not completely protect user privacy. Researchers
showed that a web attacker could fingerprint a browser to
link different sessions in the same browser, including private
sessions. Recently, Nikiforakis proposed a method to defeat
browser fingerprinting by randomizing the reported font sizes
and installed plugins [12]. We propose an attack that can
fingerprint a browser accurately despite that defense. The
gist of our attack is to take multiple measurements and use
statistical methods to estimate the true configuration. We
demonstrate that our attack is easy yet effective.

II. COMPARISON OF PRIVATE MODES IN MODERN
BROWSERS

We evaluated the implementation of private mode of seven
major browsers in Table I.

A. User Interface

1) Visual indicators: Figure 1a, Figure 1b, Figure 1c, show
the user interface when user enters private mode in mobile
Chrome, Firefox, and Safari, respectively. All of them show
notification of private mode in the main window. However,
when user opens a new tab, while Chrome and Firefox show
a prominent indicator of private mode in browser window,
Safari only changes the top and bottom bars in the browser
chrome to a unique color (Figure 1d). Prior research showed
that inadequate visual indicator may cause users in private
mode to leave private mode on when they intend to quit private
mode [2]. Same problem shows up in desktop Safari too.978-1-5386-0683-4/17$31.00 c⃝ 2017 IEEE



(a) Chrome 52.0 (b) Firefox 48.0

(c) Safari 10 (d) Safari new tab

Fig. 1: Private browsing indicators in major mobile browsers

2) Starting private mode: In desktop Chrome and desktop
Firefox, users can start private mode directly. However, in
desktop Safari and desktop Edge, users have to start private
mode from existing public mode sessions. The latter design
makes it more burdensome to enter private mode and hence
may discourage its uses.

On mobile Safari, if users are in private mode when they
close the browser, the browser will remain in private mode
when started next time. By contrast, on mobile Chrome and
Firefox, the browser will restart in public mode.

3) Security exceptions: Once users add a security excep-
tion in mobile Firefox or mobile Safari, they cannot remove
this exception through UI interface. In desktop and mobile
Chrome as well as desktop Firefox, users can remove the
exception by clicking an icon next to the address bar. Desktop
Safari and desktop Edge do not remember security exceptions
after users quit browsers’ window in public or private mode.

4) Certificates: In desktop Safari, if users want to delete
a certificate, they need to do it in another application named
Keychain Access. In mobile Firefox and mobile safari, users
cannot delete certificates in browsers. Edge currently has no
support for certificates.

5) Helper for external protocols: In desktop Chrome, if
users chose remember choice for all links of this type when
Chrome launch an external protocol request in private mode or
public mode, they cannot modify this setting anymore, unless
they edit Chrome’s Local State file in a hidden folder.

6) Settings: In desktop Firefox and desktop Safari, users
can open Preferences page in private mode. In desktop
Chrome, when users click Settings in private mode, the
browser will open it in public mode.

B. Information Flow

We examined information flow in three scenarios.

• Information flow from public to private mode.
• Information leftover from private sessions.
• Information flow among pages in the same tab or

throughout different tabs within private mode.

1) Information flow from public to private mode: Table II
shows which states set in public mode are available in private
mode even after users close their sessions in public mode.
Such information could allow websites to link users’ sessions
in public mode to those in private mode.

2) JavaScript API: In all the browsers, cookies set in
public mode are inaccessible in private mode. However, these
browsers differ in how they authorize JavaScript API. In pri-
vate mode, Chrome blocks webkitRequsetFileSystem,
Firefox and Edge block indexedDB, and Safari blocks
LocalStorage and SessionStorage. The purpose is
to prevent web pages from accessing cookies via these API
calls, but this mechanism inadvertently allows web pages to
detect private mode. This is an example of tradeoff between
security and privacy. We suggest that instead of blocking these
calls, browsers should allow these calls but return empty data,
just like how they handle unauthorized cookie requests.

3) Information leftover from private sessions: Table III
shows what states set in private mode remain persistent after
the user closes all private sessions. Such information allows a
local attacker to discover the previous user’s data created in
private sessions.

All browsers delete history, cookies, password database,
and auto-completed forms in private mode after the user closes
private sessions.

a) Certificates: In mobile Chrome, desktop Firefox,
mobile Firefox, desktop Safari, and mobile Safari, website cer-
tificates imported in private mode remain accessible after the
session ends. In mobile Firefox, if the user deletes certificates
in private mode, the browser removes the certificates in public
mode as well.

b) Security exceptions: In desktop Firefox, if the user
adds a security exception in private mode, it will not be visible
in public mode; however, if users remove a security exception
in private mode, the browser removes the exception in public
mode. This is an example where the browser chooses security
over privacy in the trade off. In mobile Safari, if a user adds
a security exception in private mode, it is accessible in public
mode.



Chrome Chrome (M) Firefox Firefox (M) Safari Safari (M) Edge

history list × ✓ ✓ ✓ ✓ ✓ ✓
cookies × × × × × × ×
LocalStorage × × × × . . . . . . ×
SessionStorage × × × × . . . . . . ×
indexedDB × × . . . . . . — — . . .
bookmarks ✓ ✓ ✓ ✓ ✓ ✓ ✓
password database ✓ ✓ ✓ ✓ ✓ ✓ ✓
form autocompletion ✓ ✓ ✓ ✓ ✓ ✓ ✓
add security exception ✓ ✓ ✓ ✓ × ✓ ×
remove security exception ✓ ✓ ✓ — — — —
download list ✓ — × ✓ — — ×
download item ✓ ✓ ✓ ✓ ✓ ✓ ✓
suggest based on browsing history ✓ ✓ — ✓ ✓ ✓ ✓
browser’s web cache × × × × × × ×
import certs ✓ ✓ ✓ ✓ ✓ ✓ —
delete certs ✓ — ✓ — — — —
remember choice for external protocol ✓ — ✓ ✓ — — ✓
per-site zoom level ✓ — ✓ — — — ✓
webkitRequestFileSystem . . . . . . — — — — —

TABLE II: Which states in public mode are accessible in private mode?
✓: The state is accessible. ×: The state is inaccessible.
—: The state is unavailable in both public and private mode.
. . . : The state is unavailable in private mode.

Chrome Chrome (M) Firefox Firefox (M) Safari Safari (M) Edge

history list × × × × × × ×
cookies × × × × × × ×
LocalStorage × × × × . . . . . . ×
SessionStorage × × × × . . . . . . ×
indexedDB × × . . . . . . — — . . .
bookmarks ✓ ✓ ✓ ✓ ✓ ✓ ✓
password database × × × × × × ×
form autocompletion × × × × × × ×
add security exception × × × × × ✓ ×
remove security exception × × ✓ — — — —
download list × — × × — — ×
download item ✓ ✓ ✓ ✓ ✓ ✓ ✓
suggest based on browsing history × × — × × × ×
browser’s web cache × × × × × × ×
import certs × ✓ ✓ ✓ ✓ ✓ —
delete certs × — ✓ — — — —
remember choice for external protocol ✓ — ✓ × — — ✓
per-site zoom level × — × — — — ✓
webkitRequestFileSystem . . . . . . — — — — —

TABLE III: Which states in private mode are left over after private session ends?

c) External protocol handler: In desktop Chrome,
desktop Firefox, and desktop Edge, applications for handling
external protocols remembered in private are available in
public mode.

4) Information flow within private mode: The third threat
is web attackers linking users’ sessions in private mode. We
consider two scenarios, sessions in the same tab and sessions
in different tabs. With private mode on, browsers do not
update history, passwords, or search terms at all. However,
new cookies are stored in memory while private mode is
on and are erased when users exit private mode. Browser’s
cookies and web cache are not written to persistent storage,
ensuring that private mode data will be erased by default even
if browser crashes in private mode.

Although websites visited in private mode in mobile Safari
are also suggested in public mode, they are not suggested
in private mode. Another interesting fact is that in mobile
Firefox, if a user initiates a download task from private mode

tab while having tabs of both public and private mode open,
the download task is also shown in download list of public
mode tabs. The task disappears when the user kill all tabs in
private mode.

a) Different pages in the same tab: Table IV shows
what data in private mode are available to a page loaded later
into the same tab. If a user loads website A, then website B,
and finally website A again, the third page (website A) can
access data (e.g., cookies) stored by the first page (website A).
This happens in all seven browsers. It allows a web attacker
to link sessions in the same tab.

b) Pages in different tabs: Table V shows what data in
private mode are available to a page loaded into a different tab.
All browsers except desktop and mobile Safari allow pages
from the same website in different tabs to share cookies.
Therefore, only Safari prevents a web attacker from linking
sessions in different tabs using cookies. Edge has an incon-
sistent policy regarding the sharing of LocalStorage, Session-



Chrome Chrome (M) Firefox Firefox (M) Safari Safari (M) Edge

history list × × × × × × ×
cookies ✓ ✓ ✓ ✓ ✓ ✓ ✓
LocalStorage ✓ ✓ ✓ ✓ . . . . . . ✓
SessionStorage ✓ ✓ ✓ ✓ . . . . . . ✓
indexedDB ✓ ✓ . . . . . . — — . . .
bookmarks ✓ ✓ ✓ ✓ ✓ ✓ ✓
password database × × × × × × ×
form autocompletion × × × × × × ×
add security exception ✓ ✓ ✓ ✓ ✓ ✓ ✓
remove security exception ✓ ✓ ✓ — — — —
download list ✓ — ✓ ✓ — — ✓
download item ✓ ✓ ✓ ✓ ✓ ✓ ✓
suggest based on browsing history × × — × × × ×
browser’s web cache ✓ ✓ ✓ ✓ ✓ ✓ ✓
import certs × ✓ ✓ ✓ ✓ ✓ —
delete certs × — ✓ — — — —
remember choice for external protocol ✓ — ✓ × — — ✓
per-site zoom level ✓ — ✓ — — — ✓
webkitRequestFileSystem . . . . . . — — — — —

TABLE IV: Which states created by a page in private mode are accessible to future pages in the same tab?

Storage, and cookies between different tabs. A website cannot
share LocalStorage and SessionStorage between different tabs
but can share cookies.

C. Difference between Desktop and Mobile Browsers

To illustrate mobile browsers’ new features that are differ-
ent from desktop browsers, we compared mobile Chrome on
Android to desktop Chrome on Windows, mobile Firefox on
Android to desktop Firefox on Windows and mobile Safari on
iOS to desktop Safari on MacOS.

1) Screen: First, compared to desktop devices, a mobile
device’s screen is smaller but has higher resolution. Rendering
the same image, the area needed for mobile devices is smaller
than desktop devices. Second, most smart mobile device are
equipped with touch screens. Comparing to precise mouse
clicking in desktop browsers, most mobile device users touch
an approximate location on the touch screen with fingers.
During input, the virtual keyboard occupies almost half of
the screen. Copying, cutting, and pasting are more difficult
too.

• History list in Chrome. Mobile Chrome displays history
list of public mode when requested in private mode.
This new feature aims to simplify user input. Information
flowing from public to private mode does not compromise
user privacy.

• Remove security exception in Firefox. In desktop Firefox,
to visit an unsafe website, a user must first add an
exception. Desktop Firefox shows a warning icon at the
head of address bar to notify the user about security
risks. When the user leaves this page, she can click the
icon to remove this security exception. However, in both
public mode and private mode of mobile Firefox, no
equivalent icon shows up. Therefore, the user is not able
to remove the security exception in mobile Firefox, which
means that she will not be notified again when she visits
this unsafe website in the future. Meanwhile, Chrome
supports this functionality in both its desktop and mobile
version. We suggest that mobile Firefox should build this
functionality back in.

• Search suggestions based on browsing history in Firefox.
Mobile Firefox shows suggestions based on the browsing
history of public mode in private mode. This feature saves
users from entering the entire query. Information flows
from public mode to private mode. User privacy remains
preserved.

2) Operating system: Mobile operating systems bring
about new features to mobile browsers too.

• Remember choice of external protocol in Chrome. When
a user opens an external protocol in private mode of
desktop Chrome and chooses to remember how to deal
with this external protocol, desktop Chrome applies her
choice to public mode too. Information flows from private
mode to public mode, leaving traces for local attackers.
Mobile Chrome forces users to open external protocols
with default applications and hence avoids this problem.
Mobile Firefox takes a step further, allowing users to
choose whatever application they like to open external
protocols in private mode and restores users’ choice after
they leave private mode. Mobile Chrome and mobile
Firefox’s new feature protects users’ privacy.

• Delete certificates in Chrome and Firefox. The procedure
for users to delete installed certificates is more cumber-
some in mobile Chrome and mobile Firefox than in their
desktop counterparts. Users have to open the Setting to
delete certificates. Therefore, it is more troublesome for
users to clean suspicious certificates on mobile devices.

• Download list in Firefox. Of all desktop browsers that
we tested, none allows users to check the download list
of public mode from private mode. On mobile devices,
however, Firefox shows download list of public mode
to users in private mode. The design improves usabil-
ity. Desktop operating systems have mature support for
multi-window UI so download list can be shown in a
separate window when the user is in private mode. But
most mobile devices only support a single window at
front stage. In this case, information flows from public
mode to private mode. User privacy is not harmed.

3) Inconsistency:



Chrome Chrome (M) Firefox Firefox (M) Safari Safari (M) Edge

history list × × × × × × ×
cookies ✓ ✓ ✓ ✓ × × ✓
LocalStorage ✓ ✓ ✓ ✓ . . . . . . ×
SessionStorage × × × × . . . . . . ×
indexedDB ✓ ✓ . . . . . . — — . . .
bookmarks ✓ ✓ ✓ ✓ ✓ ✓ ✓
password database × × × × × × ×
form autocompletion × × × × × × ×
add security exception ✓ ✓ ✓ ✓ ✓ ✓ ✓
remove security exception ✓ ✓ ✓ — — — —
download list ✓ — ✓ ✓ — — ✓
download item ✓ ✓ ✓ ✓ ✓ × ✓
suggest based on browsing history × × — × × × ×
browser’s web cache ✓ ✓ ✓ ✓ × × ×
import certs × ✓ ✓ ✓ ✓ ✓ —
delete certs × — ✓ — — — —
remember choice for external protocol ✓ — ✓ × — — ✓
per-site zoom level ✓ — ✓ — — — ✓
webkitRequestFileSystem . . . . . . — — — — —

TABLE V: Which states created by a page in a tab in private mode are accessible to other tabs in private mode?

• Import certificates in Chrome. In desktop Chrome, certifi-
cates imported in private mode are not available in public
mode. Desktop Chrome will delete certificates imported
in private mode after the user leaves private mode. With
experience with desktop Chrome in mind, when users
try to import suspicious certificates for some websites in
mobile Chrome, they may use private mode and naturally
assume that mobile Chrome would delete imported cer-
tificates automatically when they leave private mode. But
in fact, mobile Chrome does not delete certificates im-
ported in private mode. Therefore, suspicious certificates
remain in users’ mobile Chrome. Such inconsistency is
security-critical.

• Add security exception in Safari. In desktop Safari, users
are notified when they try to visit unsafe sites. They may
browse an unsafe site once they choose to continue on the
user interface. This safety choice is not persistent as users
get notified again when they visit the same unsafe site
after a browser restart. Mobile Safari deploys a different
design. Once a user chooses to continue to visit an unsafe
website, she will not get any further notification for this
site anymore unless she restores her device to factory
settings. Users are more likely to make wrong judgements
about whether a website is safe or not.

III. DISCUSSION: TRADEOFF BETWEEN SECURITY AND
PRIVACY IN PRIVATE MODE

section II shows that many popular browsers leak informa-
tion between public and private modes. Often this problem is
due to implementation weaknesses. However, if the browser
prevents such leaks, security can be harmed. Aggarwal’s work
did not discuss these issues.

One example is HSTS [14]. HSTS is a strong security
mechanism, but it can also be used when tracking users.
Therefore, the browser faces a dilemma. If the saved HSTS
domains in public mode are visible in private mode, a mali-
cious web page could link the user’s sessions in public mode
to those in private mode. On the other hand, if, to protect user’s
privacy, the saved HSTS domains in public mode are invisible
in private mode, then when the user visits these domains

in private mode, the security of the connections won’t be
protected. Chrome prefers security over privacy, while Firefox
does it the other way around.

Another example is security exception. Adding a security
exception decreases security, and removing a security excep-
tion increases security. Chrome (both desktop and mobile)
and desktop Firefox differ in how they choose the tradeoff
between security and privacy. In Chrome, when the user adds
or deletes a security exception in private mode, it does not
affect public mode, i.e., the browser does not add or delete
the security exception in public mode. This shows that Chrome
chooses privacy over security. By contrast, in desktop Firefox,
when the user adds a security exception in private mode, the
browser does not add the exception in public mode. However,
when the user deletes a security exception in private mode,
the browser also deletes it in public mode. This shows that
Firefox chooses security over privacy when protecting privacy
would decrease security.

IV. BROWSER FINGERPRINTING

Even if private mode perfectly isolates all user information,
web attackers may still link private and public sessions of
the same user by fingerprinting the browser. Two common
fingerprint attributes are installed fonts and plugins.

A. Background

1) Fingerprint: The attacker wishes to find out what fonts
are installed in a browser, but he cannot query this information
directly. Instead, he measures the sizes (widths and heights) of
a string rendered in different fonts. Specifically, he compiles
a list of common fonts and chooses a string whose sizes are
different when rendered in different fonts. Then, his attack
web page renders the string in each font and measures its
size. If a font is installed, the measured size would match the
expected size. Otherwise, if the font is not installed, the string
would be rendered in the default font of the browser and sizes
will be different. In this way, attackers are able to infer what
fonts are installed with high accuracy. For plugins, the attack
web page can query the installed plugins directly.



Font Rendered text

Verdana

MS Reference Sans Serif

STSong

STFangsong

TABLE VI: Different fonts render the same character in the
same size

2) PriVaricator’s defense: PriVaricator is a tool to defeat
fingerprinting. PriVaricator modifies the browser so that every
web page sees a different browser configuration [12]. Specifi-
cally, for every web page, the browser perturbs the fonts sizes
and the set of installed plugins. For each font, it randomly
perturbs the reported offsetHeight and offsetWidth
by ±5%, an amount that they determined to strike a good bal-
ance between privacy and usability. When reporting plugins,
it randomly omits 30% plugins.

B. Limitation

1) Limitations on fingerprinting based on installed fonts:
The set of installed fonts is a popular feature to fingerprint
browsers. In practice, a web page cannot query the font
list directly if Flash is disabled. In this case, the web page
has to infer the font list. A common inference mechanism
is described in IV.A.1. However, we found this approach
ineffective as the perturbation introduced by PriVaricator is not
neglectable in the inference procedure. In fact, this inference
method remains ineffective even without the presence of
PriVaricator, because many fonts share the same size by
design. For example, a user installs font A and font B. Both
fonts render a string in the same size but the user’s default font
is font A. In this case, the side channel inference described
above will consider font B as not installed. Table VI shows a
pair of fonts that render certain characters in the same size.

2) Limitations of mobile fingerprint: Laperdrix et al. [10]
demonstrated the effectiveness of Android device fingerprint-
ing with 81% of unique mobile fingerprints in their dataset
without leveraging plugin and font information. This result,
however, is too positive for Safari, the most popular browser
on iOS devices. As oppose to Android devices, a very limited
number of iOS device models take up huge marker share.
Here we use Safari on iPhone 7 as an example to demonstrate
available attributes when fingerprinting iOS devices. We enu-
merate all available Safari fingerprinting attributes and their
possible values in Table VII.

We now show that the tests introduced by Laperdrix is
not effective on iOS. Firstly, all Safaris on iPhone 7 share
the same value in attributes Accept, Content encoding, List of
plugins, Platform, Screen resolution, WebGL vendor, WebGL
render and List of fonts, so tests based on these attributes
do not work anymore. Also, Safari on iPhone 7 does not
support plugins or Flash, so the web attacker can not make
use of information about plugins, fonts, or cross-validate
attributes obtained from Flash APIs either. Tests based on

Attribute Fixed value

Accept “text/html,application/xhtml+xml,
application/xml;q=0.9,*/*;q=0.8”

Content encoding “gzip,deflate”
List of plugins N/A
Platform “iPhone”
Screen resolution 375 × 667 × 32
WebGL vendor “Apple Inc.”
WebGL render “Apple A10 GPU”
List of fonts Fixed

(a) Attributes with fixed values

Attribute Number of variants

User agent 4
Cookies enabled 2
Use of local storage 2
Use of session storage 2
Do Not Track 2
Use of AdBlock 2
Content language 41
Timezone 24

(b) Attributes with variable values

TABLE VII: Fingerprinting attributes in Safari in iPhone 7

canvas element collect information about three attributes: font,
device and OS, hardware and OS. In common cases, users
cannot change the default font in their iPhone if their iPhone is
not jailbroken. Some may argue that applications like AnyFont
support changing system font without jailbreaking. However,
these apps only work with Word, Excel, PowerPoint and other
apps [16]. Laperdrix’s method also mentions that emoji is
related to the version of iOS, but the “Smiling face with open
mouth” emoji, which they used in their test remain the same
throughout several versions of iOS. Besides, devices share the
same device model, device and hardware are not useful here
too. To sum up, the tests Laperdrix chose based on canvas are
not effective anymore when fingerprinting Safaris on iPhone
7. These problems make cross-browser fingerprinting harder
on iOS devices too.

With the previous discussion, only seven attributes can be
used as fingerprinting features on iOS devices. What makes
fingerprinting even harder is that these attributes have low
information entropy. User agent contains detailed version
information of iOS, but Apple only released four official ver-
sions for iOS 10 by March 28th [18]. Cookies enabled, Use of
local storage, Use of session storage, Do Not Track and Use of
AdBlock only have two possible values. Timezone and Content
language play a more important role as iPhone 7 supports 24
timezones and 41 languages. Therefore, even in the best case,
a web attacker has only 4 × 2 × 2 × 2 × 24 × 41 = 31 488
unique fingerprints for Safari on iPhone 7, but current number
of iPhone 7 devices is more than 70 million.

To make the situation even harder, some of those attributes
are closely related. Firstly, values of Cookies enabled, Use
of local storage, Use of session storage, Do Not Track and
Use of AdBlock are related as they are are determined by
the user’s privacy awareness. Secondly, mobile Safari treats
cookies and local storage as the same thing. The values of
Use of local storage and Use of session storage are same as



the value of Cookies enabled in public mode. Safari blocks
Use of local storage and Use of session storage in private
mode, no matter what the value of Cookies enabled is. Thirdly,
both Timezone and Content language are related to the user’s
geographic information. People in the same time zone have a
high probability to speak the same language. Due to all these
reasons, a web attacker gets even fewer effective fingerprints
than expected. Laperdrix’s AmIUnique received good results
mainly because they used a small database with 357 692 ×
4.27% = 15 273 iOS devices.

C. Attack

In this section, we focus on how to obtain correct fin-
gerprinting features in the presence of a defender. To infer
the real configuration of the browser, an attacker has to
sample configuration for several times in various scenarios.
The more samples an attacker gets, the more precise his infer-
ence would be. A defender(e.g. PriVaricator) perturbs browser
configuration(e.g. font size, installed plugins) according to a
probability distribution in private mode. Then the goal of a
web attacker is to estimate the parameters of the distribution
to reveal the true configuration. In this section, we assume
a uniform distribution, which is used by PriVaricator, but
the same methodology applies to any distribution. To defeat
PriVaricator’s defense, our attack web page measures the font
sizes and installed plugins many times to estimate their true
values.

The browser may defend against fingerprinting in private
mode in three models with different granularities. In the first
model, the defender creates and caches a random value once
a user starts private mode and keep all these random values
unchanged till the user quits private mode. In another word,
browser provides a temporary identity for the user in the form
of a fake fingerprint. In the second model, the defender creates
and caches the random values separately for each session. This
means that when a user’s browser is in private mode, each
session owns a different fingerprint. In the third model, the
defender creates a fresh random values for each request in
all sessions. In this case, even the same session may have
various fingerprints. In the first model, a web attacker may use
this temporary identity like a cookie, tracking users efficiently
in a short time. In the second and the third model, we will
show that a web attacker is capable of inferring the correct
fingerprint of a browser given enough samples.

In the first model, a browser keeps the temporary iden-
tity unchanged throughout the whole private mode instance.
Although web attackers can not link a user’s sessions from dif-
ferent private mode instances, they may link a user’s sessions
in the same instance with this temporary identity. This identity
thus serves as a temporary fingerprint. As we mentioned
in II-B1, the attacker can detect whether the browser is in
private mode via JavaScript APIs. He then knows the collected
identity is not a fingerprint and will not store the temporary
identity into fingerprinting database.

In the second model, a web attacker gets the same random
values when sampling from one session but different random
values when sampling across sessions. As we mentioned
in II-B3, Cookies, LocalStorage and IndexedDB are shared

in different sessions across tabs even if browsers are in
private mode. Then, if these sessions use the same third
party analysis, such as Google or Facebook, the analysis
provider can still link random values in different sessions by
comparing Cookies, LocalStorage, and IndexedDB. Therefore,
if the users establish enough sessions, the attacker may get
enough samples and infer the correct fingerprint. In this threat
model, with enough sessions, the attacker can infer the true
fingerprint and link the user’s sessions in public mode and
private mode together by this true fingerprint.

In the third model, a web attacker may constantly query
for random values in one session. This indicates that for each
session, the attacker can obtain enough samples in only a few
seconds. In this threat model, the attacker has a great chance
to link a user’s sessions in public mode and private mode.

1) Estimate installed fonts: In our design, to estimate
installed fonts, we choose a string that has different sizes
when rendered in different fonts, just like the fingerprint attack
we discussed in IV-A1. Then, our attack web page renders
the string in different fonts, measures its sizes, and repeats
this procedure for many times. For each font, our web page
estimates the size of the string based on the measured sizes.
If the estimated size is different from the size in default font,
we consider the font to be installed; otherwise, the font is not
installed.

A web attacker can infer the distribution by observing
enough samples and choose the best hypothesis distribution.
We assume that PriVaricator perturbs the font sizes according
to uniform distribution and rounds the size to the nearest
integer. For this distribution, the easiest method is estimating
the true size with the average of all measured sizes. We find
that a more accurate estimation is round((max + min)/2),
where max and min are the maximum and minimum of
measured sizes, respectively. Let P(r,k) be the probability that
our estimation is the true size, r be the range of perturbed
font sizes, k be the number of measured sizes. Here we give
a lower bound of P(r,k) by calculating the probability of both
the maximum and minimum values of the distribution are
sampled.

P(r,k) =
rk − 2 ∗ (r − 1)k + (r − 2)k

rk
(1)

2) Estimate installed plugins: To estimate the installed
plugins, since PriVaricator randomly omits 30% of installed
plugins, we query the installed plugins many times and
take the union of the reported plugins. Let P(m,h,k) be the
probability that this set contains all the installed plugins, where
h is the probability that the browser omits a plugin in its report,
m is the total number of plugins, and k is the number of times
the attack page queries the browser for installed plugins.

P(m,h,k) =
[
1− hk

]m
(2)

D. Evaluation

As we could not access the source code of PriVricator, we
simulated how it perturbed font sizes and the set of plugins
in Chrome 52.0 on Windows 8.1.
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Fig. 2: Accuracy of font size estimation. max&min shows
the result of estimating the true size by rounding the average
of maximum and minimum measured size. mean shows the
result of estimating the true size by taking the average of all
measured sizes.

1) Fonts: We use the discrete uniform distribution as an
example. The range of random value is from round(0.95 ×
true value) to round(1.05 × true value). We choose
round(0.5 × (random max + random min)) as our esti-
mation of the true value.

We chose 78 Latin fonts, 20 Chinese fonts, and 1 non-
existent font. The browser would substitute unavailable fonts
with its default font. We chose the test string milj_ˆ,
because it has distinct width and height for each of those
fonts.

We created a test page that rendered the test string in
a specified font and measured its size (width and height)
repeatedly . The measured sizes were the true sizes perturbed
uniformly at random by ±5% followed by rounding, as
implemented by PriVricator. For each font, we rendered the
string k times and estimated the sizes of the font with the
method described in IV-C1.

Figure 2 shows the precision of our estimation with regard
to k, the number of times that we measured the size of the
test string. Our method may not be the best for a uniform
distribution, but estimating the true size by round((max +
min)/2) is better than estimating the true size by taking the
average of measured sizes. With the first method, when k =
90, the precision is 98.75%, when k = 130, the precision is
99.81%. With the second method, when k = 90, the precision
is 53.41%, when k = 130, the precision is 63.17%.

2) Plugins: Figure 3 shows the precision of our plugin
estimation attack. Our result is based on 100 thousand test runs
for each scenario. With only 25 measures, we were able to get
the complete list of 20 plugins with a precision of 99.73% and
get the complete list of 50 plugins with a precision of 99.35%.
When we measured 40 times, we were able to get the complete
list of 50 plugins with more than 99.99% precision. The result
suggests that our method is highly effective when used to infer
installed plugins.
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Fig. 3: When the browser randomly hides 70% plugins, how
much percentage of all the plugins can our attack recover?

V. RELATED WORK

A. How to Detect Private Mode

Since Firefox 20, the privatebrowsingmode API is depre-
cated and will likely to be removed in Firefox 21 [15]. Plugin
developers can only use NPNVprivateModeBool before the
end of 2016 [17]. After that, Mozilla will stop the support
for most NPAPI plugins in Firefox [3]. However, there are
still side-channel methods to detect whether the browser is
in private mode for Chrome, Firefox, Safari, and Edge [6].
These browsers block some JavaScript API in private mode, so
attackers can take advantage of this feature to detect whether
user’s browser is in private mode.

B. Browser’s Fingerprint

In 2010, Eckersley et al. launched the Panopticlick website
to collect device-specific information via a script which runs
in the browser [8]. They showed that the list of fonts and the
list of plugins were the most distinguishable attributes. Some
follow-up efforts [1, 9, 13, 11] showed that tracking companies
started using fingerprint and developers provided open source
fingerprinting libraries. The work of Laperdrix et al. [10]
performed the first large-scale study to examine the validity
of browser fingerprinting in current web environment on both
desktop and mobile platforms. The work of Nikiforakis et
al. reported the design, implementation and deployment of
FPDetective, a framework for the detection and analysis of
web-based fingerprints.

C. Cross-browser Fingerprint

Cross-browser fingerprinting is a browser fingerprinting
technique that tracks users across different browsers on the
same machine. AmIUnique [10] described WebGL as “too
brittle and unreliable”. However, this accusation is not valid
as it selected random WebGL tasks and left variables such
as canvas size and anti-aliasing unrestricted. Cao et al. [19]
proposed a cross-browser fingerprinting technique based on
features from OS and hardware, e.g., graphics card, CPU,
audio stack, and installed writing scripts. Their result is than
AmIUnique for single-browser fingerprinting, and better than



Boda et al. [5] for cross-browser fingerprinting. Das et al. [7]
developed a highly accurate fingerprinting mechanism that
combined multiple motion sensors and made use of inaudible
audio stimulation to improve detection. Manufacture imper-
fection gave each sensor unique characteristics in the signal
they produced. Such characteristics can serve as fingerprinting
features and in turn be used to track users across visits.
A shortage of their work is the test set only contains 30
smartphones.

D. Deceive Fingerprinters

In a recent work, Besson et al. [4] showed how to enforce
knowledge threshold security using a more flexible mechanism
based on randomization and how to synthesize a randomiza-
tion mechanism that defines the distribution of configurations
for each user. In 2015, Nikiforakis et al. [12] argued that
the real problem with web tracking is not uniqueness but
linkability, the ability to connect the same fingerprint across
sessions. They used randomization to break linkability be-
tween different sessions. To attack their methodology, we use
statistical methods to estimate the true values of a browser’s
configurations. Our experiments showed that our attack was
easy and effective.

VI. CONCLUSION

We performed the first study comparing private browsing
modes between popular desktop and mobile browsers and
found many inconsistencies. Some inconsistencies are due to
implementation flaws, and we showed how they compromise
user privacy that should be protected by private mode. How-
ever, some inconsistencies are due to the tradeoff between
security and privacy. But even if a browser implements private
mode correctly, a web attacker may still link a user’s sessions
by fingerprinting the browser. We proposed an attack on a pre-
vious defense against browser fingerprinting and demonstrated
that our attack was easy and highly effective.
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