
Optimizing module matching for synthetic gene circuit
design automation

Linh Huynh
Department of Computer Science

& UC Davis Genome Center
University of California, Davis

huynh@ucdavis.edu

Ilias Tagkopoulos
Department of Computer Science

& UC Davis Genome Center
University of California, Davis

itagkopoulos@ucdavis.edu

1. INTRODUCTION
An integral challenge in automated synthetic circuit de-

sign is to select the optimal set of parts to populate an ab-
stract circuit topology, so that the circuit behavior best ap-
proximates the desired one. In some cases, it is also possible
to reuse multi-part constructs, or modules that have been al-
ready built and experimentally characterized. Efficient part
and module matching algorithms are essential to systemati-
cally search the solution space and their significance will only
increase in the following years due to the projected explosion
in part libraries and circuit complexity. Here, we present a
matching method based on an iterative node traversal al-
gorithm that can guarantee optimality in the set selection.
Results from the integration of the proposed method in the
SBROME CAD tool show scalable performance and optimal
set selection in a database of experimentally constructed
parts and modules. This work represents a fundamental
departure from the previous heuristic-based part matching
methods [1][2][3][4][5] and is a step towards maximizing ef-
ficiency in synthetic circuit design.

2. AN ILLUSTRATIVE EXAMPLE
Assume that we would like to design a circuit that has the

topology specified in figure 1b based on an available module
library, as shown in figure 1a. Since the final gate is an AND
gate and the circuit output is gfp, there are only module 4
and module 5 that can match. If we use a greedy strategy
based on the matched module size, then the module 4 will
be chosen over module 5 (since the first match both A2 and
N2) and the gate A1 can only match with the one in module
6, while there are three ways to match the gates N1 and O1.
In the first case, where N1 and O1 are matched with module
1, this ultimately does not constitute a solution as there is
no way to choose the common input y since module 1 and
module 6 share no input. In the second case, N1 and O1
can be matched with module 2 and y can be set to be aTc.
However this still does not lead to a solution, since module 2
uses cI as a signal and it will interfere with cI that connects
gates A1 (matched with module 6) and N2 (matched with
module 4). In the third and last scenario, if N1 and O1 are
matched by two modules 8 and 7 as in figure 1c then this
actually constitutes a solution since we can choose the com-
mon input y as aTc and there is no cross-talk. However this
greedy selection requires a final construct with four mod-
ules, and it only presents a local optimum. For example, if
the output gfp is matched with the module 5, then we need
only two more modules (module 1 is matched with gates N1
and O1 while module 3 is matched with gates A1 and N2)

a

Lara

IPTG
hrpR

cI

hrpS
gfp

Mg2+

Lara
hrpS

Lara

aTc
hrpS

cI

module 1

module 2

module 3

module 4

HSL

aTc
hrpS

aTc

IPTG
cI

hrpS

hrpR
gfp

HSLMg2+

module 6

module 5

module 7

module 8

b

d

c

gfpy

z

x
N1 O1

A1
N2

A2

gfp

hrpS

Lara

IPTG hrpR

Mg2+

module 5
module 3

module 1

gfp

hrpS

aTc

IPTG

Mg2+

module 4module 6

cI

HSL
module 8 module 7

Figure 1: An illustrated example of the module
matching problem. (a) The module library. (b)
The abstract input circuit graph. (c) A non-optimal
matching. (d) An optimal matching

to assemble the whole circuit as in figure 1d. This exam-
ple illustrates why traditional heuristics are sub-optimal in
module matching and it highlights two important features of
biological circuits that have to be taken into account, namely
the part compatibility and cross-talk.

3. METHODS
Gene circuit representation: Each circuit is repre-

sented by a circuit graph G = (V,E, VI , VO, τ1, τ2) where
V and E are the vertex set and the edge set, VI and VO are
subsets of V that represent inputs and outputs respectively,
τ1 and τ2 are vectors that describe the type of each node
(ligand, mRNA, protein, gate) and each edge (activatory or
inhibitory), respectively.
Problem formulation: Given a circuit graph and a li-
brary that contains parts and modules, find a minimum set
of parts/modules that can be assembled together to match
with the given input circuit graph so the final graph contains
no cross-talk between components. In this research, we limit
our study for only single output directed acyclic graphs.
A dynamic programming based algorithm: Module
matching is similar to topology mapping [6] in electric circuit
design which can be solved efficiently by using the dynamic
programming approach. However, in contrast to electrical
circuits, biological circuits do not have a universal carrier

Table 1: Running time (seconds) for sample circuits

Module library size

Design 25 50 97

not_and_1 0.01 0.05 0.06
not_and_2 0.02 0.28 10.64
2_to_1_mux_1 0.02 0.16 0.18
2_to_1_mux_2 0.06 0.14 0.15
2_to_1_mux_3 0.02 0.54 19.81

of information and they have to utilize multiple molecular
species to do so, since there is no explicit wiring to isolate
components. This constraint breaks optimal substructure
condition of any dynamic programming approach since the
optimal solution sometimes has to be constructed from non-
optimal sub-solutions because the optimal sub-solutions may
be not be compatible or have cross-talk effects.
To overcome these obstacles, we have to store both non-
optimal solutions and the information about the connection
compatibility and cross-talk effects to ensure the optimal
solution is found. For each node v, the transitive fan-in
subgraph of v is a subgraph that contains v itself and all
nodes connected to v by some directed paths. A matching
at v is a matching of a set of parts and modules with the
transitive fan-in subgraph of v that satisfies the constraints
of connection compatibility and cross-talk effects. The set
R(v) stores all possible matchings at v and their necessarily
related information. In particular, each element r ∈ R(v)
is a 4-component vector in which i) cost is the number of
parts and modules, ii) signal contains all internal molecu-
lar species inside parts and modules that are used to match
with the transitive fan-in subgraph of v iii) output is the
output signal at v with this matching, and iv) information
about the recursion so that the procedure traceback can
trace back to find the final solution.
The key idea here is that the set R(v) will be constructed
recursively following algorithm 1. All nodes are traversed
by their topological order. At each node v, R(v) stores all
matching combinations that satisfy the constraints of com-
patibility and cross-talk (checked by procedures comp and
cross respectively), each of these combinations contains a
matching m at v together the matching at each input of
m recursively. This algorithm can be thought of as an ex-
haustive search that investigates all possible solutions sys-
tematically but it’s performance is improved by eliminating
solutions that violate the constraints of the connection com-
patibility and cross-talk effects as early as they occur.

4. RESULTS
We built a library of totally 97 parts and modules where

47 are reported in literature and 50 other are synthetic mod-
ules (similar constructs with alternative promoters). Since
the algorithm will always return the optimal solution, we
only consider the running time to evaluate its performance.
The running time for each circuit with different library sizes
is reported in table 1. In general, the running time scales
well in the case where the input topology contains logical
gates only (not_and_1, 2_to_1_mux_1 and 2_to_1_mux_2)
because their solution space is small and designs are elim-

Algorithm 1 Module matching algorithm

1: Input: G = (V,E, VI , {vo}, τ1, τ2)
2: Module & part library L
3: Output: List of fixed circuits Sol
4: for each node v ∈ V in the topological order do
5: R(v)← ∅
6: M← match(v,L)
7: for each match m ∈M do
8: I = {vi1 , vi2 , . . . , vik} ← input(m)

9: for r = (ri1 , ri2 , . . . , rik) ∈
k∏

j=1

R(vij) do

10: if (compatible(m, r) ∧ ¬cross(m, r)) then

11: R(v)← R(v) ∪ {
(k∑
j=1

cost(rij) +1,

12:
k⋃

j=1

signal(rij) ∪ signal(m),

13: output(m),
14: (m, ri1 , ri2 , . . . , rik)

)
}

15: end if
16: end for
17: end for
18: end for
19: O = {r ∈ R(vo) | cost(r) is miminum}
20: Sol = traceback(O)

inated due to compatibility constraints. When the input
topology contains both logic gates and elementary parts,
the algorithm has more flexibility to choose smaller modules
to match, which leads to an extended solution space and
running time (not_and_2 and 2_to_1_mux_3).

5. DISCUSSION
We present a module matching strategy that returns the

optimal set of parts for synthetic gene circuit design automa-
tion. There are several extensions of this work that warrant
further investigation. First, we can improve the computa-
tional performance by reducing the number of records in
eachR(v). This would require a two-step strategy. First, we
would have to apply a branch-and-bound technique that is
guided by heuristics to find an initial set of solutions, which
will allow the pruning of the records with lower score that
cannot lead to an optimal solution. Second, we can extend
this approach for general graphs that may contain loops or
multiple outputs. More far-reaching and ambitious exten-
sions of this method include its application in multi-cellular
system design, integration with information flow algorithms
for gene networks [7] and population-level simulation tools
[8][9][10] for synthetic biology applications [11][12]. As syn-
thetic circuits will continue to grow in size and complexity,
methods like the one presented here will constitute the al-
gorithmic basis for future design automation efforts.

6. REFERENCES
[1] L. Huynh, A. Tsoukalas, M. Köppe, and

I. Tagkopoulos, “Sbrome: A scalable optimization and
module matching framework for automated
biosystems design,” ACS Synthetic Biology, 2012.

[2] L. Huynh, J. Kececioglu, and I. Tagkopoulos,
“Automated design of synthetic gene circuits through
linear approximation and mixed integer optimization,”

[3] L. Hunyh and I. Tagkopoulos, “A robust,
library-based, optimization-driven method for
automatic gene circuit design,” in Computational
Advances in Bio and Medical Sciences (ICCABS),
2012 IEEE 2nd International Conference on, pp. 1–6,
IEEE, 2012.

[4] L. Huynh, J. Kececioglu, M. Köppe, and
I. Tagkopoulos, “Automatic design of synthetic gene
circuits through mixed integer non-linear
programming,” PloS one, vol. 7, no. 4, p. e35529, 2012.

[5] F. Yaman, S. Bhatia, A. Adler, D. Densmore, and
J. Beal, “Automated selection of synthetic biology
parts for genetic regulatory networks,” ACS Synthetic
Biology, vol. 1, no. 8, pp. 332–344, 2012.

[6] K. Keutzer, “Dagon: technology binding and local
optimization by dag matching,” in DAC, pp. 617–624,
ACM, 1988.

[7] A. Pavlogiannis, V. Mozhayskiy, and I. Tagkopoulos,
“A flood-based information flow analysis and network
minimization method for gene regulatory networks,”
BMC bioinformatics, vol. 14, no. 1, p. 137, 2013.

[8] V. Mozhayskiy and I. Tagkopoulos, “Guided evolution
of in silico microbial populations in complex
environments accelerates evolutionary rates through a
step-wise adaptation,” BMC bioinformatics, vol. 13,
no. Suppl 10, p. S10, 2012.

[9] V. Mozhayskiy and I. Tagkopoulos, “Horizontal gene
transfer dynamics and distribution of fitness effects
during microbial in silico evolution,” BMC
bioinformatics, vol. 13, no. Suppl 10, p. S13, 2012.

[10] I. Tagkopoulos, Y.-C. Liu, and S. Tavazoie, “Predictive
behavior within microbial genetic networks,” science,
vol. 320, no. 5881, pp. 1313–1317, 2008.

[11] M. Dragosits, D. Nicklas, and I. Tagkopoulos, “A
synthetic biology approach to self-regulatory
recombinant protein production in escherichia coli,” J
Biol Eng, vol. 6, no. 2, 2012.

[12] I. Tagkopoulos, “Microbial factories under control,”
2013.

