
1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

Rethinking Permission Enforcement Mechanism on

Mobile Systems
Yuan Zhang, Min Yang, Guofei Gu, and Hao Chen

Abstract—To protect sensitive resources from unauthorized
use, modern mobile systems, such as Android and iOS, design
a permission-based access control model. However, current
model could not enforce fine-grained control over the dynamic
permission use contexts, causing two severe security problems.
First, any code package in an application could use the granted
permissions, inducing attackers to embed malicious payloads
into benign apps. Second, the permissions granted to a benign
application may be utilized by an attacker through vulnerable
application interactions. Although ad hoc solutions have been
proposed, none could systematically solve these two issues within
a unified framework.

This paper presents the first such framework to provide
context-sensitive permission enforcement that regulates permis-
sion use policies according to system-wide application contexts,
which cover both intra-application context and inter-application
context. We build a prototype system on Android, named
FineDroid, to track such context during the application exe-
cution. To flexibly regulate context-sensitive permission rules,
FineDroid features a policy framework that could express generic
application contexts. We demonstrate the benefits of FineDroid
by instantiating several security extensions based on the policy
framework, for three potential users: end-users, administrators
and developers. Furthermore, FineDroid is showed to introduce
a minor overhead.

Index Terms—permission enforcement; application context;
policy framework

I. INTRODUCTION

Modern mobile systems such as Android, iOS design a

permission-based access control model to protect sensitive

resources from unauthorized use. In this model, the accesses

to protected resources without granted permissions would be

denied by the permission enforcement system. Since Android

has been expanding its market share rapidly as the most

popular mobile platform [1], this paper mainly focuses on the

permission model of Android. Ideally, the Android permission

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

This material is based upon work supported by the National Program on Key
Basic Research (NO. 2015CB358800), the National Natural Science Foun-
dation of China (61300027), and the Science and Technology Commission
of Shanghai Municipality (13511504402, 13JC1400800 and 15511103003).
Yuan Zhang is sponsored by Shanghai Sailing Program (16YF1400800) and
Shanghai Excellent Academic Leader Funds (16XD1400200).

Yuan Zhang, Min Yang (Corresponding Author) are with the School
of Computer Science and the Shanghai Key Laboratory of Data Sci-
ence, Fudan University, Shanghai, China, 201203. E-mail: {yuanxzhang,
m yang}@fudan.edu.cn; Guofei Gu is with the Department of Computer
Science and Engineering, Texas A&M University, College Station, TX,
77840. E-mail: guofei@cse.tamu.edu; Hao Chen is with the Department of
Computer Science, University of California, Davis, CA, 95616-5270. E-mail:
chen@ucdavis.edu.

model should prevent malicious applications from abusing

sensitive resources. Actually, due to some features of the

Android ecosystem, malicious entities could easily abuse

permissions, leading to the explosion of Android malware [2]

and the numerous reported application vulnerabilities [3], [4]

in the past few years.

To better understand this problem, we first study the

characteristics of current Android application ecosystem.

• SDK incorporation is quite popular in mobile app devel-

opment. With these SDKs, third-party apps can invoke

web services to provide rich functionalities in an easier

way, such as posting messages to Twitter, navigating

using Google maps.

• Except Google Play, a lot of third-party application

markets exist in the Android application ecosystem. Due

to the lack of centralized management, an app could be

repackaged, e.g., with an embedded advertisement library

for profit, and redistributed through third-party markets.

• Application interaction is a built-in feature in Android

programming model. It is quite effective to ease appli-

cation development. For example, a lot of social apps

encourage clients to upload portraits. Without application

interaction, the app needs to support photo shooting

and editing which is quite professional and complex.

Fortunately, with application interaction, the app could

delegate these functionalities to professional apps.

From the above analysis, we can find that there are many

principals (such as incorporated SDKs, repacked payloads,

deputy apps) that collaboratively participate in the function-

alities of an app, while current application-level permission

enforcement cannot precisely control the fine-grained permis-

sions that each principal can use. Specifically, we summarize

the limitations of current permission model from the following

two aspects.

• Intra-application Context Insensitive. In existing per-

mission model, each application is treated as a separate

principal, while the above analysis indicates that the the

application code may be contributed by multiple parties

(app developers, SDK providers, repackaged payload,

etc). Current permission enforcement mechanism is lim-

ited in simply applying a single security policy for the

entire app.

• Inter-application Context Insensitive. Although appli-

cation interaction is a common characteristic of mobile

applications, it is transparent to the current coarse-grained

permission enforcement mechanism, exposing a new at-

tack surface, i.e., the permissions granted to a vulnerable

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

2 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

application may be abused by an attacker application via

inter-application communication.

Given these problems, plenty of extensions have been

proposed to refine the Android permission model. Dr. Android

and Mr. Hide framework [5] provides fine-grained semantics

for serval permissions by adding a mediation layer. SE-

Android [6] hardens the permission enforcement system by

introducing SELinux extensions to the Android middleware.

FlaskDroid [7] extends the scope of current permission system

by regulating resource accesses in Linux kernel and Android

framework together within a unified policy language. Context-

aware permission models [8]–[11] are proposed to support

different permission policies according to external contexts,

such as location, time of the day. However, these works still

could not address the two limitations described above. There

are also some work dedicated to reduce the risk of inter-

application communication [11]–[15] or to isolate untrusted

components inside an application [16]–[19]. However, none

could achieve unified and flexible control according to the

system-wide application context.

In this paper, we seek to fill the gap by bringing context-

sensitive permission enforcement. We design a prototype,

called FineDroid to provide fine-grained permission control

over the application context (in this paper, when we say

context we mean the application execution context). For

example, if app A is allowed to use SEND_SMS permission in

the context C, when app A requests SEND_SMS permission in

another context C’, it would be treated as a different request

of SEND_SMS permission. In FineDroid, we consider both the

intra-application context which represents the internal execu-

tion context of an application, and the inter-application context

which reflects the IPC context of interacted applications. It is

non-trivial to track such context in Android. FineDroid designs

several techniques to automatically track such contexts along

with the application execution. To ease the administration of

permission control policies, FineDroid also features a policy

framework which is general enough to express the rules for

handling permission requests in a context-sensitive manner.

To demonstrate the benefits of FineDroid, we create two

security extensions for end-users, administrators and develop-

ers. First, we provide end-users with in-context permission

granting in which users could make permission granting

decisions just for the occurrent application context. Second,

since permission leak vulnerability [3], [4], [12], [20] is very

common and dangerous, we show how administrators could

benefit from our system in transparently fixing these vulner-

abilities without modifying vulnerable applications. Last, we

provide application developers with the ability of restricting

untrusted third-party SDK by declaring fine-grained permis-

sion specifications in the manifest file. All these security

extensions can be easily built using policies.

We evaluate the effectiveness of our framework by mea-

suring the effectiveness of the developed security extensions.

For end-users, we show that “for this context” permission

granting is the most popular choice by users, and without

such in-context granting option, users would have to handle

13 times more permission prompts if they still want to make

rational permission request decisions (details presented in

Section VIII-A). For administrators, we show that FineDroid

can easily fix permission leak vulnerabilities with context-

sensitive permission control policies, and the policies could

even be automatically generated by a vulnerability detector.

For developers, we show that just several policies are enough

to restrict the permissions that could be used by untrusted

SDKs. It is worth noting that our system is not limited

to support these two extensions. In addition, our system is

showed to introduce minor performance overhead (less than

2%).

In this paper, we make the following contributions.

• We propose context-sensitive permission enforcement to

deal with severe security problems of mobile systems.

Considering the characteristics of mobile applications, it

is important and necessary to take the application context

into account when regulating permission requests.

• We design a novel context tracking technique to track

intra-application context and inter-application context

during the application execution.

• We design a new policy framework to flexibly and

generally regulate permission requests with respect to the

fine-grained application context.

• We demonstrate three security extensions based on the

context-sensitive permission enforcement system, by just

writing policies and sometimes a small number of auxil-

iary code.

• We evaluate the security benefits gained by the two

security extensions and report the performance overhead.

II. ANDROID BACKGROUND

The permission model of Android has been well described

in [21]. Here we introduce some most relevant background.

Application Process Model. By default, each Android ap-

plication runs in an isolated process with unique UID/GID. To

boost the application creation performance, each application

process is spawned from a process incubator, named Zygote.

When an application process is spawned, Zygote initializes

the process as an Android Runtime instance which keeps

a communication channel with the Android system. Through

this channel, the Android system could manage the execution

of every application.

Binder Interaction. Android designs the Binder IPC mech-

anism to facilitate interactions among applications and system

services. During startup, Android Runtime spawns a spe-

cific Binder thread to handle all Binder transactions routed

to this application. If one Binder thread is not enough to

handle these transactions timely, Android Runtime would

automatically spawn new Binder threads. The Binder driver

plays as a router that forwards transactions from clients

to servers. During each transaction, the Binder driver also

annotates some meta-data such as the UID, PID of the client.

Based on the transaction meta-data, Android system services

could get the client identity and enforce permission checks.

Component Model. In Android programming model,

apps are structured in components: Activity, Service,

Broadcast Receiver and Content Provider [21].

Intent object is needed for component interactions to

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

ZHANG et al.: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS 3

describe the selection criteria for the target component and

invocation arguments. For an interaction, an application

needs to send an Intent to Android system, and the

Android system would check the meta-data of the Intent

object to determine the target component. After the target

component is selected, the Android system would forward

the Intent to the Android Runtime of the target

application through the communication channel set up during

the application startup. According to the Intent object,

Android Runtime would instantiate the target component

and invoke its corresponding interface for handling.

III. THREAT MODEL

This paper considers a strong threat model in which an

attacker aims to gain and abuse sensitive resources stealthily.

More specifically, this paper assumes an attacker could launch

all kinds of application-level attacks, while the Linux kernel

and Android Runtime are secure (not compromised). For

the stealthiness, we mean an attacker tries to hide its identity

in using permissions from the permission enforcement system.

We consider these two kinds of attacks.

Intra-application Attack. To hide the behavior of abusing

permissions, an attacker could inject malicious payloads into

a benign application (either before installation or during

runtime). There are several ways for an attacker to infect

benign apps. First, an attacker could actively embeds malicious

payloads into popular benign apps and redistributes the repack-

aged version via third-party application markets. Second, an

attacker could exploit code injection vulnerabilities (such as

Man-in-the-Middle attack with dynamic class loading [22]) to

inject malicious payloads. In addition, an attacker could also

publish malicious SDKs, passively waiting for developers to

include [23].

Inter-application Attack. The prevalent application inter-

action in the Android programming model may also be used

by attackers to stealthily use permissions. This kind of attack

has been verified in several forms, such as capability leak [3],

[4], [12], component hijacking [20], content leak and pollution

[24]. In these attacks, the permission enforcement system

would see a permission request from a victim app which has

a legitimate requirement for this privileged resource, while

actually this permission is originally requested and utilized by

an attacker app.

Note that our threat model does not consider other kinds of

attacks such as privacy stealing, root exploits and colluding

attacks, because they are not caused by the context-insensitive

permission enforcement mechanism and have been well ad-

dressed by previous work [7], [15], [25], [26].

IV. APPROACH OVERVIEW

To defeat these attacks, we propose context-sensitive per-

mission enforcement. The key idea is to construct a system-

wide application context for each permission request and make

granting decisions based on this context. Since the permission

enforcement system could catch all the code packages and all

the apps that participate in the permission request, an attacker

could no longer stealthily abuse permissions.

The system-wide application context is composed of two

parts: (1) Intra-application Context which represents the

internal execution flow of an application, and (2) Inter-

application Context which reflects the interaction flow among

applications and system services. With these two kinds of con-

texts, our framework could accurately distinguish permission

requests originated from different sources, thus achieving a

fine-grained control over permission usage.

The overall architecture of FineDroid is presented in Figure

1. The rectangles filled with black color are new modules

introduced by FineDroid. The core of our framework is

the Context Builder module, which automatically tracks the

application context along with the application execution. This

module is placed in the Linux Kernel, so an attacker cannot

escape from the context tracking. We also provide Context API

at the library layer for applications and the Android framework

to obtain the current application context from the Context

Builder module.

Based on Context API, we design a context-sensitive per-

mission enforcement system. To flexibly set context-sensitive

permission control rules, FineDroid features a generic policy

language. In FineDroid, all permission requests are intercepted

by the Permission Manager module. To handle a permission

request, the Policy Manager module examines all the polices

in the system, and then Permission Manager could make

a permission decision according to the action (e.g. allow

or deny) specified in the match policy. Besides, our policy

language is extensible for introducing new permission han-

dling actions. To support building security extensions atop the

policy framework, Policy Manager provides open interfaces

for policy management and extension.

Next, we will detail the design of FineDroid. The appli-

cation context tracking technique is presented in Section V,

and we describe the context-sensitive permission enforcement

system in Section VI.

V. APPLICATION CONTEXT TRACKING

Application context is the cornerstone of FineDroid, while it

is not a primitive element yet in the Android system. Thus, we

design Context Builder to automatically build the two kinds

of application contexts. To prevent attackers from hiding their

identities in the application context, we place the Context

Builder in the Linux Kernel. However, the complexity of

the Android programming model brings huge challenges in

propagating application context along with the application ex-

ecution. To deal with these complexities, we further introduce

several techniques for context propagating. Next, we elaborate

these techniques.

A. Intra-application Context Builder

Intra-application context is used to distinguish different

execution flows inside an app. In FineDroid, the function

calling context is used to abstract the internal execution context

inside an app. However, it is too large to efficiently propagate

and compare the complete calling context. Thus, we need to

efficiently compute a birthmark for any given calling context.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

4 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

Library Layer

Android Framework

Linux Kernel

App_1 App_2

Context Builder

Context API

Policy

Manager

Permission

Manager
Security

Extensions

Permission

Record
install policy

extend action

Fig. 1: Architecture of Context-Sensitive Permission Enforcement Framework.

PCC as Intra Context. We adopt a technique called

probabilistic calling context (PCC) [27] to compute an integer

birthmark based on all the functions in the flow. PCC can

be efficiently calculated with a recursive expression pcc =

3 ∗ pcc′ + cs where pcc′ is the PCC value of the caller and

cs is a birthmark for the current call site. By applying this

expression recursively from the leaf function on the stack

to the root function, we could finally obtain a PCC value

as the birthmark for the whole calling context. Note that

PCC calculation is deterministic which means a given calling

context would always get the same PCC value. As evaluated in

millions of unique calling contexts [27], PCC is efficient and

accurate for bug detection and intrusion detection in deployed

software. Thus, PCC is very suitable to represent the internal

execution context inside an app.

Call Site Birthmark. Since all Java code in an Android app

is packed into a single DEX file, we use the relative offset

of a call site in the DEX file as the birthmark of the call

site (cs value). While at the first glance this solution may

encounter problems with native code execution, it turns out

that this solution could still calculate a PCC value for the Java

functions invoked before the native code because native code

could only be invoked from Java functions through Java Native

Interface. It is worth noting that our solution does not need to

calculate a PCC value for every function invocation. Instead,

it just needs to compute PCC values for a small portion of

calling contexts inside an application that may participate in

a permission request, such as application interaction.

Implementation Issue. Since Java functions are executed

in a dedicated Java stack by Dalvik virtual machine, Context

Builder which lies in the Linux Kernel cannot recognize the

user-space Java stack. To solve this problem, we instrument

Dalvik virtual machine to register the base address of Java

stack to the kernel whenever a Java thread is spawned. Thus,

when Context Builder needs to calculate the PCC value for

the current context, it could traverse all the Java functions in

the execution flow by reconstructing the calling stack with the

base Java stack address.

B. Inter-application Context Builder

Inter-application context reflects the IPC context among

interacted applications. Since Binder IPC is the only way for

an application to interact with other applications and system

services, Context Builder extends Binder kernel module to

keep the whole IPC call chain for every IPC invocation.

App_1

App_1
(uid: pcc)

interaction

Context: None
App_1

(uid, pcc)

App_2 App_3

Linux Kernel

interaction

User Space

App_2
(uid: pcc)

App_1
(uid: pcc)

App_1
(uid: pcc)

App_2
(uid: pcc)

Fig. 2: Binder IPC Context Building.

As showed in Figure 2, the extended Binder driver allocates

an array for each thread to record the application context

in handling Binder communication. During each Binder IPC

interaction, the driver would append caller’s identity into

caller’s application context, and propagate it to the callee

application as the callee’s application context. The caller’s

identity is composed of two parts: assigned UID of the caller

application and PCC value for the intra-application context

inside the caller application when this interaction occurs.

C. Context Propagating

Due to some unique features of Android, the built

system-wide application context would be lost during normal

execution. Thus, FineDroid further retrofits the Android

Runtime which manages the application execution to

propagate application context during the following interaction

behaviors.

Component-level Propagating. Component interaction is

prevalent in Android apps. To initiate a component interaction,

an application (named as A) first needs to send an Intent

to the ActivitManagerService (referenced as AMS for

short), then AMS would choose a target application (named

as B) and route the Intent to B. Figure 3 (a) illustrates

this process. Since the invocations from A to AMS and from

AMS to B are all proceeded with Binder IPC, app B would get

the application context as [(uidA, pccA), (uidAMS , pccAMS)]

when receiving this Intent. During the component interac-

tion, AMS plays as a mediator between the sender and the

receiver. However, from the application context propagated to

app B, AMS looks like a participator which is contrary to its

actual role.

The problem would be even worse when the target applica-

tion B has not been launched at the time of Intent delivery.

Figure 3 (b) illustrates this scenario. When app B is chosen as

the callee of this component interaction and AMS finds that app

B has not been started. AMS would delay the Intent routing

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

ZHANG et al.: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS 5

App_A

 (uid_A, pcc_A)

AMS

App_B

 (uid_B, pcc_B)

Zygote

Spawn request
fork

 (uid_B, pcc_B) (uid_AMS, pcc_AMS)

Binder request

App_A

 (uid_A, pcc_A)

AMS App_B

 (uid_A, pcc_A) (uid_AMS, pcc_AMS)

Binder request

(a) When App_B is started (b) When App_B is not started

Fig. 3: Binder IPC Propagating Diagram in Component Interaction from App A to App B.

and notify Zygote (which is the application incubator in

Android) to spawn a new process for app B. When B has been

started, it would notify AMS and AMS would send the delayed

Intent to B. The problem is that the Intent delivery from

AMS to app B is performed in the context of receiving the start

notification of app B, so the application context propagated to

app B is [(uidB, pccB), (uidAMS , pccAMS)]. This problem is

caused by that the application context for sending the Intent

from app A to AMS has not been recovered in delivering the

Intent from AMS to app B.

To solve the two problems, we design Intent-based compo-

nent interaction tracking. The basic idea is that, we instrument

AMS to annotate each Intent object with the sender’s

context, thus the context is propagated to the receiver together

with the Intent object. When Android Runtime in the

receiver application gets the Intent object from AMS, it

first recovers the application context recorded in the Intent

object and then triggers the invocation of the target component.

Thus, the target component can be executed with the right

application context. Note that the application context recovery

in the receiver application is guaranteed by our instrumented

Android Runtime, thus it could not be escaped.

Thread-level Propagating. In each Android Runtime,

there is a main thread to handle the component interactions

with the system and dispatch UI events (so this thread is

also known as UI thread). To reduce the latency of main

thread in processing events, developers are advised to delegate

time-consuming operations to worker threads. Android designs

Message [28], Handler [29], AsyncTask [30] interfaces

for developers to facilitate such workload migration and

synchronization. However, since thread interaction is not

proceeded via Binder IPC, the application context would be

lost in the worker thread.

We design two countermeasures to propagate application

contexts among thread interactions. First, during thread cre-

ation, we instrument the thread creation and initialization logic

to propagate the application context of the creator thread

to the new created thread and then recover the application

context before the created thread is ready to run. Second, for

thread interaction, we consider the message-based interaction

mechanism in Android. Before a message is sent to a thread,

the application context of the current thread is annotated to

the Message object. Then before the target thread handles

the Message, its application context is restored according

to the one encapsulated in the Message object. It is worth

noting that, our thread-level context tracking is transparently

performed by our instrumented Android Runtime. Thus,

this kind of tracking is mandatory without relying on any mod-

ification to the applications or cooperation with developers.

Event-level Propagating. Callbacks are commonly used

in Android to monitor system events. A typical use case is UI

event handling. However, the event-based programming model

also brings problems to application context tracking, because

a callback may be executed in a future time by a thread which

would have a different context to the one when the callback

is registered. To deal with this problem, FineDroid annotates

each callback with the application context when it is registered

and recover the application context from the callback before

it is triggered for execution. From Android documentation,

we find more than 100 APIs that would register callbacks.

We instrument each API to embed the registered callback

into a wrapper which automatically records and recovers the

context to/from the callback. Since only Android APIs are

instrumented, this technique is also enforced transparently to

the app.

Compared with Scippa. Scippa [31] is a system to

provide IPC call-chains across application process. Similar

to our context propagating technique, Scippa also extends

Binder driver and Android Runtime to propagate IPC

context. However, it is limited in application to context-

sensitive permission enforcement from the following aspects:

• First, Scippa does not build and propagate intra-

application context during IPC interaction while it is

quite important for preventing intra-applications attacks

and inter-application attacks;

• Second, our system considers a more complicated com-

ponent interaction model which covers two scenarios in

sending Intents (see Fig. 3) and effectively hiding the

presence of AMS in the IPC context;

• Third, our system proposes thread-level propagating and

event-level propagating to systematically propagate IPC

context inside an application, while Scippa only supports

context propagating during thread interaction .

VI. CONTEXT-SENSITIVE PERMISSION SYSTEM

Based on the constructed system-wide application context,

permission requests in FineDroid could be handled separately

according to the concrete application context. To ease the reg-

ulation of permissions requests, FineDroid features a context-

sensitive policy framework. Besides, FineDroid also collects

detailed context information to facilitate expressive context-

based policy writing.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

6 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

 policy := <action> <app> <permission> <context>

 action := grant | deny | ...

Fig. 4: Policy Language for FineDroid.

A. Permission Manager

Permission Manager first needs to intercept all permission

requests. As introduced in [19], [32], two kinds of permission

requests are intercepted: KEPs (Kernel Enforced Permissions)

and AEPs (Android Enforced Permissions). The two kinds of

permission requests are intercepted differently.

KEP Interception. Since KEP is enforced by the UID/GID

isolation mechanism in Linux Kernel [32], we instrument

the related modules in the Linux Kernel to intercept all

KEP permission requests. The permission request is then

redirected to Permission Manager in the Android framework

for handling.

AEP Interception. PermissionController service is a uni-

fied point for permission checking in the Android framework.

We instrument PermissionController service to redirect all

permission requests to the Permission Manager. Since the AEP

permission requests are preformed through Binder, Permission

Manager could easily obtain the application contexts for the

AEP permission requests with Context API.

To handle a permission request, Permission Manager first

queries Policy Manager to select a policy which best matches

the current application context. If no policy matches, Per-

mission Manager would fall back to the original permission

enforcement mode. In the original mode, permission requests

are handled by querying the Permission Record (see Figure

1) to grant all the permissions declared in the application

manifest file. When a matched policy is selected for the current

permission request, Permission Manager just needs to follow

the action (e.g. allow or deny) specified in the policy.

B. Policy Framework

FineDroid designs a declarative policy language to express

the rules for handling permission requests in a context-

sensitive manner. Figure 4 shows the structure of our policy

language. Basically, a policy specifies the action <action>

to perform when an app <app> requests a permission

<permission> under the application context of <context>.

To ease the expression of application context, our policy is

structured in XML format, with the following tags. (Sample

policies can be found in Figure 5 and Figure 7.)

• policy tag. It is the root tag for specifying a policy. Three

attributes are required to designate the handling action

(action attribute) when an app (app attribute) requests

some permission (permission attribute). The expected

application context for this policy can be figured by either

a context attribute or child tags described below.

• uid-selector tag. It describes the composition relationship

of several uid-context child tags. The selector attribute

is mandatory to describe the composition relationship

among the child tags. It supports 5 kinds of selectors:

“contains”, “startwith”, “endwith”, “strictcontains” and

“fullymatch”.

• uid-context tag. It describes context information for a

single application participated in the inter-application

communication. The uid attribute is required to specify

the identity of the application. Package name can also be

used as the identity of the application. If the value of uid

attribute begins with “∧”, it represents any application

except the one specified by the uid attribute. The intra-

application context of the application can be described by

either the pcc attribute using the exact PCC value of the

application, or detailed function call context information

using a child pcc-selector tag.

• pcc-selector tag. It describes the composition relationship

of several method-sig child tags. Just like uid-selector

tag, it requires a selector attribute which also supports 5

selectors.

• method-sig tag. It describes the signature for a method

invoked in the calling context. Three attributes can

be used for description: className, methodName, and

methodProto.

• or, and, not tag. They describe the logic relationships

among child tags. They are used to depict complex

contexts which may be difficult to expressed only with

uid-selector and pcc-selector. Meanwhile, these tags can

be nested together.

Besides, the policy language supports using “*” as the wild

card character in some attributes, such as context attribute in

policy tag, pcc attribute in uid-context tag.

Policy Matching. To test whether a policy could match a

permission request, Policy Manager first checks the requested

permission and the requestor application. When both attributes

match, Policy Manager further compares the application con-

text. The application context matching is relatively slow, so

we use a cache to remember the context matching results. If

multiple policies are found to match, Policy Manager would

select the one that express the most fine-grained application

context. Policy Manager also supports adding and removing

policies to/from the system, as well as registering new action

types to extend the policy language. The next section will show

how these policies can be used to refine current permission

model.

C. Expressive Context-based Policy Writing

To ease the writing of context-based policies, FineDroid col-

lects the detailed context information during context building.

The recorded context information enables writers to specify

context policies in a more expressive manner.

Intra-application Context Information. To support de-

scribing uid-context with method signatures, FineDroid col-

lects the method signatures for all the Java methods in the

current intra-application context. Note that the detailed context

information is collected only when a new intra-application

context (with a PCC value never see before in this app) is

encountered. Since the detailed context information is kept

in the file system, FineDroid using encryption to prevent

attackers from modifying the context information.

Application Identity Information. In Android, a unique

UID/GID pair is selected during application installation to

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

ZHANG et al.: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS 7

Fig. 5: Example of In-Context Permission Granting Interface.

represent as the identity of an app. However, UID/GID is not

friendly for users to understand. Instead, FineDroid supports

using the package name of an app to describe the app. To

map a package name to UID/GID pair, FineDroid keeps all

the package names of the application packages managed by

PackageManagerService.

VII. SECURITY EXTENSIONS

To demonstrate the effectiveness of context-sensitive per-

mission enforcement, we create three security extensions for

end-users, administrators and developers. All these extensions

are built upon the interfaces exposed by Policy Manager,

without modifying other FineDroid modules.

A. For End-User: In-Context Permission Granting

In the current Android permission model, an app needs

to declare all requested permissions in a manifest file and

a user should decide whether to grant all these permissions

at the installation time or to abort the installation. Recent

user studies have indicated that this grant-all-or-not-install

permission model could not help users make correct security

decisions [33], [34]. To address this problem, Aurasium [35]

repackages apps and provides time-of-use permission granting

for Android but at the application level only.

A limitation of this solution is that a user may wish to

grant the SEND_SMS permission only when she clicks the

“Send” button but not in any other contexts of the application.

Unfortunately, we are unaware of any existing technique

capable of granting permissions based on contexts. FineDroid

improves application-level permissions by providing in-context

permission granting, which allows the user to allow or deny

a permission for the current context. Figure 5 shows an in-

context permission granting user interface, where the user can

choose to allow/deny a permission (1) always in the current

context, (2) always in all contexts, or (3) just once. Note that

in-context permission granting still relies on users to make

rational allow/deny decisions, but we argue that it could benefit

users for the new flexibility in making decisions (see Section

VIII-A).

We select 12 high-risk permissions, such as INTERNET,

SEND_SMS, and READ_CONTACTS, to provide in-context

granting when these permissions are requested. To support user

granting, we add a new action type prompt to the policy

language. When Permission Manager performs a “prompt”

<policy action=”prompt” app=”*” permission=”SEND_SMS” context=”*” />

<policy action=”grant” app=”10034” permission=”SEND_SMS” >

 <uid-selector selector=”contains” >

 <uid-context uid=”10034” pcc=”*” />

 </uid-selector>

</policy>

<policy action=”grant” app=”10034” permission=”SEND_SMS” >

 <uid-selector selector=”contains” >

 <uid-context uid=”10034” pcc=”34536” />

 </uid-selector>

</policy>

Fig. 6: Sample Policies for In-Context Permission Granting.

action, it would invoke our registered callback to handle this

action. Our callback would prompt a dialog such as Figure 5

for users to make a granting decision.

To specify that the 12 high-risk permissions should be

handled with “prompt” action, we register 12 default policies

to the system through the interface of Policy Manager. Figure

6 (a) shows a sample policy. When a user chooses to grant

a permission for the current context, we add a policy to the

system to specify that this permission is granted to the app

with current PCC value. Figure 6 (b) shows an example of

such in-context permission granting policy. Note that the PCC

integer value is used only by FineDroid to identify a context

and is transparent to the end user, who makes context-sensitive

decisions based only on the context in the application’s user

interface. When the application requests the same permission

in another scenario/context (which has a new PCC value), our

system could still prompt users for permission granting. If

users are quite confident about that an application should use

a permission forever, our system would add a policy as showed

in Figure 6 (c).

B. For Administrator: Fixing Permission Leak Vulnerability

In the Android programming model, if a public component

is not protected well, it may be misused to perform privileged

actions by an attacker application. As demonstrated in [3],

[4], [20], many high-risk permissions, such as SEND_SMS,

RECORD_AUDIO are found to be leaked in pre-installed apps

and third-party apps. Next, we introduce how to use FineDroid

to prevent permission leaks. Note that we do not want to

prevent all kinds of component hijacking vulnerabilities, such

as information leaks.

Leak Causes. There are two possible cases for the permis-

sion leak vulnerability. The first case is that some application-

private components are mistakenly made publicly accessible.

This may be caused by developer’s lack of security awareness

or insecure code generated by IDE. To fix such kind of leak,

developers just need to mark these components as private ones

in the manifest file. In Android, intra-application component

interaction and the inter-application component interaction

share the same communication channel [36]. Thus, a single

component may be designed for two purposes: internal use

and public use. The second case of permission leak is that

developers do not perform enough security checks when an

internal component is for public use. However, this case

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

8 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

<policy action=”deny” app=”com.android.mms” permission=”SEND_SMS” >

 <uid-selector selector=”strictcontains” >

 <uid-context uid=”^com.android.mms” pcc=”*” />

 <uid-context uid=”com.android.mms” />

 <pcc-selector selector=”contains” >

 <method-sig className=”com.android.mms.transaction.SmsReceiver”

methodName=”beginStartingService” />

 </pcc-selector>

 </uid-context>

 </uid-selector>

</policy>

Fig. 7: Policy to fix SEND_SMS permission leak in SmsReceiver.

is quite difficult to handle, due to two levels of security

requirements in a single component.

Our Solution. By tracking system-wide application context,

FineDroid could be used to fix permission leak vulnerabil-

ity. With inter-application context, we could find whether a

component interaction is for internal use or for public use.

With intra-application context, we could accurately specify

the vulnerable flow inside the application. Combining intra-

application context and inter-application context together, we

could make a policy to prevent a vulnerable flow from using

permissions when it is invoked from an external application.

For example, the policy in Figure 7 denies the SEND_SMS

permission request from the app com.android.mms when a for-

eign application participates in the interaction and the internal

execution state of com.android.mms matches a vulnerable path

(specified by the <pcc-selector> element).

The advantages of FineDroid in preventing permission leak

vulnerabilities are that it requires no modification to the

system nor the vulnerable applications and the policies are

quite easy to write. In Section VIII-B, we would evaluate

the effectiveness of FineDroid in fixing real-world permission

leak vulnerabilities, and show that how the policies could

be automatically generated by enhancing a permission leak

vulnerability detector.

C. For Developer: Fine-grained Permission Specification

An Android application may contain many third-party code

packages. For example, it is common for applications to

embed an Ad library for fetching Ads, social network SDKs

for publishing events, payment SDKs for financial charge,

analytic SDKs for marketing. However, in this case multiple

third-party SDKs from different origins (potentially with

different trust levels) will share the same privileges as the host

application, violating the principle of least privilege. Thus,

a third-party SDK may abuse the permissions that granted

to the host application. For example, a popular Ad library

was found to collect text messages, contacts and call logs

[23]. Unfortunately, developers have no way to restrict the

permissions that are available to certain foreign packages.

Our Solution. By tracking intra-application context, Fine-

Droid is capable of distinguishing the origins of permission

requests inside an application. Thus, we could build a per-

mission sandbox inside an application where code packages

from different origins have different permission configurations.

Based on the permission sandbox, developers could declare

fine-grained permission specifications in the application man-

ifest file to specify the permissions that could be used by

each third-party SDK. Figure 9 shows the format of this

Fig. 8: Original policy to incorporate Flurry Ads in Android Apps.

...

<fine-permission android:package="com.flurry.android">

 <deny android:permission="android.permission.ACCESS_FINE_LOCATION" />

 <deny android:permission="android.permission.ACCESS_COARSE_LOCATION" />

</fine-permission>

...

Fig. 9: Policy to prevent Flurry Ads from requesting location
permission.

kind of permission specification. The fine-grained permission

specifications in the manifest file will be transformed to

FineDroid policy by our enhanced PackageManagerService at

the install-time and added to the Policy Manager. Note that

application obfuscation [37] would not cause problems here,

because developers could modify the manifest file after code

obfuscation.

Burden on Developers. To isolate third-party code pack-

ages, developers need to specify fine-grained permission con-

figurations in the manifest file, as showed in Figure 9. Actually,

it would not place significant burden on developers, since

they already need to configure permissions when incorporating

third-part code packages. For example, consider a developer

who wishes to incorporate the Flurry SDK in her app. Flurry’s

documentation requires her to declare four permissions in the

application manifest, shown in Figure 8 [38]. If she uses

FindDroid, then instead of declaring those permissions, she

would specify the policy in Figure 9. Finally, the developer

need to set fine-grained permissions only when she wishes to

restrict the permissions of untrusted SDKs.

VIII. PROTOTYPE & EVALUATION

We implement a prototype of FineDroid on Android 4.1.1

(Jelly Bean), running on both Google Nexus phones (Samsung

I9250) and emulators. We also implement the three secu-

rity extensions upon FineDroid. This section evaluates these

extensions to demonstrate the effectiveness of our context-

sensitive permission enforcement framework, as well as the

performance overhead introduced by our framework.

A. In-Context Permission Granting

In-context permission granting provides flexible control over

permission usage. What option to choose in a permission

granting decision is a tradeoff between security and usability.

The “forever” option represents one end of the spectrum

with the maximum usability but possibly insufficient security

(because the correct permission decisions might be different

in different contexts), while the “for once” option represents

the other end of the spectrum with the maximum security

but the worst usability (because the user has to answer every

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

ZHANG et al.: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS 9

permission question). The “for this context” option that we

propose represents a middle ground.

However, how useful is it? How often is it more appropriate

than “for once” and “forever”? We conducted a user study

to find it out. In this study, we hired 10 volunteers in our

university to participate. We selected 70 top Google Play apps

(e.g., Cut the Rope, Firefox, BBC News, IKEA Catalog) from

21 different categories, and each participant chose a subset

of these apps and ran them on FineDroid. The task of the

participating users was to thoroughly use the provided apps

and to trigger as many features of the apps as possible.

Recommended Best-practice Setting. To help users spec-

ify policies using in-context permission granting without

bringing in more risks, we recommend them the best-practice

setting. We first recommended them about the three options

that should choose when making granting decisions: (1) if

you do not want the system to remember the decision, then

choose “for once”, (2) if you do not want to handle the

request of this permission in the same current scenario/context

any more, then choose “for this context”, and (3) if you do

not want to handle the request of this permission anytime in

this app, then choose “forever”. We then recommend them

to deny a permission request “for once” when they are not

sure whether to grant or not. If the denial of the permission

request does not come with decrease of service quality or

application stability, we recommend them to deny the same

permission “for this context”. We advice them to cautiously

choose “forever” option. Since in-context permission granting

provides new flexibility in controlling application behaviors,

our recommended policy setting is expected to help users gain

a better balance between security and usability.

Before the experiment, we gave them 5-minute training

about in-context permission granting. We introduced them

about the three options that could choose when making

granting decisions: (1) if you do not want the system to

remember the decision, then choose “for once”, (2) if you

do not want to handle the request of this permission in the

same current scenario/context any more, then choose “for this

context”, and (3) if you do not want to handle the request of

this permission anytime in this app, then choose “forever”.

Overall Usability Impact. In all, we collected 158 per-

mission granting traces for 70 apps. On average, each trace

lasts about 12.3 minutes. Totally, users make 968 permis-

sion granting decisions. On average, users make about 6.13

(968/158) permission decisions per app, which means one

decision for about 2 minutes. Thus, we can find that our

new in-context permission granting mechanism does not place

significant burden for end-users.

Effectiveness. To study the benefits drawn by in-context

permission granting, we assume that each permission decision

(allow or deny) that a user make is rational1, i.e., no user

would intentionally allow a permission when it should be

denied, and vice versa. Specifically, we look into the following

questions.

1Note that rational does not necessarily imply optimal, e.g., a user may
choose “for once” while actually “for this context” would be more appropriate.

Q1. How often is “for this context” chosen by users? By

examining the options chosen by users when making granting

decisions, we found the users made 590 “for this context”

decisions, which is the mostly chosen option. Based on users’

context-sensitive decisions, our system automatically handles

37,666 permission requests without further bothering the users.

It means 37666/(37666+590)=98.5% unnecessary permission

prompts are effectively eliminated within in-context permis-

sion granting.

The above results, while encouraging, should be taken with

a grain of salt, because users may not always choose the most

appropriate option when making decisions. It means that users

may choose “for this context” option when “forever” would

be more appropriate. Since the “forever” option is not new

introduced by us, we should not attribute all the eliminated

37,666 permission prompts to in-context permission granting.

To investigate the benefits owing to in-context permission

granting, we first need to judge when “for this context” option

is the most appropriate. However, manually judging would be

laborious and subject to our biases. Finally, we find a way to

deduce the cases when “for this context” option is the most

appropriate from users’ actual decisions (see Q2 and Q3).

Thus, we could measure the benefits that owe to in-context

permission granting from these cases (see Q4).

Q2. How often is “for once” more appropriate than “for

this context”? In our study, users have made a total of 72

choices of “for once” option in 50 contexts. However, no user

has ever chosen both “allow for once” and “deny for once” in

the same permission request context of an app. This implies

that if these users had chosen “for this context” instead of

“for once”, they would have the same security effect but would

have avoided many permission prompts. This study shows that

“for once” option rarely, if ever, could be a more appropriate

choice than “for this context”.

Q3. How often is “for this context” the most appropriate

choice? When a user both allowed and denied the same

permission (with “for this context” option) but in different

application contexts in an app, it is reasonable to infer that

the “forever” option is inappropriate for this permission in

this app. Instead, “for this context” option is probably the most

appropriate choice in this case. For each user in each app, our

user study covered a total of 296 permissions and 740 distinct

permission request contexts. Among these permissions, 61

permissions have been both granted and denied by the same

user in different contexts of an app, for a total of 217 distinct

permission request contexts. In other words, in these 217

(or 217/740=29.3%) permission request contexts, “for this

context” is the most appropriate choice.

Q4. Without “for this context” option, how many

more prompts would users need to handle? In a time-

of-use permission granting system where “for this context”

option is unavailable, when a user is asked a permission

question in one of the above 217 permission contexts, the

user could choose either “for once” or “forever”. Note that the

“forever” option would be inappropriate in the 217 contexts

discussed above. As a result, rational users have to choose

“for once” option, thus would have to handle more prompts.

In the user study, for the 217 contexts above, the system

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

10 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

automatically handles 12,678 permission requests based on the

users’ context-sensitive decisions. It implies that users would

have to handle 12678/968≈13 times more permission prompts

if the “for this context” option is unavailable.

Longer-term Usability Study. Since FineDroid remembers

the user’s context-specific permission decisions, we expect

that the user needs to repeat fewer permission decisions. To

measure this improved usability in a longer term, we chose

five volunteers from the previous study to participate in a

five-day study. We asked each participant to choose her five

most frequently used apps from the previous study so that

they would be willing to spend more time on these apps.

During the study, just as in the previous study, our system

recorded all the permission granting decisions made by the

user and by FineDroid, respectively. In total we collected 25

permission granting traces in 17 apps. The traces show that

the participants made a total of only 27 permission granting

decisions, all of which occurred in the first hour of using

the app. By contrast, FineDroid automatically made 93,817

permission granting decisions. This result corroborates what

we observed during our previous shorter-term user study:

that in-content permission granting significantly reduces the

number of permission request prompts.

B. Fixing Permission Leak Vulnerability

We evaluate the effectiveness of FineDroid in fixing permis-

sion leak vulnerabilities with two real-world vulnerabilities in

Android AOSP apps: SEND_SMS leak [39] and WRITE_SMS

leak [40]. These two vulnerabilities are both caused by the

improper protection of public components exposed in the Mms

application, which is the default message management app.

Vulnerability Analysis. There are two vulnerable compo-

nents in the Mms application: SmsReceiverService which is

a Service component and SmsReceiver which is a Broadcast

Receiver component. Figure 10 illustrates the exploitable paths

in this application. SmsReceiverService is intended for only

internal use in the Mms application, while it is mistakenly

exported to the public. Through sending a well-designed

Intent to SmsReceiverService, an attacker can drive the Mms

application to fake the receiving of arbitrary SMS messages

(WRITE_SMS leak, path a) or send arbitrary SMS messages

(SEND_SMS leak, path b). SmsReceiver is designed for both

internal use and public use. However, the functionality of

sending arbitrary SMS messages which should only be used

by private components is not protected properly, causing it to

be exported to the public (SEND_SMS leak, path c).

Fixing the Vulnerability. Permission leak vulnerability is

typically difficult to fix manually, because it requires enforcing

multiple security requirements in a single component, such

as SEND_SMS leak (path c in Figure 10) in SmsReceiver.

Besides, even if carefully fixed, it also requires the re-

distribution of the new application file. Based on FineDroid,

we could easily prevent permission leaks by simply writing

policies to deny the permission request occurred in the

exploitable path without modifying the application. Figure 7

shows an example of how to prevent SEND_SMS leak (path

c in Figure 10) in SmsReceiver. Similarly, we could fix the

vulnerability of path a and b.

SmsReceiverService

SmsReceiver

WRITE_SMS leak SEND_SMS leak

public interface

a b

c

Fig. 10: Permission leak paths in Mms application.

Effectiveness. We created three sample apps to exploit

each vulnerable path mentioned above. The sample apps were

first tested in our FineDroid prototype with no policies. The

result shows that all the three apps successfully exploited the

vulnerabilities in the Mms app. Then we added three policies

(as showed in Figure 7) to our prototype to fix the three

vulnerable paths. We also ran the same three sample apps

to attack Mms again. We found that our security policies

successfully prevented the permission re-delegation attacks

this time, demonstrating the effectiveness of FineDroid in

enforcing fine-grained permission use policies.

Policy Generation. The policies to fix permission-leak

vulnerabilities rely on the precise understanding of vulnerable

paths among component interactions. Thus the ideal scenario

is to use together with an existing permission leakage vulner-

ability detector (such as CHEX [20]). Once a vulnerable path

is detected, we can automatically generate a corresponding

policy for FineDroid. Thus, the task of diagnosing vulnerable

applications and writing policies can be greatly simplified. To

demonstrate the feasibility of automatic policy generation to

be used together with any vulnerability detector, we choose

CHEX [20], a state-of-the-art tool in detecting permission

leak vulnerability, in our evaluation. However, the source code

of CHEX is not available, so we could not directly enhance

CHEX for policy generation. Instead, the authors of CHEX

provided us the output of CHEX in analyzing 20 vulnerable

applications, among which 10 applications are vulnerable

to INTERNET permission leak. By parsing the output files,

we successfully extracted 414 vulnerable paths with detailed

calling contexts. Based on the vulnerable paths (contexts),

the automatic policy generation is quite straightforward. As

showed in Figure 7, the generated policies could deny the

permission request when the vulnerable path is exploited by a

foreign application. Finally, for each vulnerable path detected

by CHEX, a policy is automatically generated to fix it.

C. Fine-grained Permission Specification

We evaluate the effectiveness of FineDroid in providing

fine-grained permission specification by restricting the priv-

ileges of untrusted Ad libraries. In this experiment, we use

an application named Stock Watch which embeds Flurry Ads

for fetching and displaying advertisements. For demonstration

purpose, we assume Flurry Ads is not trusted by Stock Watch

developers, thus the developers want to restrict the permissions

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

ZHANG et al.: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS 11

that could be used by Flurry Ads. Flurry Ads requests

ACCESS_FINE_LOCATION permission during the execu-

tion, and we assume the developers think this is quite sus-

picious. With FineDroid, Stock Watch developers could easily

prohibit Flurry Ads from using ACCESS_FINE_LOCATION

permission. As Figure 9 shows, they just need to declare a fine-

grained permission specification in the manifest file. During

the installation, these specifications would be transformed to

policies that could be added to FineDroid. Because we do not

have the source code of the Stock Watch application, we mimic

the behavior of Stock Watch developers by repackaging the

application file to replace the manifest file. By running the new

application, we could find the ACCESS_FINE_LOCATION

permission requests from Flurry Ads are all denied by Fine-

Droid, and this does not affect the normal operation of the

Stock Watch application. Similar to Stock Watch, we also

tested another 20 applications to restrict the permissions

assigned to third-party libraries, including Google Ads, Tapjoy,

Millennial Media. In all these cases, FineDroid provides strong

enforcement of fine-grained permission specifications. We did

encounter two cases that the applications crashed due to the

denial of some permissions requested from the Ads library.

Instead of considering it as the fault of FineDroid, we argue

that developers of the Ads library should write more robust

code to handle more necessary exceptions in the future.

D. Performance Overhead

We have conducted several experiments to measure the

performance overhead caused by FineDroid. The experiments

are performed on Google Nexus phones.

Overall Performance. We first use three performance

benchmarks (CaffeineMark3, AnTuTu, and Linpack) to mea-

sure the overall overhead introduced by FineDroid. The results

show that almost no noticeable performance overhead is

observed, with the worst overhead case at 1.99% in the

Linpack benchmark.

Permission Request Handling Performance. Most over-

head of FineDroid is introduced when handling permission

requests. We implement a test app that performs 10,000 times

of permission requests to measure the average performance

of FineDroid in handling a single permission request. We

compare the performance of unmodified Android with Fine-

Droid in two configurations. Context tracking is disabled

in FineDroid w/o Context, where all overhead is caused by

permission interception. In FineDroid w/ Context, context

tracking is switched on and no policy is installed on the

system. Table I shows the results.

FineDroid introduces an overhead of 2.02 ms per request in

intercepting KEP permission requests, which is undoubtedly

higher than the case of unmodified Andorid because in

that case KEP request can be handled in the application

process without communicating with Permission Manager

in the system process. The overhead introduced by further

application context tracking is very minor (0.02 ms per

request). For AEP permissions, the interception overhead

is quite minor because AEP is originally enforced in the

system process, while the context tracking overhead is more

significant because it needs to build intra- and inter-application

contexts in several processes.

Permission
Type

Original
Android

FineDroid
w/o Context

FineDroid
w/ Context

Socket(KEP) 0.14ms 2.16ms ∆2.02ms 2.18ms ∆0.02ms

IMEI(AEP) 0.62ms 0.69ms ∆0.06ms 1.09ms ∆0.40ms

TABLE I: Results on handling permission requests.

Policy Matching Performance. To test the overhead intro-

duced by the policy matching, we add policies to the system

to grant the permissions requested by the test app. Each policy

is written with the same structure as Figure 7. Table II shows

the overhead of policy matching.

Permission

Type

FineDroid

w/o Policy

FineDroid

w/ Policy
Overhead

Socket(KEP) 2.18ms 3.06 ms 0.88ms

IMEI(AEP) 1.09ms 1.99 ms 0.90ms

TABLE II: Results on policy matching.

We also measure the performance of the aforementioned

optimization which caches previous policy matching results

to reduce the overall matching overhead. From Table III, we

can find this optimization significantly reduces the total cost

of policy matching.

Permission

Type

FineDroid

w/o opt.

FineDroid

w/ opt.

Reduced

Overhead

Socket(KEP) 4.94 ms 3.06 ms 1.88ms

IMEI(AEP) 3.88 ms 1.99ms 1.89ms

TABLE III: Results on cached policy matching optimization.

We believe the performance penalty introduced by Fine-

Droid is acceptable because permission request (as well as

policy matching) do not frequently occur in practice.

E. PCC Conflict Probability

Since PCC is probabilistic [27], two distinct intra-

application contexts may have the same PCC value, which

would degrade the effectiveness of our context tracking

technique. Thus, this section measures the probability of PCC

conflict. In the user study performed in Section VIII-A, our

system recorded all the application execution contexts with

detailed calling context information. By analyzing the logs

collected in the user study, we found there are 4.68 distinct

permission request contexts on average in the collected

158 permission granting traces, and there are no conflict

PCC values found in these contexts. Since our system only

calculates PCC values in permission request contexts, the

total number of PCC in an application should be relatively

small. As evaluated in [27], a 32-bit PCC only has few

conflicts for millions of unique contexts, thus we believe the

adoption of PCC would hardly introduce context conflicts in

our system.

IX. DISCUSSION

A. About FineDroid.

To propagate application context, FineDroid relies on

Android Runtime instance in each application to

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

12 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

participate. Since Android Runtime is a user-space

module in the application process, currently FineDroid cannot

guarantee its integrity. Attackers may use Java Reflection

to modify Android Runtime’s private data structures.

To prevent such attacks, we instrument Reflection APIs to

prevent manipulation of the private fields which are added

by FineDroid to keep application context. Because these

fields are unique to FineDroid, this kind of instrumentation

would not break other legitimate use of Reflection. Besides,

adversaries may also use native code to attack Android

Runtime. Recent work on isolating native code in Android

system [41], [42] could be incorporated to our system to

prevent native code attack.

Undesirable data flows among multiple permission requests

are not considered in this paper. Actually, by providing

fine-grained permission control to raise the bar for abusing

permissions, FineDroid could also be used to prevent potential

risky data flows.

B. About In-context Permission Granting.

It is a long-running research problem about how to com-

municate end-users with the application behavior to help them

make security decisions. However, making decisions is hard,

helping users to make decisions is even harder. Permission

granting mechanism itself could not tell users the correct

decision, but the way it interacts with end-users directly im-

pacts the security and usability. In installation-time permission

granting, users are confused to make security decisions without

knowing the permission usage. Thus, researchers proposed

time-of-use permission granting for Android, such Apex [43],

Dr. Android and Mr. Hide [5]. In time-of-use permission

granting, users could delay the granting decisions to runtime,

at the exact time when application requests the permission.

Compared with installation-time granting, time-of-use granting

could provide better understanding of the risks of granting

decisions. However, time-of-use granting would increase the

number of granting decisions and interrupt the normal usage

of the application. In-context permission granting proposed

by this paper seems a better choice than time-of-use granting,

because it not only allow users make decisions at runtime,

but also avoid asking users the same permission granting

questions. The comparison among installation-time granting,

time-of-use granting and in-context granting is depicted in

Table IV. By providing users with a new way to interact with

the permission granting mechanism, in-context permission

granting significantly advances this line of research, achieving

a better balance between security and usability.

Granting mechanism Security Usability

Installation-time granting ×
√

Time-of-use granting
√

×

In-context granting
√ √

TABLE IV: Comparison of three permission granting mechanisms.

Although in-context permission granting is appealing, it

still needs users to judge whether an app should gain a

permission or not. We do not claim that it could help

users to make probably more correct allow/deny decisions,

but argue the flexibility in making granting decisions could

benefit users. Actually, we expect this kind of permission

granting decisions can be provided by a trusted party, such as

Google Play or company IT administrators. The power of in-

context permission granting lies in its flexibility in regulating

permission requests in a context-sensitive manner.

X. RELATED WORK

Permission System Extensions. Dr. Android and Mr. Hide

[5] provides finer semantics for coarse-grained permissions by

rewriting privileged API invocations. SEAndroid [6] combines

kernel-level MAC (SELinux) with several middleware MAC

extensions to the Android permissions model, which could

mitigate vulnerabilities in both system and application layer.

FlaskDroid [7] extends kernel-level MAC to bring mandatory

access control for all resources in Linux Kernel and Android

framework. While these works refine or extend current permis-

sion system in some degree, they do not enforce fine-grained

control over the permission use context, which is the focus of

FineDroid.

Permission Granting Extensions. Fratantonio et al. [44]

explored the practicality of the adoption of finer-grained

system for the Internet permission by designing an automated

system to extract all the domains names that an app need

to access, and rewritten the apps to restrict the Internet

access ability. Apparently, this solution is limited and not

generally applicable to other permissions. Aurasium [35]

provides time-of-use permission granting for legacy Android

apps by automatically repackaging applications to attach user-

level sandboxing code. With well-designed DEX sandbox and

native code sandbox, AppCage [42] also supports time-of-use

permission granting, but it does not require application rewrit-

ing and can effectively defeat native code attack. Roesner et al.

[45] introduced access control gadgets (ACGs) which embed

permission-granting semantics in normal user actions. Apex

[43] introduces partial permission granting at installation time

and runtime constraints over permission requests. Although

these extensions improve the original granting mechanism in

some degree, they do not give users the ability to associate

permission granting decisions to the corresponding contexts,

while it is an appealing feature provided by the in-context

permission granting.

Application Interaction Hardening. Felt et al. [12] proposed

IPC inspection to prevent permission re-delegation attacks

by intersecting the permissions of all the applications in the

IPC call chain. However, this strategy is too rigid to allow

intentional permission re-delegations. Quire [13] provides

developers with new interfaces to acquire IPC call chain.

Different from FineDroid, Quire relies on AIDL instrumen-

tation to record the IPC call chain. However, the technique

has several limitations: First, it could only track the IPC call

chain during the invocation of AIDL-specified methods, while

some system interfaces are not specified using AIDL such as

AcvitityManagerService; Second, it is an opt-in option

for developers to use these enhanced API proxies, thus an

attacker application can easily escape.

TrustDroid [14] divides apps into isolated trusted and

untrusted domains, without considering the communication

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

ZHANG et al.: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS 13

problems inside a single domain. XManDroid [15] gener-

ally mitigates application-level privilege escalation attacks by

prohibiting any application communication if the permission

union of the two apps may pose a security risk. Saint

[11] secures the application communication by providing

developers with the ability to specify fine-grained requirements

about the caller and callee. However, it could not improve

the permission enforcement mechanism during the application

communication.

AppSealer [46] is a tool to automatically fix component

hijacking vulnerabilities by actively instrumenting vulnerable

apps. Compared to AppSealer, our technique of fixing permis-

sion leak vulnerabilities does not require heavy application

rewriting which is error-prone and needs redistribution of

patched apps.

Application Internal Isolation. To isolate in-app Ads, a

separate process is introduced by AFrame [18], AdDroid [17]

and AdSplit [16] for running Ads libraries. By intersecting

the permissions that can be used by different code packages

in the same application, Compac [19] also provides fine-

grained permission specification. However, without a system-

atic context tracking system and a generic policy framework,

Compac could not flexibly handle permission requests that

cross multiple code packages. Compared with FineDroid, these

frameworks could not flexibly regulate permission use policies

based on intra-application context.

Context-aware Access Control. Recent works on context-

aware access control model [8]–[11] also regulate access

control rules based on context information. Different from the

notion in FineDroid, these works mostly consider the external

application context such as location, time of the day.

XI. CONCLUSION

This paper presents FineDroid, which brings context-

sensitive permission enforcement to Android. By associating

each permission request with its application context,

FineDroid provides a fine-grained permission control. The

application context in FineDroid covers not only intra-

application context, but also inter-application context. To

automatically track such application context, FineDroid

designs a new seamless context tracking technique. FineDroid

also features a policy framework to flexibly regulate context-

sensitive permission rules. This paper further demonstrates

the effectiveness of FineDroid by creating three security

extensions upon FineDroid for end-users, administrators and

application developers. The performance evaluation shows

that the overhead introduced by FineDroid is minor.

REFERENCES

[1] “Android remains the leader in the smartphone operating system
market,” http://www.idc.com/getdoc.jsp?containerId=prUS24108913.

[2] “Sophos security threat report 2013,” http://www.sophos.com/en-us/se
curity-news-trends/reports/security-threat-report/android-malware.aspx.

[3] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock android smartphones,” in Proc. of NDSS ’12.

[4] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor
customizations on android security,” in Proc. of CCS ’13.

[5] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. android and mr. hide: fine-grained permissions in
android applications,” in Proc. of SPSM ’12.

[6] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing
flexible mac to android,” in Proc. of NDSS ’13.

[7] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies,” in Proc. of USENIX Security ’13.

[8] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: Context-related
policy enforcement for android,” in Proc. of ISC ’10.

[9] K. Singh, “Practical context-aware permission control for hybrid mobile
applications,” in Proc. of RAID ’13.

[10] F. Rohrer, Y. Zhang, L. Chitkushev, and T. Zlateva, “Dr baca: Dynamic
role based access control for android,” in Prof. of ACSAC ’13.

[11] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
rich application-centric security in android,” in Proc. of ACSAC ’09.

[12] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: attacks and defenses,” in Proc. of USENIX Security ’11.

[13] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
lightweight provenance for smart phone operating systems,” in Proc. of

Security ’11.
[14] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and

B. Shastry, “Practical and lightweight domain isolation on android,” in
Proc. of SPSM ’11.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on Android,”
in Proc. of NDSS ’12.

[16] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating
smartphone advertising from applications,” in Proc. of USENIX

Security’12.
[17] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege

separation for applications and advertisers in android,” in Proc. of

AsiaCCS ’12.
[18] X. Zhang, A. Ahlawat, , and W. Du, “Aframe: Isolating advertisements

from mobile applications in android,” in Proc. of ACSAC ’13.
[19] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce

component-level access control in android,” in Proc. of CODASPY ’14.
[20] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting

android apps for component hijacking vulnerabilities,” in Proc. of CCS

’12.
[21] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android

security,” IEEE Security & Privacy, 2009.
[22] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,

“Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications,” in Proc. of NDSS’14.

[23] “Ad vulna: A vulnaggressive (vulnerable & aggressive) adware
threatening millions,” http://www.fireeye.com/blog/technical/2013/10/ad
-vulna-a-vulnaggressive-vulnerable-aggressive-adware-threatening-mil
lions.html.

[24] Y. Zhou and X. Jiang, “Detecting passive content leaks and pollution in
android applications,” in Proc. of NDSS ’13.

[25] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. of OSDI’10.

[26] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting android to protect data
from imperious applications,” in Proc. of CCS ’11.

[27] M. D. Bond and K. S. McKinley, “Probabilistic calling context,” in Proc.

of OOPSLA ’07.
[28] “Android message class,” http://developer.android.com/reference/androi

d/os/Message.html.
[29] “Android handler class,” http://developer.android.com/reference/android/

os/Handler.html.
[30] “Android asynctask class,” http://developer.android.com/reference/andr

oid/os/AsyncTask.html.
[31] M. Backes, S. Bugiel, and S. Gerling, “Scippa: System-centric ipc

provenance on android.”
[32] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and

B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in Proc. of CCS ’13.

[33] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installng applications on
an Android smartphone,” in Proc. of USEC ’12.

[34] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
Proc. of SOUPS ’12.

[35] R. Xu, H. Saıdi, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in Proc. of USENIX Security’12.

[36] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proc. of MobiSys ’11.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2581304, IEEE
Transactions on Information Forensics and Security

14 ZHANG, YANG, GU, CHEN: RETHINKING PERMISSION ENFORCEMENT MECHANISM ON MOBILE SYSTEMS

[37] “Proguard,” http://developer.android.com/tools/help/proguard.html.
[38] “Documentation for incorporating flurry android sdk,” https://develope

r.yahoo.com/flurry/docs/publisher/code/android/.
[39] “Send sms capability leak in android open source project,” http://www.

csc.ncsu.edu/faculty/jiang/send sms leak.html.
[40] “Smishing vulnerability in multiple android platforms,” http://www.csc.

ncsu.edu/faculty/jiang/smishing.html.
[41] M. Sun and G. Tan, “Nativeguard: Protecting android applications from

third-party native libraries,” in Proc. of WiSec ’14.
[42] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang, “Hybrid user-level

sandboxing of third-party android apps,” in Proc. of AsiaCCS ’15.
[43] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending android permis-

sion model and enforcement with user-defined runtime constraints,” in
Proc. of AsiaCCS ’10.

[44] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel,
E. Kirda, and G. Vigna, “On the Security and Engineering Implications
of Finer-Grained Access Controls for Android Developers and Users,”
in Proc. of DIMVA ’15.

[45] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. Wang, and C. Cowan,
“User-driven access control: Rethinking permission granting in modern
operating systems,” in Proc. of SP ’12.

[46] M. Zhang and H. Yin, “AppSealer: Automatic Generation of
Vulnerability-Specific Patches for Preventing Component Hijacking
Attacks in Android Applications,” in Proc. of NDSS ’14.

Yuan Zhang in an Assistant Professor in Software
School, Fudan University. He received his Ph.D.
degree from Fudan University in 2014 and B.Eng.
degree from Nanjing University in 2009. His re-
search interests include system security and compiler
techniques.

Min Yang is a Professor in Software School, Fudan
University. He received the B.Sc. and Ph.D degrees
in computer science from Fudan University in 2001
and 2006, respectively. His research interests are in
system software and security.

Guofei Gu is an Associate Professor in the De-
partment of Computer Science & Engineering at
Texas A&M University (TAMU). He received his
Ph.D. degree in Computer Science from the College
of Computing, Georgia Institute of Technology. His
research interests are in network and system secu-
rity, social web security, cloud and software-defined
networking (SDN/OpenFlow) security.

Hao Chen is an Associate Professor in the De-
partment of Computer Science at the University of
California, Davis. He received the BS and MS de-
grees from Southeast University and the PhD degree
from the Computer Science Division, University
of California, Berkeley. His primary interests are
computer security and mobile computing.

