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Microbial evolution has been extensively studied in the past fifty years, which has lead to seminal

discoveries that have shaped our understanding of evolutionary forces and dynamics. It is only

recently however, that transformative technologies and computational advances have enabled a

larger in-scale and in-depth investigation of the genetic basis and mechanistic underpinnings of

evolutionary adaptation. In this review we focus on the strengths and limitations of in vivo and

in silico techniques for studying microbial evolution in the laboratory, and we discuss how

these complementary approaches can be integrated in a unifying framework for elucidating

microbial evolution.

Introduction

All life forms, frommicrobes to higher vertebrates, are constantly

under the influence of evolutionary processes that lead to

adaptation and phenotypic variation. Whether these forces

result in new and rapidly evolving species, as in the case of adaptive

radiation, or are responsible for phenotypic divergence within

a species, the underlying mechanism by which complex behaviour

arises remains the same: gradual accumulation of selected genetic

mutations and epigenetic changes gives rise to a myriad of

anatomical, physiological and behavioural expressions. Although

the notion that evolution, niche adaptation, and phenotypic

variation leads to ‘‘endless forms most beautiful’’ can be traced

back to Darwin,1 it was only in the last decades that with the

advent of high-throughput sequencing and profiling techniques,

we were able to gain a better understanding of the mechanisms

by which mutations give rise to novel traits. Remarkably, it has

been shown that even single mutations, such as nucleotide poly-

morphisms, can yield phenotypes that are significantly dissimilar.2

The same holds for the rewiring of the gene regulatory and

biochemical networks, as they were found to exhibit a high

degree of evolvability,3,4 yet preserve phenotypic robustness

when under stabilizing selection and in the presence of disrupting

mutations.5,6

Laboratory evolution of microbial strains has been used

with great success to elucidate biological and evolutionary

phenomena such as the dynamics of evolutionary processes,7,8

the emergence of complex traits,9,10 the role of epistatic

interactions during evolution,11 the reproducibility and the

order of mutation fixation,12 and the quantification of the

fundamental evolutionary parameters such as mutation rates

and distribution of fitness effects.13–16 Microbes are the choice

of preference for these studies, since they are easy to cultivate,

they have short generation times, large population sizes, and

small genome sizes. Despite its many advantages, laboratory

evolution has many limitations that stem from the nature and

the timescale of evolution: in all cases it is time-consuming and

laborious, with experiments lasting frommonths to decades, only

to provide data collection for a few thousands of generations.

Changes are difficult to observe, record and analyze. Mutations

and population structure changes cannot be readily predicted,

and results cannot be easily generalized since evolutionary

trajectories can differ considerably in replicate experiments.
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Insight, innovation, integration

Microbial evolution has been studied extensively over

the past decades due to the importance of microbes to the

environment, human health, industrial applications and

agriculture. However, it was only in the last decade that

advances in high-throughput technologies and computational

infrastructure allowed us to investigate the evolutionary

processes and mechanistic underpinnings of microbial

adaptation in complex environments. This review gives an

overview the temporal and spatial scales involved when

studying microbial evolution, it summarizes the techniques

used for both in vivo and in silico studies of microbial

evolution, it presents the most important findings so far,

and finally it discusses the challenges and possible future

directions in the field.
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For these reasons, a number of in silico models have been

developed that simulate the evolution of ‘‘artificial’’ organisms

that live, mutate and compete in structured environments.

While these simulations are still simplified and abstract, they

have been successfully applied to address questions regarding

the interplay between robustness and evolvability,6,17 the

evolution of complexity,18 the taxis response pathways,19 the

evolution of evolvability,4,20 and the effect of stochasticity on

microbial adaptation.21

In this review, we discuss the scales of space and time in which

microbial evolution takes place and what their implications

are to both computational and experimental methods. Then we

present a comprehensive summary of the in vivo and in silico

methods and we review microbial evolution studies that utilize

these methods. Finally, we conclude with suggestions on how

the two complementary directions can be integrated to provide

a unified view of microbial evolution.

The scale of microbial evolution

Microbial populations enjoy exponential growth, large popula-

tion numbers and fast division rates. These characteristics,

together with a high mutation rate due to the lack of the error

correcting mechanisms that is present in eukaryotic cells, result

in high evolution rates and a remarkable ability to cope with

environmental variation. The continuous evolution of antibiotic

resistance in pathogenic strains is a notorious example of

the capacity of microbes to adapt in stressful environments.

Fig. 1 summarizes the temporal and spatial scales involved in

microbial evolution, and the in vivo and in silico methods

discussed in this review.

Mutation rates in an organism

Mutations can be a substitution of a single nucleotide, also

known as a single nucleotide polymorphism (SNP), or insertions

and deletions of DNA fragments. The latter are caused by

many factors that include the movement of mobile elements

within the genome (e.g. transposons), horizontal gene transfer,

recombination and gene amplifications events. SNPs are the

most frequent types of mutations in the microbial world and

account for about 70% of mutations observed in the adaptive

laboratory evolution (ALE) experiments.8 In asexual organisms,

mutations can be introduced during the DNA replication stage

of cell division or in the presence of certain environmental

conditions (e.g. radiation or mutagenic chemicals).

The mutation rate in microbes is about 10�8 to 10�10

mutations per nucleotide per DNA replication (generation)22,23

and it is generally within two orders of magnitude for most

species.24 In Escherichia coli, which has a genome size around

5 � 106 nucleotides, this translates to a mutation rate of approxi-

mately 10�2 mutations per replication per organism. In other

words, on average we expect one mutation in an E. coli cell in

every hundred generations. This mutation rate is consistent

with recent experimental work where it was shown that bacteria

accumulate approximately 8–10 mutations for every 1000

generations of adaptation under various selection pressures.8

Mutation rates can vary significantly around this average,

depending on various biotic and abiotic factors in their

environment.25,26 In addition, environmental parameters affect

the distribution of fitness effects for the various mutations, and

therefore govern which mutations are selected and fixed.

Given the relatively high rates of microbial adaptation,

laboratory experiments have a duration that ranges from a

few hundred generations9,12,27,28 to several thousand genera-

tions.10,29–34 A notable exception is the 24-year long evolution

experiment which already surpassed 50 000 generations for

E. coli.7 Through the work of various groups, we have been able

to observe cases of evolutionary rewiring to cope with nutrient

limitations,7,29,30,35 temperature shifts,31,32,36,37 pH variations,38

high ethanol concentrations10,27 and antibiotics.12 We are still

missing clear cases of a de novo emergence of molecular path-

ways or speciation, mainly because of the great number

of genome alterations that are needed for such phenomena to

be observed.

Fig. 1 Temporal and spatial scales of microbial evolution. A model that tries to capture cellular events and evolutionary forces has to be able to

effectively operate in a timescale that varies from milliseconds to years. More information about the relative time and spatial scales in biology can

be found in the BioNumbers database.39,136
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Mutation rates in a population

Population size has a significant effect on the rate of adapta-

tion. While each individual organism carries a small number of

mutations in its genome, the capacity of microbes to adapt fast

in environmental fluctuations stems from having a large

population size. A 10 ml flask of E. coli culture at OD600 = 1

contains 109 to 1010 cells.39 While the mutation rate is only

about 10�2 mutations per organism per division, the entire

population accumulates B107 mutations at every division

(taking into account only SNP mutations). Note that this

number of mutations is more than the length of the E. coli

genome. Therefore, if we assume that random mutations are

uniformly distributed in the absence of selection, virtually all

possible SNP mutations are always present in that population.

Deleterious mutations are quickly removed from the popula-

tion, but repeatedly reappear at later divisions. Discarded

mutations can potentially become beneficial and can be fixed

in a population, if the environment fluctuates considerably.

Despite the large availability of SNPs that may exist in a

bacterial population, this number is still insignificant if we

consider the combinatorial explosion of even a handful of

SNPs (e.g. there are 1030 possible combinations of any 5 SNP

combinations in E. coli’s genome).

For small population sizes, the effect of the genetic drift, i.e.

the change in the frequency of a gene variant in the population

due to random sampling and not selection, plays an important

role in the rate of mutation fixation. Random drift becomes

less important for larger populations, as the probability of

mutation fixation by the genetic drift is inversely proportional

to the effective population size.24 Another phenomenon that is

important during microbial evolution is clonal interference: in

large population sizes, beneficial mutations arise independently

and in the absence of genetic recombination they compete with

each other for fixation in the population. This results in an

increase of the rate of evolution with the square root of the

population size, instead of its linear dependence to it for smaller

population sizes. Clonal interference has been observed

in laboratory settings for both viruses and bacteria,40–42 its

dynamics have been investigated in computational models of

evolution,43–45 and its effect has been recently measured experi-

mentally in eukaryotic yeast cells.46

In vivo laboratory evolution

The combinatorial explosion of mutation sets and the clonal

interference limit on the effective population size are the main

limitations in ALE experiments, as it is infeasible to search the

genotypic space in a systematic way. This is also the reason

that replicate experiments give very different results when it

comes to the specific mutations that are present in the adapted

strains, as the appearance of neutral or near-neutral mutations

largely resembles a random walk. For example, in massively

parallel ALE studies9,32,34 when several hundred biological

replicates are evolved simultaneously, the observed mutations

across the different cell lines have a low overlap. This overlap

can increase when the selection pressure is strong and there

are limited ways that the cell can cope with environmental

variation, as in the recent example of 115 biological replicates

of E. coli evolved over 2000 generations under heat stress.32 In

this experiment, although individual fixed mutations were

mostly unique over a hundred of biological replicates (only

3% of mutations are shared between any two evolved strains),

the target gene and protein functional groups had a high

overlap (25% of affected operons shared between any two

strains). In addition, in certain environments, the order

by which mutation appear is also conserved over multiple

biological replicates.12

Model organisms

Virtually any cultivatable microorganism could be used for

in vivo evolutionary experiments. However, some model

organisms are more preferred due to the existence of reference

genome annotation, known gene functions, partial gene

regulatory network and technical expertise for genetic manip-

ulation. E. coli, the first gram-negative bacterium to be

sequenced and with the most extensive database of gene

function and regulation,47,48 is the workhorse for laboratory

microbial evolution.7,12,26,27,29–32,38,45,49–56 Other organisms

that used for ALE experiments include yeasts,9,10,34,57,58

which are of a particular interest as they can reproduce both

asexually and sexually, L. lactis a bacterium with high

importance due to its present in skimmed milk,33 P. aeruginosa,

which is often responsible for many bacterial infections,

especially in lungs,59 cyanobacteria and other more exotic

organisms (e.g. B. boroniphilus used to engineer improved

boron resistance28). Often studies of microbial evolution are

accompanied or complemented by studies in viruses, which

exploit their high adaptive potential and plasticity to under-

stand the fitness landscape and distribution of fitness effects

during evolution.13–16

Experimental methods for laboratory evolution

Two common techniques that are applied in laboratory evolu-

tion are serial passages and chemostat cultivations of tightly

controlled environments8 (see Fig. 2). As mutations occur

mostly during the DNA replication, the overall number of

accumulated mutations, and therefore the speed of adapta-

tion, is a function of the total number of microbial divisions.

In order to maximize the evolution rate over a given time, the

population growth can be maintained close to the exponential

limit: the culture can be keep growing in a flask and then be

diluted with fresh media once the nutrients are exhausted

(serial passages with dilution ratio from 1 : 50 to 1 : 500), or

alternatively a constant growth in the exponential phase is

maintained through a chemostat cultivation.9,10,60

The use of chemostats is attractive, as they are semi-automated

and allow for a much more precise control of the environmental

parameters (nutrient abundance, pH, temperature, etc.). These

parameters can be varied over time with a desired periodicity for

evolution studies in variable environments. Recently a chemo-

stat-like setting that was called a ‘‘morbidostat’’, the stressor

concentration (antibiotics in this case) was automatically increased

proportionally to the adaptation level of the population, so that a

constant population size and division rate is achieved.12

The drawback for use of semi-automated chemostats is the

high cost of the experimental setup, the high maintenance and
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operation costs, and the need of multiple vessels to run parallel

experiments and controls. For this reasons, serial passages in

shake flasks or multi-well plates are a simpler and more popular

alternative for performing laboratory evolution. In these settings

the environmental conditions are more loosely controlled, with

some parameters being easily controllable (e.g. temperature and

oxygen concentration), while others varying considerably

within every serial passage cycle (nutrient concentration, pH,

cell density, etc.). Another difference between serial passages

and the chemostats is that homogeneous populations are more

frequently observed in serial passages.8

To create a selective environment during the laboratory

evolution, various levels and combinations of stressors are

usually applied. Some common stressful environments include

temperature shifts, pH fluctuations to acidic or alkaline environ-

ments, oxygen deprivation, antibiotics, carbon source and amino

acid limitation, and various types of disrupting chemical

stressors.10,12,27,31,32,36–38 Both mild and strong levels of these

stressors are applied, with the latter leading to mutations that

are associated with larger fitness effects and therefore faster

fixation of the beneficial mutations.7 To shorten adaptation

time, a library of mutants is sometimes used as a starting point

for the various cultures.9,10,28 More advanced approaches to

ALE may include sequential adaptation to multiple9 and/or

time-dependent52 stresses to study the cross-protection and

the interaction between different stress response pathways or

non-constant environments. Table 1 summarizes the various

approaches so far.

Systems biology analysis

The high-throughput techniques that have revolutionized

genome sequencing and transcriptional profiling over the past

decade provide researchers with a powerful arsenal for

mapping genetic and certain epigenetic changes that appear

during evolution. In addition, the annotated genomes of all

model organisms are readily available, and in many cases

functional gene networks help to infer the functional categories

of many genes. However, even in the case of the most studied

model organism, the bacterium Escherichia coli, only about half of

the genes are included in the known functional gene network,47,48

while more than one fourth of the genes are currently not

associated with any sigma factor. Even for the genes that are

included in the network, many links are currently missing as

new condition-specific experiments constantly reveal novel

associations between genes that previously were thought to

be uncorrelated. The data is much more sparse for other model

organisms and while networks of protein–DNA interactions

are available, they usually do not include the sign of regulation

(inhibition or activation) and never include the weight (the

strength of regulation). Clearly, we have still a lot to learn

about bacterial physiology and the mechanistic underpinnings

behind complex microbial behaviors.

The lack of the complete information in the ‘‘omics’’

databases is compensated with the development and the wider

availability of the high-throughput techniques at a decreasing

cost. The explosive growth of the technology advanced the

field of ALE over the last decade and recently published

experiments usually include high-throughput analysis at some

level.8 Whole genome resequencing makes it possible to obtain

a complete list of mutations of a microbe at any point of

the evolutionary trajectory relative to the reference.8 Using

RNA-Seq technology61 one can analyze the expression patterns

of the entire organism in different environmental conditions and

with the help of ChIP-Seq62 it is possible to infer new gene

regulatory pathways in model organisms.63,64 The integration

of advanced high-throughoutput tools with the gradual accumu-

lation of the knowledge in the ‘‘omics’’ databases helps to study

Fig. 2 Methods used for studying microbial evolution in vivo. The most common techniques used to maintain control over environmental

conditions and microbial growth rates for prolonged times are: (A) serial passages and (B) chemostat cultivations. In a chemostat it is possible to

continuously monitor and control the growth conditions at a desired level; however this approach requires a complex experimental setup. When a

large number of strains need to be evolved in parallel, serial passages are frequently used to reduce the cost of the experiment. In the latter case,

microbial cultures are periodically diluted with a fresh media (usually daily) to limit the microbial concentrations and supply the growing

populations with new nutrients. Inevitably, some of the environmental parameters fluctuate between the passages (e.g. the nutrient concentration

and pH), but other parameters like temperature and oxygen concentration can be kept constant. In a proper experimental setting the effect of the

environmental fluctuations on the population growth is kept at a minimal level. (C) Intermediate phenotypes that emerge during evolution can be

sampled and stored for later analysis. Although we are still limited in our ability to study population structure in large scale, keeping a ‘‘fossil’’

record of the evolutionary trajectory is paramount for re-tracing evolutionary steps, ‘‘replaying’’ evolution, and for further analysis in the future.
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Table 1 An overview of in vivo recent microbial evolution studies

In vivo laboratory evolution method
(Publication year) Objective
of the studies Results

Species: E. coli REL606 (2009) E. coli long term evolution
experiment.7

Large number of mutations were accumulated over
first 2 K generations (B25 mutations); between 2 K
and 20 K the mutation accumulation rate was almost
constant; after 20 K generations 45 mutations were
accumulated (SNPs account for 64% of all mutations).
Four populations evolved a B100-fold increase in
mutation rates. All 12 populations evolved large
increase in average cell size.

Time: >50 000 generations
Environment: minimal media +
limiting glucose, 37 1C
Populations: 10 ml, 5 � 108 cells before
each dilution; 12 parallel populations
Technique: serial passages; daily 1 : 100 dilutions

Species: E. coli MG1655 (2009) Genetic basis of
E. coli adaptation to the
minimal lactate media.29

2–8 mutations per strain (4.8 on average) were
accumulated; 90% increase in the growth rate
observed after 1100 generations; significant variance
in mutation types between replicates; majority of
mutations relate to metabolism, regulation and cell
envelope functions.

Time: E1100 generations
Environment: M9 minimal media + lactate, 30 1C
Population: 250 ml, 5 � 105–5 � 108 cells
transferred at each dilution; 11 parallel populations
Technique: serial passages; dilutions to maintain
the exponential growth

Species: E. coli (MG1655, transposon and
over-expression libraries)

(2010) Regulatory and metabolic
rewiring during evolution of
ethanol tolerance in E. coli.27

Fitness profiling was used to estimate the effect of
single locus perturbations (transposon insertion and
over-expression libraries) on ethanol tolerance;
fitness effects of transposon insertions were more
pronounced; naturally accessible ethanol resistance
pathways were analyzed based on the short time
evolution experiment; the correlation between fitness
profiling and evolution results was reported.

Time: short time selection (5–10 generations)
of mutants; 80 generations for the wild type evolution
Environment: LB or M9 + glucose media;
supplemented with ethanol (4–7% v/v)
Technique: fitness profiling of the transposon
and over expression libraries; serial passages
for the short time evolution

Species: E. coli MG1655 (2006) Genetic basis of
E. coli adaptation to the
glycerol minimal media.30

13 mutations fixed in 5 sequenced stains; single, double
and triple site-directed mutants were created to
confirm fitness effect of the observed mutations.

Time: E660 generations
Environment: M9 minimal media+0.2% glycerol,
30 1C
Population: 250 ml; 5 � 105–5 � 108 cells
transferred at each dilution; 5 parallel populations
Technique: serial passages; dilutions to
maintain the exponential growth

Species: E. coli DH1DleuB (2010) Positive to neutral
transition in mutation fixation
in thermal adaptation.31

After every temperature increase the fitness of the
population dropped, but each time was almost
completely recovered to the initial level after
E50 generations. Two phase fitness dynamics was
observed: positive was followed by the neutral;
however constant increase in fitness was observed in
both phases; whole genome sequencing confirmed
transition from one phase to another.

Time: up to 7560 generations
Environment: M63 medium + leucine, 36.9–44.8 1C
Population: 5 ml, two parallel populations evolved
at constant (37 1C) and increasing (37 1C - 45 1C)
temperatures
Technique: serial passages; daily dilutions to maintain
the exponential growth

Species: E. coli B REL1206 pre-adapted for 2000
generations at 42.2 1C

(2012) Massively parallel
adaptation of E. coli to the
high temperature.32

After 2000 generations 115 parallel evolved strains
acquired on average 11 mutations (6.9 point
mutations, 2.3 short insertions or deletions, 1.0 long
deletion, 0.6 insertions, 0.2 large duplications). Most
point mutations were unique, but 69% of large
deletions were identical. Once genes with most
mutations are divided into 10 functional groups
(containing 34% of all mutations) any two lines
shared on average 32% of the functional units.

Time: 2000 generations
Environment: Davis minimal medium + glucose,
42.2 1C
Population: 10 ml, 115 parallel populations
Technique: serial passages; daily 1 : 100 dilutions

Species: E. coli MG1655 (2012) Evolution of antibiotic
resistance under dynamically
sustained selection.12

Sequential accumulation of mutations was observed
under increasing drug selection (to maintain a constant
growth rate).

Time: 20 days
Environment: M9 minimal media + glycose +
antibiotics, 30 1C
Population: 12 ml, morbidostat
Technique: morbidostat

Species: L. Lactis KF147 (2012) Evolution of lactic acid
bacterium L. lactis.33

6 to 28 mutations were accumulated after 1000
generations; Reproduction of the transition from
plant to dairy niche in the laboratory evolution reveals
several signatures that resemble those seen in the
strains isolated from wither niche.

Time: 1000 generations
Environment: 10 ml skimmed milk
Population: 1010 cells before each dilution;
3 parallel populations
Technique: serial passages, 1 : 10 000 dilutions
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the genotypes and phenotypes of the evolved microbes at the

level of details that it was not possible to achieve before.

Challenges for the in vivo evolution

While recent advances have resulted in enabling high-through-

put technologies (Fig. 3), there is little that we can do to

address the gap between the temporal scales under which

evolution operates, and what we can observe in the laboratory.

Inevitably, ALE studies tend to be labour-intensive and/or

costly. The experiments have to last for months or years, and it

is still just a blink at evolution timescales. In addition, regard-

less on the experimental setting, constant human involvement

and control is required. A significant number of biological

Table 1 (continued )

In vivo laboratory evolution method
(Publication year) Objective
of the studies Results

Species: P. Aeruginosa (2010) Parallel evolution of
P. aeruginosa in vivo during
chronic lung infection.59

Transcriptome profiles were obtained over 8 years from
3 individuals with chronic airway infection; genetic data
was not collected. Genes with the common expression
changes were identified in three populations, and
authors hypothesized that some of these genes encode
adaptive traits. However the number of traits changed
in parallel is smaller than the number of unique
changes (in one of the populations only 6% of changes
belong to parallel evolved set).

Time: up 39 000 generations in vivo
Environment: 3 individuals with chronic cystic fibrosis
Population: in vivo airway infection
Technique: in vivo sampling

Species: B. boroniphilus DSM 17376 (2011) Application of the in vivo
evolutionary engineering to
improve boron-resistance.28

Highly boron-resistant mutants were obtained in the
study. Cross-resistance of evolved strains to iron,
copper, and salt (NaCl) was identified suggesting
common stress-resistant pathways.

Time: 50 days
Environment: TSB medium + boron (H3B03), 30 1C
Population: starting population: EMS mutagenized
Technique: batch selection with daily dilutions

Species: T. fusca (2011) Laboratory evolution
of cellulolytic actinobacterium
T. fusca.137

Strain evolved in alternating environments shows
increased cell yield for growth on glucose and shows
more generalist phenotype.

Time: 40 days (E220–284 generations)
Environment: continuous exposure to cellobiose,
or daily alternating exposure to cellobiose and glucose
Population: two parallel populations in different
environments
Technique: serial passages

Species: yeast strain DBY15084 (2011) Massively parallel study of
the fate of the beneficial
mutations.34

Flow cytometry was used to detect evolved sterility
(fitness advantage). Found that fitness advantage by
individual mutations plays surprisingly small role;
underlying background genetic variation is quickly
generated in the initially clonal populations and is
crucial for determining the final fate of beneficial
mutations. Different scenarios where observed: sweep,
clonal interference, multiple reappearance, frequency-
dependent selection.

Time: 1000 generations (10 generations per day)
Environment: 96-well plates; no shaking; 30 1C
Population: 105–106 cells; 592 parallel populations
Technique: Serial passages in a laboratory automation
workstation; 1 : 32 dilution every 12 hours or 1 : 1024
dilutions every 24 hours

Species: S. cerevisiae CEN.PK 113.7D (2005) Evolutionary engineering
of multiple-stress resistant
S. cerevisiae.9

Among all chemostat and batch selection strategies,
batch selection under freezing-thawing stress showed
the most highly improved multiple-stress-resistance.

Time: E10 days under each batch selection/stress
Environment: Oxidative (H2O2), heat, ethanol, and
freezing-thawing stresses
Population: 96-well plates; several parallel populations
for each stress
Technique: batch selection of chemically mutagenized
cells in a laboratory automation workstation; also a
short time (68 generations) chemostat selection

Species: S. cerevisiae W303-1A (2010) Generation of stable
ethanol-tolerant mutants of
S. cerevisiae.10

Both pre-mutagenised and non-pre-mutagenised
starting populations show remarkable similarity across
a range of ethanol stress conditions. The mutants
produced significantly more glycerol than the parent; it
was suggested that it is the mechanism for the observed
increased ethanol tolerance.

Time: 200 days
Environment: ethanol stress, batch growth
Population: mutagenised and non-mutagenised
starting populations
Technique: chemostat

Species: fX174 Microviridae (2010) Review of Microviridae
experimental evolution.138

fX174 is a common model system for experimental
evolutionary studies; review summarizes 10 experi-
ments with 58 lineages in total; strong parallel
evolution is observed (50% of substitutions occurs
at sites with three or more events).

Environment: mostly E. coli hosts, but also Shigella
and Salmonella was used; 32–42 1C
Population: population sizes smaller than the host
population sizes to limit co-infection and
recombination
Technique: serial passages every 30 min for 40–90
hours; total, or chemostat cultures for 10–180 days
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replicates are necessary to ensure that the evolutionary trajec-

tories in a multi-dimensional genotypic space are not a random

coincidence of events. If additional verifications or replicates

are desired after the first round of adaptation is completed are

analysed, significant time (equal to the time of the original

experiment) is required for these additional experiments.

In addition, even with the existence of high-throughput

technologies we are unable to have a high resolution map of

the various changes that appear in an evolving population

across various ‘‘omics’’ scales. While the cost of the high-

throughput output methods constantly decreases, the overall

cost of the analysis of the ALEs adds up quickly due to the

combinatorial explosion that takes place when we consider

number of necessary replicates, environmental conditions, and

temporal samples that have to included for a comprehensive

analysis of microbial evolution.

In silico microbial evolution models

The many challenges that are associated with laboratory micro-

bial evolution have motivated the development of variety of

computational tools to simulate evolution in silico (Table 2).

Computational evolution models attempt to closely replicate

biological and evolutionary processes both in single cell and

population level. In order to maintain the proper balance

between biological realism and computational feasibility, the

various models include multiple levels of abstraction and crude

parameterization. The resolution of each model depends both on

the questions that it aims to address and the type of parameters

that are available through experimental measurements. In this

section we describe the parameters, components, and models of

various in silico evolution models and discuss their role in the

realistic description of the in vivo processes.

The wide spectrum of approaches implemented in in silico

evolutionary models fall in one of three main categories,

depending on how the cellular organization is represented in

the model (Fig. 4): methods that use a pseudo-alphabet,

methods that include a representation of the gene regulatory

and biochemical network, and methods that use other means

to represent the evolution of ordered computation (as in the

structured sequence of instructions present in the ‘‘digital

organisms’’ of the Avida simulator). The bottleneck that all

in silicomodels share is how to realistically map the organisms’

genotype to the observed phenotype/fitness in any given

environment.

One of the abstraction extremes is the population models

that include only a simplistic organism model, often consisting

of just the organism fitness and allelic frequencies.65–68 These

models are best suited to simulate population proprieties

at short timescales, but without the inner structure of the

organisms their ability to realistically associate mutation

events to phenotypic differences is limited.

To realistically capture evolutionary dynamics and their

effect in cellular organization, the ideal model should capture

multiple scales of biological organization. First, rudimentary

models of basic biological processes such as transcription,

translation, protein modification and gene regulation, should

be incorporated in the model. These processes can act as functions

within the model of a cell. Each cell should also be described by a

number of parameters (size, energy levels, doubling time, etc.) that

are relevant to the biological questions that the simulation aims to

address. In addition to the cellular functions, another set of actions

Fig. 3 Interactions between theory and experimentation. Laboratory evolution of microbial strains results in a large number of biological

datasets that include phenotypic information, mutation maps, transcriptional, proteomic and metabolomic profiling of the evolved strains. These

large datasets are further processed by a number of computational techniques that include the de novo or referenced assembly of the sequencing

reads, network inference and computational modelling of the various biological pathways. The latter are further used to gain a deeper insight on

the mechanistic basis and interaction between their components. These models are further utilized to generate biological hypotheses that in turn

provide the basis of further experimentation.
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Table 2 An overview of in silico microbial evolution models and applications

In silico models (Publication year) Objective of the studies Results

Gene network model
Organism: genes regulatory network of B4
abstract genes either in ‘active’ or ‘inactive’
state depending on the incoming regulation

(2009) Hypothesis: natural selection favors
high evolvability, especially in sexual
populations.87

Fluctuating natural selection increases the
capacity to adjust to new environments.
Shifts in the directional selection cause
evolvability to increase.

Population: fixed size N = 103..104; sexual or
asexual; random initialization
Fitness depends on the mismatch of the gene
states (phenotype) with the optimum
Environment: fluctuating or stable
Mutations: network connectivity or weights
Selection: reproduction with probability
Bfitness

Evolution of signaling pathways18,88 A. (2008) Evolution of taxis responses.19 A. Concludes that the evolved taxis pathways
can contain features of both adaptive and
non-adaptive dynamics, depending on the
stimuli conditions during evolution.

Organisms: signal transduction, biological
pathways; network of protein interactions;
up to 2..18 proteins in one of two states
Population: 1000 randomly initialized
pathways
Fitness: almost the same for all pathways,
decreased for larger pathways
Environment: signals are the ligand
concentrations

B. (2006) Evolution of complexity in
signaling pathways.18

B. Found that stringent selection pressure
result in a smaller, less complex pathways; in
contrast to more complex pathways evolved
under simple response requirements.

Mutations: during replication of a randomly
selected organism
Selection: varies; e.g. the magnitude of the
pathway’s transient response

EVE (Evolution in Variable
Environments)94,115,139

A. (2008) Predictive Behavior Within
Microbial Genetic Networks.94

A. Both in silico models and E. coli transcrip-
tional responses show predictive behavior and
reflect an associative learning paradigm.Organism: gene regulatory and biochemical

network of 10..100 ‘triplets’ (mRNA-protein-
modified protein nodes)
Population: constant size, 100..1000+
organisms, random initialization
Fitness: correlation between the metabolic
pathway expression levels and nutrients
availability

B. (2011) The effect of horizontal gene
transfer (HGT) on the evolution of gene
regulatory networks.93

B. Distribution of Fitness Effect (DFE) for
HGT events is analyzed. The effect of HGT on
organism regulatory organization is studied.

Environment: input signals varying over time;
nutrients availability is a delayed function of the
signals
Mutations: modifications of the network
topology and weights

C. (2012) A rate of evolution of a population
exposed to a sequence of environments
depends on a relative similarity and
complexity of those environments.92

C. Evolution can be accelerated by evolving
cell populations in a sequence of environments
that are increasingly more complex; weak
environmental correlations decelerate evolution.

Selection: quality of the nutrient availability
predictions leads to faster replication

Avida74,75 A. (2001) High mutation rates promote the
survival of the ‘flattest’.140

A. At high mutation rates organism with a high
fitness can be outcompeted by those with a
lower fitness that is more robust with respect
to mutations.

Organism: short codes with 100..300
instructions;
Population: limited by the size of a 2D grid
(B60 � 60), offsprings are replicated in to
the neighboring cells replacing the existing
organisms;
Fitness: increases exponentially with the
number of evolved binary functions as the
organism approaches a preset response function

B. (2008) Effect of genetic robustness on
evolvability.17

B. Likely conclusion: robustness relaxes the
selection; in the short the evolvability is
hampered, in the long term genetic diversity
is accumulated and the evolvability increases.Environment: input of random binary strings

Mutations: lines of the code are randomly
modified

C. (2011) The effect of low impact mutations
on evolution of digital organisms.141

C. Digital organisms do not evolve if the
predefined fitness benefit is below a certain
threshold. Therefore the selection breaks down
for fitness effect below the selection threshold.

Selection: organisms are limited in CPU time,
more fitted organisms are rewarded with bonus
CPU time

RAevol (Regulatory Aevol)72,73 (2010) Robustness and variability in static
and variable environments72,142

Amount of accumulated non-coding sequences
is inversely proportional to the mutation rate in
log–log space; the total number of nodes and
edges also scales down with the increase of the
mutation rate;142 applied to produce the artifi-
cial datasets, knock out maps, etc.72

Organism: Gene regulatory networks: DNA,
RNA, Proteins
Population: fixed size, B1000 gene regulatory
networks; random initialization
Fitness: ‘‘metabolic error’’, the difference
between organism’s and target phenotypes
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Table 2 (continued )

In silico models (Publication year) Objective of the studies Results

Phenotype: a function of metabolic proteins;
mapped from a genotype via artificial chemistry
Environment: a target phenotype; time
dependent
Mutations: alternations to the genome sequence;
introduced at every generation
Selection: number of offsprings is based on
the fitness

Evolution of gene regulatory networks107 (2010) Evolution of gene regulatory networks in
fluctuating environments.107

Studied the effect of various model
parameters on the GRN evolution in
fluctuating environments: mutations rates of
different type, gene expression costs, network
node degree distributions, etc.

Organism: gene regulatory network (DNA,
protein), cis-sites (100 cites per gene, unique
mapping between cis-sites and proteins); two
phenotypic genes; B10 genes
Population: B10 000 organisms; random
initialization
Fitness: a proximity of organism’s phenotype to
the target phenotype;
Phenotype: expression level of two phenotypic
genes;
Environment: random or cyclic fluctuating target
phenotype;
Mutations: alternations to network parameters
and cis-sites; duplication, deletion
Selection: division probability proportional to
fitness

AG model (Artificial genome)86,89 (2006) Study the model parameters and pro-
prieties of the evolved organisms.86

Internal constraints and biases of the model
are reported.Organisms: A string in a 4-letter alphabet;

4-character promoters, B30 of 6-character
genes; expressed genes bind according to their
sequence and regulate first downstream gene;
binary gene expression; organism can be
represented as a gene regulatory network
Population: B50 random genomes
Fitness: assigned score based on a set of
organism’s proprieties (varies: network size,
node degrees, etc.)
Phenotype: binary expression table of all genes
at a given time point
Environment: defined by the set of proprieties
used in fitness evaluation
Mutations: Base in AG can be miss-copied at the
reproduction step
Selection: sexual reproduction of high scoring
genomes

Evolution of gene regulatory networks21,90 (2010) Stochasticity vs. determinism.21 Genomes evolved under the stochastic gene
expression model are smaller than ones
evolved with deterministic model. Stochastic
model is more capable of evolving solutions.

Organisms: A set of genes with cis-binding sites
for regulators; one-to-one map between genes
and binding sites; Boolean network dynamics85

Population: fixed size; 1000 organisms;
pre-evolved under ‘neutral evolution’
(no selection) to produce realistic networks
Fitness: based on the production of the
‘biomass’ by ‘biomass pathway’ genes
Environment: input signals are food processed
by special proteins
Mutations: changes in genes and binding site
types, amplification, deletion, HGT
Selection: organisms with higher fitness are
more probably to replicate

Evolution of gene regulatory networks91,95,96 (2008) Robustness as emergent propriety of
evolution.95

Effect of starting populations (with various
degree of the transcription factor specificity),
input types, and objective function were
studied. It is observed that robustness is
evolves along with the network evolution
even without a direct selection pressure
towards more robust organisms.

Organisms: a network of 11 species (DNA,
input proteins, transcription factors, mRNA,
proteins, RNAP, etc.). Allowed reactions are
described with ODE or a stochastic algorithm
Population: 40 individuals, random sexual
reproduction
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that can modify cellular organization and parameters is needed to

model the evolutionary processes that the model tries to capture.

These include random mutation that can be of different kind

(e.g. hits in the promoter region vs. the protein domains) and

magnitude (e.g. fluctuation around the existing parameter

value vs. parameter randomization), recombination, insertion

Table 2 (continued )

In silico models (Publication year) Objective of the studies Results

Fitness: based on the difference in the expression
levels of a special proteins (biomass production)
and the rest of the proteins; as an option can be
also inversely proportional to the total number
of network links
Phenotype: protein expression values
Environment: inputs connected to the sensor
proteins and the type of fitness function itself
Mutations: changes to network; artificially high
mutation rates are used to speed up the
convergence
Selection: 3

4 of organisms are replaced with 1
4 of

fittest organisms (to protect fit organisms from
high mutation rates)

Artificial chemistry and evolution of metabolic
networks71

(2011) Evolution of early metabolism.71 Model attempt to provide ‘‘genome - pheno-
type - fitness’’ map for a given genomic
sequence using artificial chemistry model.
Sowed that shapes the metabolic networks at
early stages. Later stages keep the core set of
metabolic pathways unchanged and alter the
enzyme recruitment patterns.

Organisms: genome (cyclic RNA 5000 bases
long, genes are 100 bases long) + metabolic
system; ‘‘sequence - structure - function’’
model; sequence is transformed into a 3D
structure; function is assigned using a heuristic
algorithm. Metabolic reactions are described
with artificial chemistry model
Population: B100 organisms
Fitness: based on flux balance analysis,
a maximum of the yield function
Environment: chemical composition of the food
source; time variable
Mutations: applied to the genome sequence
directly
Selection: direct competition for the resources

Fig. 4 Mapping genotype-to-phenotype for microbial evolution in silico. The most common approaches to map the genotypic and phenotypic

relationships are (a) using a pseudo-alphabet together with a fitness effect distribution or artificial chemistry models, (b) the representation of an

organism’s genotype as a list of programming commands that are further evaluated in a specific task or objective function, (c) the inclusion of a

gene regulatory, biochemical and metabolic network with a distinct temporal profile that is related to phenotypic fitness. In all models, mutations

affect the genotypic space, while selection acts on the various phenotypes, with the environment affecting both these processes.
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of genetic fragments through lateral gene transfer, etc. Each cell

can act as an independent agent that receives environmental

cues, processes their information through its internal pathways

and reacts accordingly. Another important aspect of any multi-

scale evolutionary model is to incorporate a representation of

the environment that the simulated organisms occupy. The

environmental model should include the various dynamic

signals present to the environment and environmental parameters

that affect the organism-specific parameters in the model.

It is evident that such level of multi-scale modeling faces

significant hurdles in many dimensions. First it will have

to incorporate processes that have fundamentally different time-

scales that range frommilliseconds to decades (Fig. 1A). The same

is true but at a lesser extend for the spatial component of the

model, which may have to range over six orders of magnitude. In

addition, since most evolutionary simulations are performed in a

discrete time, the choice of the time step is not trivial. A rule of

thumb is that the time step should be smaller than the frequency of

mutations and divisions (the lifetime of a single generation) and

that the overall length of a simulation should be sufficient to

describe mutation fixation and natural selection. If the model has

to include gene expression and molecular interactions then the

time step must be further reduced at least 10�3 relative to the

generation time.

Modeling of genetic information

Models which include the description of an organism at the genome

level, have to either assign the fitness effect to each random

mutation randomly by drawing from a predefined distribution of

fitness effects69,70 or to design a chemical representation which

map the genotype to fitness.71–73 These models are almost always

restricted to abstract, pseudo-genomic alphabets to reduce the

genomic space. However, the advantage of having a DNA level

in the model, even though described through an abstract alphabet,

is its flexibility to incorporate more realistic representations of

different types of mutations and maintain experimentally-derived

relative probabilities for these events.

As it is difficult to calculate the fitness effect of random

mutations if only the organisms’ genome is known, many

models include hard-coded, genotype-fitness or network-

fitness associations. A common model is based on gene

regulatory networks, which are discussed in the next section.

Alternative representations include associating each organism

with a short code (a sequence of instructions) as it is imple-

mented in the Avida digital organism simulator.74,75 In that

case, mutations modify and replace the instructions while the

fitness is based on the output of the evolving program.

Gene regulatory and biochemical network

Biological functions can be described with a high degree of

realism using a systems biology approach. The interaction

between the molecules inside the cell can be described as a

graph76 (usually directed and weighted). The nodes may

represent molecules (e.g. DNA, mRNA, proteins, small meta-

bolites). Links between the nodes correspond to regulatory

associations. The direction of the link may represent the

source–target relationship of the interaction pair while the

edge weight captures the strength of the regulation. The values

assigned to the nodes of the graph may correspond to the

number of molecules of each type or respective concentrations.

With a realistic expression model the dynamics of the gene

regulatory and biochemical network can closely resemble the

dynamics of chemical reactions in a living cell. Mutations are

introduced as the alternations of the network parameters and

topology. For example, the change in the weight of a protein-

to-DNA interaction may correspond to a mutation which alters

the binding affinity of a transcription factor to its binding site

and a replication of a network fragment is equivalent to the

gene duplication. This approach helps to assign fitness to an

organism using direct evaluation of its network dynamics, as

compared to randomly sampling a fitness distribution.

One of the challenges associated with these methods is to

provide realistic parameter ranges for the various parameters

in the network, such as the reaction rates and binding affinities.

Another challenge is to maintain a realistic ratio between

different mutation types (various alternations to the organisms’

network), as it directly affects the effective distribution of fitness

effects during a simulation run. Hence, network mutation

models should be adjusted to produce distribution of fitness

effects similar to ones observed in nature.

The choice of the initial state of the evolving organisms is a

challenge in itself. Hopefully, in the nearest future it would be

possible to construct an initial network based on the propriety

of a particular model organism. However, we still do not have

enough information to represent the complete expression

dynamics even in the case of well-studied model organisms.

The obvious alternative is to start with a random network, which

resembles in its proprieties the gene regulatory and biochemical

network of the organisms that we would like to study.77–79

Expression models

For small regulatory networks and pathways, reaction constants

can be well studied and the dynamics of the expression can be

described efficiently by systems of differential equations or a

variety of stochastic methods. An overview of the mathematical

models for dynamics of the biological pathways and networks can

be found in a number of reviews.80–84 However, due to a the large

scale of simulations with respect to population sizes and number

of generations, in silico evolution simulators are generally limited

to the use of simplified gene expression and regulatory models.

Boolean network85 of genes in ‘‘on’’ or ‘‘off’’ state is one of the

most frequent choices.18,21,86–90 Alternatively continuous concen-

trations of cellular components can be simulated deterministically

and/or stochastically91–96 as a function of the total incoming

regulation to each node.

When it comes to modeling the dynamics of biological

networks several options exist. In deterministic models of

biological systems,75,97,98 a certain input always produces the

same output, and these often utilize ordinary differential

equations (ODE). In contrast, stochastic differential equations

(SDE) are used when system behaviour may be sensitive to

noise.21,99–102 Additionally, various biological systems such as

transcriptional networks include reactions that are slow and

with a low number of interacting molecules, which make the

use of differential equation methods unsuitable. In such cases,

stochastic simulations of discrete intervals have been found to be
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more accurate, thus matching better the biological dynamics and

providing valuable insight to experimentalists on the dynamic

system behaviour, usually at the cost of computationally more

intensive simulations.103 Invariably, stochastic models use a

probabilistic framework to capture the stochastic nature of the

respective biological process, although the underlying algorithm

may vary depending on the accuracy and performance that we

want to achieve. Popular simulation algorithms include dynamic

Monte Carlo approaches, Gillespie variants,69,100 and discrete

event runs.104 Some models integrate stochastic and deter-

ministic models: for example TinkerCell105 is a modular CAD

tool for systems and synthetic biology, where the user can

create designs and simulate their behaviour by utilizing

deterministic (ODEs), stochastic and flux-balance models.

Genotype–phenotype relationships are reconstructed for

metabolic networks using a variety of constraint-based

reconstruction and analysis methods.106 Hopefully, with

further development of highly scalable in silico evolution codes

and continuous accumulation of the experimental parameters,

microbial evolution models will be capable to include expres-

sion models at a level of precision which is already achieved

for smaller, non-evolving pathways.

Fitness

Generally, fitness characterizes the suitability of an organism to

grow in a specific environment. Experimentally, measures of an

organism’s fitness include the growth rate (or doubling time), the

survival rate after environmental perturbation, and the ability to

outcompete other organisms under a controlled environment.

Various in silico models propose a number of approaches to

evaluate and use fitness and/or energy. Fitness is rarely a pure

metric or an output parameter of the model.71,94 More

frequently it is used to adjust the population dynamics and

serves as both an output and an input parameter of the model:

the replication probability86,87,107 or the number of off-

springs21,72,73,90 can be set proportional to the calculated

fitness, alternatively the computational time can be rewarded

to an organism based on its fitness.74,75 There is an important

difference in these approaches as they postulate one set of

parameters and evaluate the other.

Since fitness is always a function of the phenotypic profile

under a given environmental context, in silico models need to

encode the structure of the environment within their models.

This is usually achieved by representing the environment as

a collection of input signals, which are connected to and

processed by each individual organism18,74,75,88,92–94 or by

adjusting the target phenotype directly72,73,107 and therefore

the genotype-to-fitness mapping function is modified to repre-

sent the environmental changes. If an artificial chemistry is

part of the model, an environment may include the nutrients of

various chemical composition metabolized by each evolving

organism.71 Any model can be easily extended by varying the

signals over time to represent non-constant environments.

The overall fitness function of the genotypic and environ-

mental parameters can be represented as a multi-dimensional

fitness landscape.108 Evolution therefore can be visualized simply

a search for the maximum fitness on this multi-dimensional

surface. However, even if an analytical shape of the fitness

landscape would be given, its large dimensionality and the

complex shape with multiple local optima would make the

exhaustive search for the global maximum impossible. More-

over, the fitness landscape surface can be continuous only with

respect to either the genotype or the fitness, but not both.

Most heuristic algorithms employ the Monte Carlo approach

in attempt to sample the parameter space and the sampling

size is rarely sufficient to cover the solution space.

Distribution of fitness effects and mutation rates

The distribution of fitness effects (DFE) is particularly useful

on discriminating between lethal, deleterious, neutral, and

advantageous mutations. The shape of DFE is an important

characteristic of evolution and cannot be ignored if the natural

selection is being modeled. DFE, together with the known

mutation rates and population sizes can provide a solid basis

for a model of mutation fixation dynamics. It is hard to

measure DFE experimentally,13–16,49,109 as one is usually able

to observe only fixed mutations (usually with a strong positive

effect on the organism’s fitness) after the natural selection

‘discarded’ most negative and all the lethal mutations. How-

ever, DFE was measured for random single point mutations in

viruses13–16 and bacteria.49,109 DFE follows the general trend

which is in agreement with nearly-neutral evolutionary model:110

most mutations are neutral, with the distribution slightly

skewed towards the deleterious mutations, significant number

of mutations is lethal, and few have a strong positive effect.111

The distribution of beneficial mutations is believed to be

exponential112 (i.e. with a longer ‘tail’ then a Gaussian distribu-

tion would have), therefore few mutations with very strong

positive effect on fitness could be observed in any environment.

In silicomicrobial evolution models, which cannot directly map

the genotype to phenotype, randomly draw fitness effects of

new mutations from a predefined DFE curve.

Although both distributions of different mutation types and

mutation rates are reasonably well studied in vivo,22,23 adapta-

tion of these parameters by the in silico models is complicated

by the abstract nature of the models. In some cases, such as the

Avida simulator,74,75 mutation rates cannot be directly mapped

as the underlying substrate is not the same (e.g. programming

code vs. DNA changes). Trying to quantify mutations in the

gene regulatory network is not a much easier task: the topology

and weights attempt to represent the molecular dynamics within

the organism, but not the underlying genotype. Models with an

implicit DNA level have an advantage of a direct control on the

mutation types and rates, but suffer from the undefined fitness

effects for these mutations as it was described above.

Population-level effects

A detailed cellular model which describes its short term dynamics

is usually too complex for evolutionary simulations in a popula-

tion level. However the mutation fixation dynamics strongly

depend on the population size: in small populations the random

drift plays a significant role,43 and even deleterious mutations can

be fixed by a random chance; large microbial populations are

subject to the effect of clonal interference.34,113 The latter effect

results in a higher relative heterogeneity of large bacterial

populations and in the parallel occurrence of equally viable but
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genetically different organisms in one population. While the

mutation rate (per organism, per generation) is usually constant

in in silico experiments, the rate of mutation fixation and the type

of fixed mutations strongly depends on the selection pressure.

The presence of stress induces a higher effective fixation rates.114

Selection pressure in silico is controlled by the cost/benefit

balance between the complexity of the environment and the

reward level for the partial adaptation.

Another common problem for all computational models is

the difference between ‘‘biological’’ and ‘‘computational’’

time. Evolving organisms can shrink or expand in size during

evolution which directly affects the time that it is needed to

simulate their behavior. To cope with this discrepancy, in silico

implementations either sequentially apply mutations and

selection to the entire population or include synchronization

points among parallel processes that calculate the values of

every cell in the population.115 Alternatively, the individual

selection pressure is adjusted according to the computational

time used by an organism.75

Parallel simulations of microbial evolution

The level of details that could be included in any in silico

microbial simulation, population sizes and the evolution time

is always limited by the available computational power. As

computational clusters and cloud computing resources

become widely available, the natural direction to expand the

capabilities of the in silico simulators is to utilize paralleliza-

tion. While this is yet virtually unexplored possibility, simula-

tions of the microbial evolution can be parallelized quite

easily. Most simulators describe evolution of single organisms

in a population independently, with sequential application

of the selection pressure to favour most viable organisms.

Population can be split into groups of organisms each of those

can be evolved in parallel115 with frequent updates regarding

the state of the environment, nutrients availability, population

state, etc. in order to keep the time synchronized between the

population sub-groups. This approach makes the parallel

implementation almost trivial. However such a naive approach

faces significant problems with the scalability of the code. As

organisms evolve, variation in computation times between

computational groups becomes significant, and the need for

synchronisation increases the idle time as all computational

process wait for the slowest one to complete the evolutional

task. Once the number of parallel processes reaches thousands

or tens of thousands, the idle time starts to dominate over the

actual computing time.

Challenges for microbial evolution models

As discussed above, one of the main challenges in the in silico

modelling of microbial evolution is to achieve the right

balance between biological realism and computational feasi-

bility. This becomes a particularly formidable problem

when we consider that the various processes that should be

incorporated in the model have a wide range of temporal and

spatial scales. It is ultimately left to the discretion of the

researcher to decide the level of detail and biological organiza-

tion that should be included in the model, which in turn it will

determine the questions that it will be able to address.

Another challenge that is common for all modelling efforts

in general, and for microbial evolution models specifically, is

the availability of environmental and cellular parameters

(Fig. 3). Any multi-scale effort to model microbial evolution

is bound by our knowledge for cellular organization and

processes, as well as the value of the various evolutionary

parameters. As microbial populations and environmental

context may vary considerably, an accurate estimation of the

model parameters is both necessary for biological realism and

difficult to achieve.

Ultimately, the predictive ability of a model is evaluated

through comparison to experimental observations. In the case

of microbial evolution, there are some examples where theory,

computational simulation, and biological observation comple-

ment nicely each other and present a compelling case on the

emergence of complex microbial behaviours.94 In other cases

however, it is notoriously hard to validate computational

predictions, since the experimental validation necessary to

achieve this is prohibitingly time-consuming.

Conclusion remarks and future directions

In the past decades, there has been a paradigm shift on how we

perceive microbial life. Initially regarded as passive life forms

with minimal interaction with their environment, microbes

have evolved intricate genetic, proteomic and metabolomic

programs that enable them to exhibit sophisticated behavioural

repertoires. Extensive work has been done at characterizing these

behaviours that are both individual (stochastic switching,116–118

persistence,119 bet-hedging,120 anticipation94,121) and social (sym-

biosis and cooperation,122–124 defection,125 biofilm formation126,127

and parasitism,128 among others129).

Despite these efforts, our understanding of the dynamics

and emergence of these behaviors during evolution is very

limited. Gathering hints on why organisms evolved certain

processes is challenging, since we usually are oblivious of most

environmental parameters in their habitats. Laboratory evolu-

tion of microorganisms provides a more controllable way to

observe in vivo evolution and it has considerably increased

our understanding of microbial physiology and evolutionary

processes. However, ALE experiments are still bound by the

slow timescales in which evolution operates, and our limited

ability to record, process, and store biological information

through measurements and experimentation.7,130–133 Mathe-

matical multi-scale modeling and supercomputer simulation

can overcome these shortcomings, and given sufficient bio-

logical realism and computational resources, we can build a

framework that can serve as a test bench for generating and

testing evolutionary hypotheses.

For this to happen, there are several conditions that need to

be met. First, we have to develop integrative and multi-scale

models that incorporate tightly coupled processes from a wide

range of sub-cellular, cellular and evolutionary functions. This

goal calls for models that have balanced biological resolution

and simplifying assumptions. This can be achieved by (a) avoiding

the inclusion in the model of processes and parameters that do

not play a significant role for the phenomena we are interested,

(b) providing realistic parameter ranges to the model that

stem from experimental measurements, (c) refraining from
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oversimplifying the model since this would introduce bias to

the simulation and may conceal system-level phenomena, (d)

identifying the optimal level of abstraction for the temporal

and spatial timescales that are involved in the phenomena that

we study. From a technical standpoint, we have to develop

scalable algorithms and flexible data structures capable

to capture disparate objects (molecular species, biological

networks, organisms, populations, environments). The code

should be freely available and the models should adhere to

modeling standards (e.g. SBML-compatible134,135). A simulation

framework that is modular, architecture-independent, has an

intuitive visualization interface, and can work both in standard

computer systems as well as in parallel supercomputer systems

for large scale runs would be useful both to the research and

teaching community. Recently, there has been work performed

towards the direction to integrate high-performance computing,

multi-scale modeling and experimental validation to study

complex phenomena and evolutionary dynamics in microbial

evolution.92–94,115 Attempts such as the above have the potential

to elucidate biological dynamics through an iterative procedure

of modeling-validation-refinement with far-fetching applications

in the various biotechnological and medical fields.

Abbreviations

ALE adaptive laboratory evolution

DFE distribution of fitness effects

HGT horizontal gene transfer

SNP single nucleotide polymorphism
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