
Detecting Third-Party Libraries in Android
Applications with High Precision and Recall

Yuan Zhang∗§, Jiarun Dai∗§, Xiaohan Zhang∗§, Sirong Huang∗§, Zhemin Yang∗§, Min Yang∗†‡§, and Hao Chen¶
∗School of Computer Science, Fudan University, Shanghai, China

†Shanghai Insitute of Intelligent Electroics & Systems, Shanghai, China
‡Shanghai Institute for Advanced Communication and Data Science, Shanghai, China

§Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
¶University of California, Davis, CA, USA

{yuanxzhang, jrdai14, xh zhang, huangsr15, yangzhemin, m yang}@fudan.edu.cn, chen@ucdavis.edu

Abstract—Third-party libraries are widely used in Android
applications to ease development and enhance functionalities.
However, the incorporated libraries also bring new security &
privacy issues to the host application, and blur the accounting
between application code and library code. Under this situation,
a precise and reliable library detector is highly desirable. In fact,
library code may be customized by developers during integration
and dead library code may be eliminated by code obfuscators
during application build process. However, existing research on
library detection has not gracefully handled these problems, thus
facing severe limitations in practice.

In this paper, we propose LIBPECKER, an obfuscation-
resilient, highly precise and reliable library detector for Android
applications. LIBPECKER adopts signature matching to give a
similarity score between a given library and an application. By
fully utilizing the internal class dependencies inside a library,
LIBPECKER generates a strict signature for each class. To
tolerate library code customization and elimination as much
as possible, LIBPECKER introduces adaptive class similarity
threshold and weighted class similarity score when calculating
library similarity. To quantitatively evaluate the precision and
the recall of LIBPECKER, we perform the first such experiment
(to the best of our knowledge) with a large number of libraries
and applications. Results show that LIBPECKER significantly
outperforms the state-of-the-art tools in both recall and precision
(91% and 98.1% respectively).

Index Terms—Library Detection, Code Similarity, Obfuscation
Resilience

I. INTRODUCTION

Third-party libraries are widely used by Android applica-
tion (app for short) developers to build new functionalities,
integrate external services, and the most important, reduce
the time to release an app. App developers can find a lot of
useful third-party libraries from popular open-source project
hosting services (such as GitHub [14], BitBucket [6]) or online
package repositories (such as Maven [19]). Besides, it is quite
convenient for developers to incorporate libraries, with the
built-in support of Maven/Gradle in most Android Integrated
Development Environments (IDE). Sometimes, libraries need
to be further tailored by developers to fit the app, e.g.
adjusting the appearance of some UI widgets. In this scenario,
developers usually download the source code of a library
from project hosting service or online package repository and
customize the source code directly.

The community of library developing, publishing, and
hosting greatly eases the development of Android applications.
However, every coin comes with two sides. The incorpo-
rated third-party libraries are potentially security and privacy
hazards for end-users. For example, an advertisement library
named Taomike SDK, which is used by more than 63,000
apps, has been reported to spy on user text messages [26].
Besides, even high-profile libraries such as Baidu SDK [4],
Facebook SDK [13] and DropboxSDK [17], have been dis-
covered with severe vulnerabilities which could be exploited
by attackers to remotely control victim’s device, steal sensitive
information and inject malicious payload.

The above problems call into examining applications
to find if they incorporated a suspicious library (such as
a malicious or vulnerable SDK), which is also known
as the problem of finding the provenance of a software
entity [33]. To recognize third-party libraries, existing
research (such as application clone detection [28], [31],
[32], [35], [54], [60], [61], etc.) relies on a list of package
names of popular third-party libraries and naively utilizes
package name matching. Obviously, this approach is
not reliable since package names of the libraries may
be automatically transformed by obfuscated tools (such
as ProGuard [20]) or manually modified by application
developers (see our evaluations in Section IV-B). Besides,
the package names of different libraries may conflict (e.g.
com.squareup.retrofit:converter-gson [21] and
com.squareup.retrofit:converter-jackson [22]
share a same package name of retrofit2.converter).
Thus, this simple approach can not reliably and precisely
recognize third-party libraries.

Recent works on library detection adopt two approaches.
The first approach (such as LibD [36] and LibRadar [40])
mines shared code features in a large number of applications
and extracts similar code clusters as library instances. How-
ever, this approach requires a large set of applications as input
and is limited to detect libraries that are incorporated by many
applications, thus can not be used to check the presence of an
arbitrary library in a single application.

To check whether a given library is included by an applica-
tion, LibScout [27] proposed a new approach. By constructing

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

141

obfuscation-resilient class profiles (i.e. fingerprints) for both
libraries and applications, LibScout utilizes high-level class or-
ganization information in profile matching to give a similarity
score between a given library and an application. Although
LibScout got some resilience against obfuscation, we found
that it is still problematic when applied to large-scale library
detection due to the following limitations.

Too Relaxed Class Profile. During obfuscation, all names
except the references to system libraries may be refactored.
To be obfuscation resilient, LibScout extracts relaxed class
profile, which is constructed by hashing all method descriptors
of the class. The relaxed class profile increases the possibility
of conflicts between two distinct classes, especially when the
class has few number of methods. It would not be surprising
when LibScout reports a lot of false positives when applied to
large-scale library detection.

Developer Customization. It is quite common for developers
to customize a third-party library, especially when the library
can not be directly applied to an application but still constructs
an appropriate foundation for further improvements. For exam-
ple, UI widget libraries are frequently adjusted by application
developers to fit the user interface and interaction mechanism
of the application. During the customization, the class profiles
of the library may be modified by either removing some
members or adding new members. Since LibScout needs to
match the exact same class profile, it is hard to effectively
recognize the customized libraries inside an app.

Dead Code Elimination. Library integration is so convenient
that developers usually incorporate a lot of libraries into an
app, while actually not all functionalities of a library are
used by the app. To reduce the executable size, developers
commonly use code obfuscation tools such as ProGuard [20] to
safely eliminate dead library code. The code elimination may
occur at both the class level and the field/method-level [18].
Similar to the effect of code customizations, code elimination
can also significantly limit the effectiveness of LibScout.

Our work. All the above problems are quite practical
and non-trivial to address any of them. This paper proposes
LIBPECKER, an obfuscation-resilient, highly precise and reli-
able library detector for Android applications. Different from
the relaxed class profile in LibScout, LIBPECKER exploits the
class dependencies inside a library to construct strict class
signatures. To increase the efficiency of class dependency
comparison, LIBPECKER employs a signature generation al-
gorithm to encode class dependencies into a signature for
each class and each class member. Besides, only obfuscation-
resilient information is preserved in the signature. Comparing
with the relaxed class profile in LibScout, the proposed class
dependency signature is harder to conflict.

Furthermore, to deal with code customization and code
elimination, LIBPECKER applies fuzzy class matching instead
of exact class matching. However, simply adopting fuzzy
class matching would increase the possibility of matching two
different classes. Thus, LIBPECKER further proposes adaptive
class similarity threshold and weighted class similarity. The
key idea is that classes with more contributions in making

a library different to another should have more significant
impact in library matching. With these kindly-crafted library
matching techniques, LIBPECKER can effectively peck em-
bedded libraries out of an application even when customiza-
tion and dead code elimination exist. Note that this does
not mean LIBPECKER can still detect libraries whose most
functionalities are not present in an app. Actually, it is hard
for a code-level analyzer to detect libraries when most library
code has been removed or customized, without sacrificing
precision. The major contribution of LIBPECKER is that it can
still recognize a library even after a certain amount of code
modification is applied while existing works cannot.

To quantitatively evaluate both precision and recall of
LIBPECKER, this paper performs the first such experiment
(to the best of our knowledge) with a large number of
libraries and applications. We collected more than 10,000 li-
braries and 20,000 popular market applications. We compared
LIBPECKER with the most relevant work LibScout, and the
results show that the recall and precision of LIBPECKER is
91% and 98.1% respectively, while the recall and precision
of LibScout is 69.5% and 27.7% respectively. By exploiting
the internal dependencies of a library and relaxing the class
matching algorithm, LIBPECKER significantly improves the
state-of-the-art library detection techniques in terms of both
precision and recall. Our evaluation also confirms the doubt
about the reliability of using package name matching to
recognize libraries.

Contributions. We make the following major contributions:
1) New idea in profiling a library by exploiting the internal

dependencies inside a library which is not only critical to
improve the precision of library detection, but also resilient
to common obfuscation techniques.

2) New techniques in performing library matching which are
more resilient to code customization and code elimination. Our
key idea is to introduce fuzzy class matching instead of exact
class matching, and assign different weights to each library
class according to their contributions to the library. These
carefully-designed techniques boost the recall and precision
of library detection.

3) New results on quantitively measuring the recall and
precision of library detection with a large-scale data set. The
evaluation shows LIBPECKER significantly outperforms state-
of-the-art tool in not only recall but also precision.

II. APPROACH

This paper considers the problem of library detection in a
more realistic scenario for application developers to incorpo-
rate third-party libraries, that is code customization and code
elimination can occur at both class-level and class-member-
level. In an app, there is no clear boundary between app code
and library code, making library detection quite challenging.
Our approach utilizes class-level similarity matching to test
if the main functionalities of a library are still present in an
application. It takes an exact copy of a given library and an
app as inputs, and calculates a similarity score (ranging from 0
to 1) between the library and the application. If the similarity

142

score exceeds a threshold, LIBPECKER reports the library is
present in the application. Overall, our detection strategy has
the following features:

1) Our approach does not rely on the names of classes,
methods and fields, nor the implementation of methods, thus
is resilient to common obfuscation techniques, including API
hiding [9], [11], control-flow randomization [2], [7], identifier
renaming [2], [7], [9], [11], [20], [24], string encryption [2],
[7], [9], [11], [24]. Other offensive techniques, such as class
encryption [9], [11], virtualization-based protection [59] are
not considered and have already been addressed by other
orthogonal research works [30], [44], [45], [48].

2) Our approach exploits the class dependencies inside
libraries to improve the precision of class similarity matching.
Our insight is that although class names may be changed
by obfuscators, the dependencies are preserved. For example,
suppose class A is a subclass of class B, when the names are
obfuscated, class A’ (obfuscated class name of A in the app) is
still a subclass of class B’ (obfuscated class name of B in the
app). The dependency information among classes would help
to improve the precision of recognizing two similar classes.

3) Our approach does not require two classes exactly
matched. Instead, it would give a similarity score for every
class pair. This feature is quite important to tolerate code
customization and code elimination.

4) Our approach relies on package hierarchy to organize
the process of library matching, thus we assume the package
hierarchy information of a library is preserved during obfusca-
tion. In fact, this assumption is quite weak, since obfuscators
such as ProGuard do not manipulate package hierarchy by
default [18]. Meanwhile, our tool is indeed evaluated to be
quite effective in detecting libraries.

Approach Overview. As depicted in Figure 1, our approach
consists of two major parts: a) signature generation for all
library classes and application classes; b) library matching
process to give a similarity score between a given library and
a given application based on the class signatures. The detailed
approach is divided into three steps which are described in the
following. Specifically, Section II-A introduces the concept
of the dependency-based class signature and presents the
algorithm to generate class signatures, Section II-B describes
the adaptive class matching technique which performs fuzzy
class matching between a library class and an application class
with adaptive class similarity threshold and unequal weights,
and at last Section II-C utilizes package hierarchy information
to complete the whole library matching process.

A. Dependency-based Class Signature

During library matching, if two distinct classes are matched
as a pair, we label this matching as a conflict. Obviously,
conflict matching would degrade the precision of library
detection. As described in Section I, too relaxed class profile
(such as used in LibScout) would cause small classes to
conflict quite easily. To address this problem, we utilize
class dependency information among classes to reduce the
possibility of class profile conflict.

Class Dependencies. There are many kinds of class de-
pendencies in Android apps. To be resilient to common
obfuscation techniques, our approach only utilizes a reduced
set of class dependencies. To define class dependencies, we
designate application class acA, acB as the matched classes
of library class lcA, lcB respectively. Specifically, we consider
three kinds of class dependency.

1) Class-inheritance Dependency. Class inheritance rela-
tionship should be preserved during obfuscation, otherwise
the type system of Java would be broken. Thus, if lcA is a
super class of lcB , acA is also a super class of acB . Note
that we do not consider interface dependencies, because code
obfuscators such as ProGuard may remove interfaces of a class
when performing dead code elimination.

2) Field-in Dependency. If lcA has a field f with type of
lcB , we call lcA is field-in dependent on lcB . After obfuscation
or customization, if field f is kept in acA, acA should be also
field-in dependent on acB .

3) Method-prototype Dependency. If lcA has a method m
whose prototype contains lcB , we call lcA is method-prototype
dependent on lcB . We consider two kinds of method-prototype
dependencies: 1) lcB is the type of return type of m; 2)
lcB is the type of a parameter of m. After obfuscation or
customization, if method m is kept in acA, acA should be
also method-prototype dependent on acB .

Class Dependency Signature Generation. Class depen-
dencies connect separate classes into a graph. However,
directly utilizing class dependency graph in library matching is
quite inefficient, due to the computational complexity of graph
matching. To increase the efficiency, we devise an algorithm
to encode class dependency graph into signatures.

Specifically, for each class dependency, LIBPECKER gener-
ates a dedicated class dependency signature (CDS) to encode
the dependency information. For example, if class A depends
on class B, the dependency signature is calculated by hashing
a composed string from the following three elements.

• Class Type of B. Specifically, we consider three types
of class B: system classes, classes in the same package,
classes in other packages. Note that primitive types are
treated as system classes in our approach. We use an
integer to represent each type in the signature.

• Array Dimension of B. If class B is not an array class,
the dimension is 0.

• Class Name of B. If class B is a non-system class, its
name may be obfuscated, thus we could not use its name
in the dependency signature. Instead, we use a constant
value (such as X) to represent the class name in the
signature. If B is a system class, its names would not
be obfuscated and can be directly used in the signature.

Note that we only encode direct class dependencies into
the class dependency signature. For example, if class A
depends on class B and class B depends on class C, in the
class dependency signature of class A, we only consider its
dependencies on class B. In fact, the dependency information
between class B and class C is encoded in the class signature
of class B.

143

Adaptive Class
Matching

Library

Application

b) Library Matching

Package Hierarchy
Matching

Class Match Map
class A’class A

class B class B’

class C class C’

Weighted
Class Similarity

Similarity
Score

Adaptive Class
Similarity Threshold

Fuzzing Class
Matching

a) Signature Generation

class
signatureclass

signatureclass
signature

class
signature

class
signature

class
signature

class
signature

Fig. 1. Approach Overview. There are three steps in our approach. First, we generate dependency-based class signatures (see Section II-A) for all classes.
Second, we introduce adaptive class matching (see Section II-B) to score similarity of two classes. At last, we perform package hierarchy matching (see
Section II-C) to organize the whole library matching process.

Class Signature Generation. In LIBPECKER, each class is
assigned with a signature, which includes all the dependency
information about the class. Figure 2 depicts the class signa-
ture generation process. Class signature is calculated from a
basic signature and all its member signatures (field signatures
and method signatures). During signature generation, we
remove all the bridge and synthetic methods that are
generated by compiler, and sort basic signatures, method
signatures and field signatures to compose them iteratively into
a string. Finally, class signature is generated as the hash value
of the composed string. The generation algorithms for basic
signature, field signature and method signature are described
as follows.

Class Signature

Basic
Signature

Method 1
Signature

Method X
Signature

Field 1
Signature

Field Y
Signature

Class-
inheritance

CDS

Access
Flags

Field-in
CDS

Access
Flags

Method-
prototype

CDS

Access
Flags ..

Method-
prototype

CDS

..

* CDS denotes Class Dependency Signature

Class
Dependency

Signature

Class
Type

Array
Dimension

Class
Name

Fig. 2. Workflow of Class Signature Generation.

Basic Signature. It represents basic class information,
including access flags of the class and the class-
inheritance dependency signature. Since the access flags of
a class/field/method may be manipulated during obfuscation,
LIBPECKER only considers several flags that are required by
Java runtime (thus will not be manipulated by obfuscators)
such as STATIC flag.

Field Signature. It is calculated as a hash of the access flags
of the field and the field-in class dependency signature.

Method Signature. It is calculated as a hash string of the
access flags of the method and all the method-prototype class
dependency signatures.

If two classes have the same signature, they are treated as
the same class. However, during code customization or code
elimination, some class members may be removed or modified,
leading to different class signatures. To handle this problem,

the next section will describe our adaptive class matching
algorithm in detail.

B. Adaptive Class Matching

LIBPECKER considers a more realistic library integration
scenario, where libraries may be customized and dead library
code may be eliminated by obfuscators. If a library detector
does not consider this scenario, it is hard to recall as many
embedded libraries as possible. To address this problem,
LIBPECKER proposes fuzzy class matching, which does not
give a binary class matching indicator, that is either same
or not same. Instead, LIBPECKER gives a similarity score
between two classes.

Fuzzy Class Similarity. Fuzzy class matching does not
require two classes to be exactly the same. When two classes
have unequal signatures, fuzzy class matching compares their
basic signatures. If they still have different basic signatures,
they are marked as different classes. In this case, a similarity
score of 0 is reported. When they share the same basic
signature, LIBPECKER further examines their class member
signatures (including method signatures and field signatures).

During code customization and code elimination, new class
members may be added to a library class and existing class
members of a library class may also be removed or modified.
The similarity score between a library class and an application
class reflects to what degree are class members in the library
class preserved in the application class. Thus, we use Jaccard
similarity to define class similarity.

sim clz(lc, ac) =
{lc member signatures} ∩ {ac member signatures}
{lc member signatures} ∪ {ac member signatures}

Adaptive Class Similarity Threshold. Fuzzy class match-
ing helps to tolerate code customization and code elimination,
but it also causes two distinct classes having a non-zero
similarity score. To clearly differentiate similar classes from
distinct classes, LIBPECKER sets a similarity threshold, and
assigns zero similarity score to two classes whose similarity
is below the threshold.

Instead of a fixed similarity threshold, LIBPECKER designs
adaptive class similarity threshold, that is to set varying
class similarity threshold for each class according to its class

144

member count. The insight is that classes with more members
should be in favor, because they support more functionalities
of a library, while a fixed class similarity threshold may bias
classes with fewer members. Thus, higher threshold should be
given to classes with fewer class members. However, it is hard
to accurately figure out the relationship between the count of
class members and the threshold. Details on how we set the
threshold function are described in Section IV.

Weighted Class Similarity. When calculating the library
similarity, existing works on library detection mainly assign
equal weight to each class in a library. Actually, classes with
fewer members are easier to match than those have many
members. Thus, in the scenario of equal class weight, libraries
mainly consist of small classes would easy to match with
applications which actually do no contain them, leading to
high false positive rate.

We believe that classes in a library have unequal contri-
butions to the library in making a library differ to another.
Thus, more weights need to be given to classes which make a
library more significantly differ to another. Intuitively, classes
with more methods should have heavier weights in library
matching, because functionalities of a library is implemented
in methods. Similarly, classes with more dependencies also
need more weights because they reflect the internal connectiv-
ity of a library which is a significant feature to differ libraries.
Specifically, for a library class lc, its weights is calculated
with the following function. Note that function bbCount
counts the amount of basic blocks in a method and function
depClassCount counts how many classes a class depends.

weight(lc) = bbCount(all methods in lc) + depClassCount(lc)

Class weights are pre-computed for the libraries before
library detection, and the weighted similarities reflect the
significance of classes in differentiating libraries. In the next
section, we will detail our library matching algorithm by
combining class similarities and class weights.

C. Package Hierarchy Matching
A simple way to calculate the library similarity with an

application is to sum up the maximum similarity score of every
library class with the application. However, two library classes
may be matched to a same application class at their maximum
similarity scores. To achieve global maximum similarity, we
need to choose the matched class pair which leads to a
higher global similarity score. Considering there are a lot of
classes in an application, it is quite inefficient to enumerate
all possible class-level matching pairs to calculate global
maximum similarity. Instead, we adopt package-level match-
ing to calculate library similarity with a given application.
Specifically, LIBPECKER transforms the problem of similarity
calculation between a given library and an application to
the problem of how to map library packages to application
packages with global maximum similarity. The problem is
solved in the following four steps.

1) We calculate the similarity scores between all library
packages and all application packages;

2) For each library package, we select application package
candidates whose similarity scores exceed a threshold;

3) We calculate the optimal library similarity score by
applying a greedy algorithm to map each library package
with its max-similarity application package. If the optimal
library similarity score does not exceed the threshold, the
whole library matching process quits immediately and a zero
similarity score is returned.

4) Finally, we start the package enumeration process to
achieve the maximum library similarity score. We prefer to
map a library package to an application package candidate
with the same name. For library packages with no same-
name application package candidate, we enumerate all possible
candidates under the guidance of package hierarchy, and
select the package mapping which maximizes the similarity
for whole library. The detailed enumeration process will be
explained later.

Package Similarity Score. The similarity score between
a library package and an application package is calculated
from the similarity scores of classes in the library package.
Considering that classes in a library have different weights,
we sort all library classes in descending weights and map
library classes with the highest weight first. To map a library
class, we calculate the similarity scores between it and every
unmapped class in the application package and choose the
application class with the highest similarity score. After class-
level mapping between two packages, the similarity score
between library package (lp) and application package (ap) is
calculated using the following function, where lci is the i-th
class in lp, and function map(lci, ap) returns the mapped
class for lci in ap.

sim pkg(lp, ap) =

∑n
lci∈lp sim clz(lci, map(lci, ap)) ∗ weight(lci)∑n

lci∈lp weight(lci)

Library Similarity Score. Based on the class mapping
constructed during package matching, the overall similarity
between a given library (lib) and an application (app) is
calculated as follows.

sim(lib, app) =

∑n
lci∈lib sim clz(lci, map(lci, app)) ∗ weight(lci)∑n

lci∈lib weight(lci)

Package Hierarchy Guided Enumeration. For library
packages with more than one application package candidate,
we need to enumerate all possible package mappings between
the library package and the application package candidates.
For each enumerated package mapping, we calculate the
overall library similarity score, and select the mapping with
the highest library similarity score.

During enumeration, we utilize package hierarchy
information in the library to prune inappropriate
package mappings. For example, if a library package
okhttp3.internal.connection has already been
mapped to an application package okhttp3.b.c, we
should not further allow mapping from library package
okhttp3.internal to application package okhttp3.d.

145

Specifically, for any two library packages lp1 and lp2,
we denote their mapped application packages as ap1 and
ap2 respectively. We apply Algorithm 1 to check package
hierarchy compliance, and discard violated package mappings.

Algorithm 1 Package Hierarchy Check Algorithm
Input: lp1, lp2, ap1, ap2: Package Name
Output: violated: boolean

1: //Step 1: test parent relationship
2: if lp1 is parent of lp2 & ap1 is not parent of ap2 then
3: return false
4: end if
5:
6: //Step 2: test child relationship
7: if lp1 is child of lp2 & ap1 is not child of ap2 then
8: return false
9: end if

10:
11: //Step 3: test sibling relationship
12: if lp1 is sibling with lp2 & ap1 is not sibling with ap2 then
13: return false
14: end if
15:
16: //Step 4: test ancestor inheritance relationship
17: //common_pkg() returns longest common parent package
18: lpcommon = common pkg(lp1, lp2)
19: apcommon = common pkg(ap1, ap2)
20: //distance() returns the delta-depth of two packages
21: if distance(lpcommon, lp1) != distance(apcommon, ap1) then
22: return false
23: end if
24: if distance(lpcommon, lp2) != distance(apcommon, ap2) then
25: return false
26: end if
27:
28: // pass all tests, no violation detected
29: return true

III. DATA SET

To evaluate the effectiveness of LIBPECKER, we need to
collect a large number of libraries and applications. This
section describes how we setup a database of third-party
libraries and applications, and presents some basic statistics
of our data set.

A. Library Collection

LIBPECKER performs code-level similarity analysis to de-
tect third-party libraries in applications, thus it requires the
code of the library to perform analysis. Usually, application
developers use Maven/Gradle to incorporate Maven libraries.
Thus, we decide to base our data set of third-party libraries
on top of Maven repositories. However, since there are
quite a large volume of libraries in Maven repositories, and
many of them only target Java applications (such as JavaEE
applications), we need to get a list of libraries that are indeed
used in Android applications.

We use two ways to collect a Android library list. First, we
write a crawler to download all applications from F-Droid [12]
(an open-source application market for Android) with source
code. We parse all the configuration files in these application

projects to find the GAV (groupName, artifactId, and version)
pairs of the third-party libraries used in these projects. Note
that in Maven/Gradle, a GAV pair can uniquely identify a
library. Second, we find two webpages (Top 100 Android
Libraries [15] and Awesome Android [3]) which collect
top popular libraries in the Android developer community.
Similarly, we manually collect the groupName and artifactId
for each library in these pages.

For libraries on the list, to increase the possibility of
matching them with an application, we need to collect as
many versions of them as possible. Thus, we ignore the version
value in a GAV pair and use a crawler to list all the versions
of a library in the Maven repository. For each version of
a library, our crawler fetches the JAR file from the Maven
Central Repository. In all, we successfully collect 758 libraries
with 11,620 versions.

Library Filtering. In the library database, we found that
some libraries are mainly incorporated by developers for their
resource files (such as layout files, icon files) to ease UI
development, and contain very few code in their JAR files.
This kind of library is difficult for code-level analyzers (such
as LIBPECKER, LibScout) to detect. A better way to detect this
kind of libraries may need to utilize UI features as proposed
by Fangfang et al. [56]. Some other libraries mainly provide
annotation classes which may be removed after application
build process, thus this kind of libraries are out of scope for
our tool to detect. Thus, we filter out those libraries that have
no more than 2 methods per class and with no more than
1 basic block per method. Finally, we remove 32 libraries
from the database, that is 4.2% of the whole data set. After
library filtering, there are still 726 libraries in the data set
with 11,017 versions in all. On average, there are 16 versions
for each library. Since Android applications are assembled in
DEX code (which is the binary format of Android applications
and libraries) [8], we write a script to translate all downloaded
JAR files into DEX files.

B. Application Collection

To construct a representative application data set, we write
crawlers to collect top popular applications from Google Play
market and three third-party application markets in China. As
Table I shows, we totally collect 20,996 applications from 4
representative application markets. After removing redundant
applications with same hash value, there are still 20,315
applications in our data set.

TABLE I
POPULAR APPLICATIONS COLLECTED FROM GOOGLE PLAY AND
MAINSTREAM THIRD-PARTY APPLICATION MARKETS IN CHINA.

Market Name # of Top Apps Date

Google Play [16] 8,399 2017/02/15
Baidu Market [5] 2,434 2017/03/22
360 Market [1] 6,421 2017/03/22
Tencent Market [25] 3,742 2017/03/22

146

IV. EVALUATION

This section evaluates the performance of LIBPECKER
from both the precision and the recall. Our experiments are
based upon more than 10,000 libraries and more than 20,000
applications, which is a quite large data set for the evaluation.
To the best of our knowledge, our paper is the first to give
a quantitive measurement against the precision and recall of
library detectors.

Implementation. LIBPECKER is implemented within about
8K lines of Java code. LIBPECKER utilizes dexlib2 [10] to
parse DEX files, extracts the inheritance and dependency in-
formation, and implements a simple control-flow-graph (CFG)
analysis module to count basic blocks of a method. Since
LibScout is the state-of-the-art and the only tool we know
for detecting the existence of a reference third-party library,
we choose LibScout to make comparison with LIBPECKER.
Recently, the authors of LibScout have released its source
code [23]. In our evaluation, LibScout is built from its commit
on Sept 4, 2017 (commit hash: 51696c55).

Setting Thresholds. Our approach needs to define sev-
eral thresholds. For package similarity threshold and library
similarity threshold, we use the same setting as LibScout,
which are 0.5 and 0.6 respectively. To set the adaptive class
similarity threshold, we select 25 true positive application-
library pairs and 25 true negative application-library pairs from
our data sets with manual analysis, and adjust the threshold
to maximize the performance of LIBPECKER on these pairs.
Note that these cases are carefully selected to not overlap with
the cases used in the evaluation. Specifically, we set threshold
for classes with less than 5 members to 1, for classes with
members between 5 and 10 to 0.9, for classes with members
between 10 and 15 to 0.8, for classes with members between
15 and 20 to 0.7, for classes with members between 20 and
25 to 0.6, and for classes with more than 25 members to 0.5.
Note that we do not claim the thresholds are our contributions.
Certainly, there are better ways to determine these thresholds
which need further investigation and study (see Section V).

A. Recall

First, we want to measure the ability of LIBPECKER
in pecking out libraries from applications. To answer this
question, we need to construct ground truth of true positive
library-application pairs (i.e. a library is indeed included by
an application). Obviously, it is not feasible to manually check
existence of a library in an application for the whole data set.
Meanwhile, it may be unconvincing to limit the scale of the
experiment to few applications and libraries.

Ground Truth Selection. Thus, we need a way to auto-
matically construct a large base of ground truth. Our insight
is that not all package names are obfuscated during application
build process. However, it is unreliable to simply utilize
package name patching for ground truth construction. Hence,
we propose two rules to refine package name matching process
to select true positive library-application pairs.

• Rule 1. If package names of a library are all covered by
another library, we can not reliably determine whether

this library is present by simply checking package names.
Thus, we need to exclude this library from ground truth.

• Rule 2. Only when an application contains all the package
names of a library, we flag this application-library pair
as true positive.

By applying the above rules in our data set, we successfully
constructed a ground truth base of 33,964 application-library
pairs, covering 9,834 applications and 310 libraries. On aver-
age, each application includes 3.45 libraries. Since our ground
truth is constructed by selecting only true positive pairs, both
tools would have no false positive in this experiment. Recall
is calculated as follows.

recall =
of detected pairs

of pairs in ground truth

Table II presents the recall for each tool. From Table II we
can find that although LIBPECKER places more constraints
(such as checking class dependencies) on matching classes,
the recall of LIBPECKER is significantly better than LibScout.
The better recall is mainly attributed to the adaptive class
matching adopted by LIBPECKER which better tolerates code
customization and code elimination.

TABLE II
RECALL OF LIBPECKER AND LibScout.

Tool Detected Pairs Ground Truth Recall

LibScout 23,598 33,964 69.5%
LibPecker 30,924 33,964 91.0%

False Negative Breakdown. Since LIBPECKER fails to
detect 3,040 application-library pairs in the ground truth, we
randomly select 50 pairs and perform manual examination to
scrutinize why LIBPECKER does not flag them as positive
pairs. Finally, we find 4 kinds of false negatives: 1) for
19 pairs, we find the libraries are dramatically modified by
developers to the extent that most class signatures generated
by LIBPECKER are broken; 2) for 21 pairs, we find very
few functions of the libraries are used by developers, thus
most code in these libraries are useless and aggressively
eliminated by code obfuscators such as ProGuard; 3) for
7 pairs, we also find no matching library in our database
for the application with same package name, this may be
caused by package name conflicts between the library and
the application or the missing of a special version of the
library in our database; 4) for 3 pairs, several classes in the
library are moved to other packages in the application, thus
LIBPECKER can not effectively recognize these libraries. We
argue that false negatives are quite acceptable for LIBPECKER,
especially when libraries are modified beyond recognition.
There is always a balance between false negative and false
positive. Although bearing some false negatives, LIBPECKER
still successfully achieves a high recall (91%) and notably
proceeds existing tools.

147

B. Precision

Since we could not manually validate all the detection
results in our data set, we randomly select 12,000 application-
library pairs to evaluate the precision of LIBPECKER. Preci-
sion is calculated using the following function.

precision =
of true positive pairs

of detected pairs

Overall Result. In all, LibScout reported 365 positive
application-library pairs, while LIBPECKER reported 155 posi-
tive pairs. By manually checking the correctness of these pairs,
the precisions for both tools are presented in Table III. We
can find that the precision of LIBPECKER is also significantly
better than that of LibScout.

TABLE III
PRECISON OF LIBPECKER AND LibScout.

Tool Detected Pairs True Positive Precision

LibScout 365 101 27.7%
LibPecker 155 152 98.1%

Figure 3 depicts the coverage of the reported positive results
from LIBPECKER and LibScout. As this figure shows, there
are 96 true positives detected by both tools, while LIBPECKER
detected 56 new true positives. Besides, from the perspective
of false positive, most false positives incurred by LibScout are
excluded by LIBPECKER. Overall, LIBPECKER achieves quite
high precision in detecting third-party libraries. We further
examined the results to answer the following questions.

LibPecker

(a) True Positive Set (whole size: 157)

965 56

LibScout

1 2

(b) False Positive Set (whole size: 266)

263

LibPeckerLibScout

Fig. 3. All the true positives and false positives in LIBPECKER and LibScout.

RQ1: Why do LibScout have so many false positives?
After manually checking the 263 false positives only reported
by LibScout, we found most false positive pairs are related to
small libraries which are mostly composed of classes with few
methods. Since LibScout assigns equal weight to every library
class in calculating whole library similarity, libraries with
many small classes are quite easy to be mistakenly flagged as
positive cases. However, this problem has quite limited impact
on LIBPECKER, owing to its adaptive weighted class similarity
design in calculating library similarity.

RQ2: Why do LIBPECKER miss 5 true positives that
are detected by LibScout? We found that for the 5 true
positives, libraries have been heavily modified to the extent

that LIBPECKER can not recognize them. An interesting
finding is that although LibScout has successfully reported the
5 pairs, it mistakenly matches the library classes with incorrect
application classes due to the conflict of class profiles.

RQ3: How about using package name matching in
detecting libraries? For the 152 true positive pairs detected
by LIBPECKER, we wrote a script to test how many pairs can
be recognized by simple package name matching. Finally, we
found only 63 application-library pairs can be recognized by
simple package name matching. This result confirms the doubt
about the reliability of using a list of library package names
to recognize third-party libraries. Obviously, our work would
benefit existing works [28], [34], [52], [53], [55] which rely
on simple package name matching to recognize third-party
libraries.

C. Library Prevalence

We also measured the prevalence of third-party libraries
in our data set. On average, our tool detects 8.6 distinct
libraries per app. The app com.wallstreetcn.news
(hash:18b4224a3da6f668c74a45d5fe456936), a news app
from Tencent Market is recognized to contain the most
libraries (59). For each recognized library, we also counted
how many applications incorporate this library. We found
that libraries with basic functionalities (excluding Android
Support Libraries) have been recognized in most applications,
such as com.jakewharton:disklrucache (for image
cache management), com.google.code.gson:gson
(for JSON support in Java), etc. There are also some
powerful libraries detected in quite few applications,
because these libraries are mostly incorporated to implement
very specific functionalities, such as jcifs:jcifs (a
Java implementation of CIFS/SMB networking protocol),
org:jaudiotagger (for editing tag information in
audio files), org.apache.commons:commons-csv (for
manipulating CSV files), etc.

V. DISCUSSION

To clarify main contributions we want to claim in this paper,
we discuss the following topics.

Comparison with LibScout. LIBPECKER detects third-
party libraries by checking the the presence of reference
libraries in a given application. This workflow is similar
to LibScout which is the most relevant work. However,
LIBPECKER differs from LibScout significantly in its detection
techniques. First, our tool fully exploits the internal class
dependencies to fingerprint a library, while LibScout failed to
take advantage of this dependency. Second, to calculate class
similarity, LIBPECKER employs partial class matching which
better tolerates the common practice of code customization and
code elimination during library incorporation, while LibScout
requires whole class matching. Third, since different classes
of a library contribute unequally to the library, our tool
assigns unequal weights to different classes and set adaptive
class similarity thresholds in calculating library similarity.
These novel techniques are quite important for effectively

148

detecting libraries with many small classes. As evidenced by
our evaluation, LibScout incurs most of its false positives
in detecting small libraries. Finally, both LIBPECKER and
LibScout adopt package-level matching to organize library
matching process and rely on package hierarchy information to
exclude inappropriate package matching. However, different to
LibScout which only utilizes three kinds of package relation-
ships (i.e. parent, child, sibling), LIBPECKER also considers a
general ancestor inheritance relationship (see Algorithm 1 in
Section II-C). This design helps to improve the precision of
package matching for libraries with many packages.

Limitations. Although LIBPECKER does not look into
the concrete code implementations, it still relies on some
code features (e.g. class/package structures) of the library
and application to give a similarity score. Thus, for libraries
without significant code features, such as libraries defining
annotations and libraries providing UI resources, LIBPECKER
can not effectively recognize them. Actually, these kinds of
libraries are hard to detect for all existing library detectors.
Perhaps combining other kind of features in these libraries may
help. For example, we can learn from ViewDroid [56] to utilize
UI similarities to detect libraries providing UI resources.

Besides, although LIBPECKER can better tolerate code
customization and code elimination than LibScout, it is unable
to detect libraries that are dramatically modified beyond
recognition. In fact, if most code of a library is modified
during integration, it has turned into a new library with quite
different logic and behavior, thus it is quite acceptable for not
recognizing this group of code as the original library.

To efficiently calculate library similarity, LIBPECKER
chooses to utilize package hierarchy information in organizing
the class matching process. This choice is made upon the
assumption that package structure of a library is not broken
during the application build process. However, this assumption
sometimes does not hold. Fortunately, this issue is not difficult
to solve. In this situation, LIBPECKER can calculate the
similarity between a library and an application by finding
the pairs for each library class in the whole scope of the
application with the global maximum library similarity.
Besides, our ground truth selection has a slight bias against
data points without package hierarchy obfuscation. Actually,
it is hard to construct a large data set without significant
human efforts, and to the best of our knowledge, our paper
uses the largest data set in evaluating recall. Considering
obfuscators such as ProGuard do not manipulate package
hierarchy by default [18], we believe this selection strategy is
acceptable in practice.

Further Improvements. Current design and implementa-
tion of LIBPECKER can be further improved, at least in the
following two aspects. First, several thresholds (in Section
IV) are defined to set adaptive threshold for partial class
matching. These thresholds are proposed to tolerate code
customization and code elimination; however, currently they
are made according to manual experience. In our future work,
we plan to try machine learning techniques to optimize the
determination of these thresholds with respects to unique

characteristics of each library. Nevertheless, as the evaluation
shows, these parameters have already helped LIBPECKER to
achieve quite good performance in both precision and recall.

Second, according to the usage scenario of LIBPECKER
where it needs to give a similarity score between a given
library and an application, LIBPECKER naturally adopts pair-
wise comparison strategy. To improve the efficiency of library
detection, further innovations are needed. One possible way
is to split the whole library data set into small clusters, and
use code clustering to filter out irrelevant libraries before
pairwise comparison. However, this paper concentrates on
improving the precision and recall of existing library detection
techniques, while leaving the scalability issue as a orthogonal
fundamental problem to solve in the future.

VI. RELATED WORK

We present the most relevant works to LIBPECKER in the
following three areas.

Library Detection. Library detection plays a very important
role in library sandboxing, clone detection [37] and other
related works. However, simply using a whitelist of popular
libraries [28], [34], [52], [53] is not reliable and scalable to
detect third-party libraries, as names may be obfuscated and
new libraries keep emerging. There are mainly two approaches
in automatically detecting libraries.

One approach is to detect incorporated libraries from apps
without a priori knowledge about the libraries. A common
idea for this line of research is to divide an app into several
code modules and identify similar modules in different apps
as library candidates. AdDetect [42] uses package hierarchy
clustering to split an app into primary modules and non-
primary modules. PEDAL [39] extracts code-features and
package relationship information to train a classifier to detect
libraries. AnDarwin [31] and WuKong [54] also use clustering
techniques to efficiently filter library code. LibRadar [40] ex-
tends the clustering technique in WuKong to identify possible
libraries from analyzing one million apps, and uses hashing-
based profile to detect similar libraries. The above works
rely on package name and package structure to detect and
classify libraries, while package names may be obfuscated and
package structure may vary among different versions of the
same library. A recent work, LibD [36] advances this line of
research by using a way to extract code modules based on
the reference and inheritance relationships among classes and
methods.

The first approach is suitable to detect libraries which are
extensively used by many apps, but it can not pinpoint an exact
version of the library and even can not know the identity of
the detected library without human assistance. Differently, the
second approach detects libraries by comparing the similarity
between a reference library and an application. The strength of
this approach is that it is also capable of detecting unpopular li-
braries and enables further investigation of the detected library,
e.g. studying the library customization practice by differing
with the reference library. LibScout [27] is the first library
detector adopting this approach. It does not analyze concrete

149

names nor the implementation of a library, but extracts profiles
from the class interfaces and organizations, thus is more
resilient to obfuscation techniques than previous approaches.
However, through a deep study of library integration practice,
we find LibScout is limited in its adaptability to library code
customization and elimination. Considering these problems,
this paper proposes LIBPECKER which employs several novel
techniques and significantly improves the effectiveness of
LibScout from both precision and the recall (as evidenced by
the evaluation results in Section IV).

Clone Detection. Malicious Android applications mainly
repackage legitimate apps to infect users [62]. Thus,
repackaged app clone detection is quite important for
Android malware analysis. Since Android apps are mostly
released in binary format, existing work [38], [41] based
on source code-level similarity analysis is not applicable.
DroidMOSS [61] and Juxtapp [35] apply fuzzy code hashing
to localize and detect the modifications repackagers placed
over the original apps. To accurately compare application
behaviors, DNADroid [32] constructs program dependency
graphs for applications, and uses isomorphic subgraph
matching to detect cloned apps.

To avoid pairwise comparison, more scalable techniques
have also been studied. AnDarwin [31] extracts semantic vec-
tors from program dependency graphs, and leverages hashing-
based approximate near-neighbor finding algorithm to scale
the detection of app clones. PiggyApp [60] locates primary
modules in an app and map semantic features from the primary
modules into a metric space, thus a linear search algorithm can
be used to detect piggybacked apps. WuKong [54] adopts two-
phase detection strategy which first uses API calls as semantic
features to find suspicious similar apps and then applies a fine-
grained analyzer to check application clones. Chen et al. [28]
introduce the definition of centroid on top of method control-
flow-graph, and utilize method centroid distance to efficiently
compare application similarity.

Since repackaged apps share most UI interfaces with their
original apps, UI similarity analysis is also shown to be very
effective in detecting similar apps [29], [47], [50], [56].

Although both library detection and application clone de-
tection rely on similarity analysis, they meet quite different
technique challenges. For clone detectors, they assume app
clones share most similar features and base their analysis upon
this assumption. However, a single third-party library usually
occupies a very small part of an app, thus library detectors
need invent new techniques to precisely recognize embedded
libraries from applications. Meanwhile, library detectors can
improve the effectiveness of existing app clone detectors
by automatically excluding library code from app code in
similarity comparison.

Library Sandbox. Since incorporated third-party libraries
may bring new security and privacy issues, researchers have
proposed many sandbox techniques to isolate untrusted li-
braries. Ad libraries are the main targets to isolate. Ad-
Droid [43] puts ad libraries into a separate system service with
constrained permissions. AdSplit [49] and AFrame [57] both

rely on a dedicated process to isolate third-party ad libraries.
Besides, in-process library separation is proposed for gen-

eral third-party library isolation. Compac [55] tracks third-
party library code from Java call stack at the VM-level
and enforces policy checks against third-party library code.
FlexDroid [46] leverages ARM memory domain to provide
JNI (Java Native Interface) sandboxing, so that both native
libraries and dynamic loaded code are under constrained. Fine-
Droid [58] supports system-wide execution context tracking to
control permission usage of third-party libraries.

The above frameworks all require system modifications,
thus are hard to deploy. In light of this limitation, NativeG-
uard [51] and CASE [63] propose user-level library sandboxes.

To recognize third-party libraries in apps, most of these
works either use white lists of libraries or require developers to
manually declare the exact library components. LIBPECKER
can benefit these works by automatically checking the pres-
ence of libraries and zoning the code belong to libraries in an
application.

VII. CONCLUSION

Library integration is a common practice in developing An-
droid applications, and with no doubt more and more libraries
would be used by developers. In this trend, library detection
becomes a quite fundamental and important basis for analyzing
and securing Android applications. However, existing research
does not gracefully handle the cases of code customization and
code elimination during library integration which are actually
quite common in reality. Considering these problems, this
paper proposes LIBPECKER, an obfuscation-resilient, highly
precise and reliable library detector for Android applications.
The key insight is that existing library profile algorithm
does not fully utilize a very important yet also obfuscation-
resilient feature, that is the class dependencies inside a library.
Class dependencies connect separate classes into a library and
apparently represent a significant feature for a library. During
library matching, LIBPECKER generates class-dependency-
based signatures for both library classes and application
classes. Furthermore, to tolerate code customization and code
elimination, LIBPECKER employs fuzzy class matching and
assigns different weights to each library class according to
their contributions to the whole library. To evaluate the
performance of LIBPECKER, we perform several quantitive
experiments with a large data set. The results show that
our tool significantly outperforms the state-of-the-art tool
(LibScout [27]) from both the precision and the recall.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper. This work was supported in part by the National
Program on Key Basic Research (NO. 2015CB358800), the
National Natural Science Foundation of China (61602123,
U1636204, 61602121, U1736208). The work of Yuan Zhang
was also supported in part by the Shanghai Sailing Program
under Grant 16YF1400800.

150

REFERENCES

[1] “360 app market,” accessed: 2017-03-22. [Online]. Available: http:
//zhushou.360.cn/

[2] “Allatori java obfuscator,” accessed: 2017-10-10. [Online]. Available:
http://www.allatori.com

[3] “Awesome android,” accessed: 2017-10-10. [Online]. Available: https:
//snowdream.github.io/awesome-android/

[4] “Backdoor in baidu android sdk puts 100 million devices at risk,”
accessed: 2017-10-10. [Online]. Available: http://thehackernews.com/20
15/11/android-malware-backdoor.html

[5] “Baidu app market,” accessed: 2017-03-22. [Online]. Available:
http://shouji.baidu.com/

[6] “Bitbucket,” accessed: 2017-10-10. [Online]. Available: https://bitbucke
t.org/

[7] “Dasho java obfuscator,” accessed: 2017-10-10. [Online]. Available:
https://www.preemptive.com/products/dasho/overview

[8] “Dex bytecode format,” accessed: 2017-10-10. [Online]. Available:
https://source.android.com/devices/tech/dalvik/dex-format

[9] “Dexguard android obfuscator,” accessed: 2017-10-10. [Online].
Available: https://www.guardsquare.com/en/dexguard

[10] “Dexlib2 in smali/baksmali,” accessed: 2017-10-10. [Online]. Available:
https://github.com/JesusFreke/smali/tree/master/dexlib2

[11] “Dexprotector android obfuscator,” accessed: 2017-10-10. [Online].
Available: https://dexprotector.com

[12] “F-droid: Free and open source android app repository,” accessed:
2017-10-10. [Online]. Available: https://f-droid.org/

[13] “Facebook sdk vulnerability puts millions of smartphone users’
accounts at risk,” accessed: 2017-10-10. [Online]. Available: http:
//thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html

[14] “Github,” accessed: 2017-10-10. [Online]. Available: https://github.com/
[15] “Github android libraries top 100,” accessed: 2017-10-10. [Online].

Available: https://github.com/Freelander/Android Data/blob/master/An
droid-Librarys-Top-100.md

[16] “Google play app market,” accessed: 2017-02-15. [Online]. Available:
https://play.google.com/store

[17] “Ibm discloses vulnerability in dropbox’s an-
droid sdk,” accessed: 2017-10-10. [Online]. Avail-
able: http://www.infoworld.com/article/2895016/mobile-technology/ib
m-discloses-droppedin-vulnerability-for-dropboxs-android-sdk.html

[18] “Introduction to proguard,” accessed: 2017-10-10. [Online]. Available:
https://www.guardsquare.com/en/proguard/manual/introduction

[19] “Maven central repository,” accessed: 2017-10-10. [Online]. Available:
http://search.maven.org/

[20] “Proguard java obfuscator,” accessed: 2017-10-10. [Online]. Available:
http://proguard.sourceforge.net/

[21] “Retrofit gson converter,” accessed: 2017-10-10. [Online]. Available: ht
tps://mvnrepository.com/artifact/com.squareup.retrofit2/converter-gson

[22] “Retrofit jackson converter,” accessed: 2017-10-10. [Online].
Available: https://mvnrepository.com/artifact/com.squareup.retrofit2/co
nverter-jackson

[23] “Source code for libscout,” accessed: 2017-10-10. [Online]. Available:
https://github.com/reddr/LibScout.git

[24] “Stringer java obfuscator,” accessed: 2017-10-10. [Online]. Available:
https://jfxstore.com/stringer

[25] “Tencent app market,” accessed: 2017-03-22. [Online]. Available:
http://sj.qq.com/

[26] “Warning: 18,000 android apps contains code that spy on your
text messages,” accessed: 2017-10-10. [Online]. Available: http:
//thehackernews.com/2015/10/android-apps-steal-sms.html

[27] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 356–367.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978333

[28] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp.
175–186. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568
286

[29] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale,” in Proceedings of the 24th USENIX

Conference on Security Symposium, ser. SEC’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 659–674. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831143.2831185

[30] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: A semantics-based approach,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 275–284.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046739

[31] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of
android application clones based on semantics,” IEEE Transactions on
Mobile Computing, vol. 14, no. 10, pp. 2007–2019, Oct 2015.

[32] ——, “Attack of the clones: Detecting cloned applications on
android markets,” in Proceedings of 17th European Symposium on
Research in Computer Security (ESORICS), 2012. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33167-1 3

[33] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software
bertillonage: Finding the provenance of an entity,” in Proceedings of
the 8th Working Conference on Mining Software Repositories, ser.
MSR ’11. New York, NY, USA: ACM, 2011, pp. 183–192. [Online].
Available: http://doi.acm.org/10.1145/1985441.1985468

[34] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, ser. WISEC ’12. New York, NY, USA: ACM, 2012, pp. 101–
112. [Online]. Available: http://doi.acm.org/10.1145/2185448.2185464

[35] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,
“Juxtapp: A scalable system for detecting code reuse among android
applications,” in Proceedings of the 9th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. DIMVA’12. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 62–81.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-37300-8 4

[36] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “Libd: Scalable and precise third-party library detection
in android markets,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 335–346. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.38

[37] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Revisiting android reuse studies in the context
of code obfuscation and library usages,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 242–251. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597109

[38] M. Linares-Vsquez, A. Holtzhauer, and D. Poshyvanyk, “On automati-
cally detecting similar android apps,” in 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), May 2016, pp. 1–10.

[39] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’15. New York, NY, USA: ACM, 2015, pp. 89–
103. [Online]. Available: http://doi.acm.org/10.1145/2742647.2742668

[40] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in Proceedings of the
38th International Conference on Software Engineering Companion,
ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp. 653–656.
[Online]. Available: http://doi.acm.org/10.1145/2889160.2889178

[41] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 364–374. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337267

[42] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated detection
of android ad libraries using semantic analysis,” in 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), April 2014, pp. 1–6.

[43] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid:
Privilege separation for applications and advertisers in android,”
in Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’12. New
York, NY, USA: ACM, 2012, pp. 71–72. [Online]. Available:
http://doi.acm.org/10.1145/2414456.2414498

151

[44] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
runtime values in android applications that feature anti-analysis
techniques,” in Network and Distributed System Security Symposium
(NDSS), Feb. 2016. [Online]. Available: http://www.bodden.de/pubs/s
sme16harvesting.pdf

[45] R. Rolles, “Unpacking virtualization obfuscators,” in Proceedings of
the 3rd USENIX Conference on Offensive Technologies, ser. WOOT’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 1–1. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855876.1855877

[46] J. Seo, D. Kim, D. Cho, T. Kim, and I. Shin, “FlexDroid: Enforcing
In-App Privilege Separation in Android,” in Proceedings of the 2016
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2016.

[47] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a
scalable resource-driven approach for detecting repackaged android
applications,” in Proceedings of the 30th Annual Computer Security
Applications Conference, ser. ACSAC ’14. New York, NY, USA:
ACM, 2014, pp. 56–65. [Online]. Available: http://doi.acm.org/10.114
5/2664243.2664275

[48] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse
engineering of malware emulators,” in Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, ser. SP ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 94–109. [Online].
Available: http://dx.doi.org/10.1109/SP.2009.27

[49] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating
smartphone advertising from applications,” in Proceedings of the
21st USENIX Conference on Security Symposium, ser. Security’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 28–28. [Online].
Available: http://dl.acm.org/citation.cfm?id=2362793.2362821

[50] C. Soh, H. B. K. Tan, Y. L. Arnatovich, and L. Wang, “Detecting
clones in android applications through analyzing user interfaces,”
in Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension, ser. ICPC ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 163–173. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2820282.2820305

[51] M. Sun and G. Tan, “Nativeguard: Protecting android applications from
third-party native libraries,” in Proceedings of the 2014 ACM Conference
on Security and Privacy in Wireless & Mobile Networks, ser.
WiSec ’14. New York, NY, USA: ACM, 2014, pp. 165–176. [Online].
Available: http://doi.acm.org/10.1145/2627393.2627396

[52] A. Tongaonkar, S. Dai, A. Nucci, and D. Song, “Understanding mobile
app usage patterns using in-app advertisements,” in Proceedings of
the 14th International Conference on Passive and Active Measurement,
ser. PAM’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 63–72.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36516-4 7

[53] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in The 2014 ACM International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’14. New
York, NY, USA: ACM, 2014, pp. 221–233. [Online]. Available:
http://doi.acm.org/10.1145/2591971.2592003

[54] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable
and accurate two-phase approach to android app clone detection,” in

Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ser. ISSTA 2015. New York, NY, USA: ACM, 2015,
pp. 71–82. [Online]. Available: http://doi.acm.org/10.1145/2771783.27
71795

[55] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce
component-level access control in android,” in Proceedings of the
4th ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’14. New York, NY, USA: ACM, 2014, pp. 25–36.
[Online]. Available: http://doi.acm.org/10.1145/2557547.2557560

[56] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid:
Towards obfuscation-resilient mobile application repackaging detection,”
in Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless Mobile Networks, ser. WiSec ’14. New
York, NY, USA: ACM, 2014, pp. 25–36. [Online]. Available:
http://doi.acm.org/10.1145/2627393.2627395

[57] X. Zhang, A. Ahlawat, and W. Du, “Aframe: Isolating advertisements
from mobile applications in android,” in Proceedings of the 29th
Annual Computer Security Applications Conference, ser. ACSAC ’13.
New York, NY, USA: ACM, 2013, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/2523649.2523652

[58] Y. Zhang, M. Yang, G. Gu, and H. Chen, “Finedroid: Enforcing
permissions with system-wide application execution context,” in
Proceedings of International Conference on Security and Privacy in
Communication Networks (SECURECOMM), Oct. 2015.

[59] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang, “Divilar: Diversifying
intermediate language for anti-repackaging on android platform,” in
Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’14. New York, NY, USA:
ACM, 2014, pp. 199–210. [Online]. Available: http://doi.acm.org/10.1
145/2557547.2557558

[60] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of ”piggybacked” mobile applications,” in Proceedings of the
Third ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 185–196.
[Online]. Available: http://doi.acm.org/10.1145/2435349.2435377

[61] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proceedings of the Second ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’12. New York, NY, USA:
ACM, 2012, pp. 317–326. [Online]. Available: http://doi.acm.org/10.1
145/2133601.2133640

[62] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 95–109. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.16

[63] S. Zhu, L. Lu, and K. Singh, “Case: Comprehensive application security
enforcement on cots mobile devices,” in Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’16. New York, NY, USA: ACM, 2016, pp. 375–386.
[Online]. Available: http://doi.acm.org/10.1145/2906388.2906413

152

