
Fast and Accurate Circuit Design Automation through Hierarchical
Model Switching
Linh Huynh and Ilias Tagkopoulos*

Department of Computer Science & UC Davis Genome Center, University of California Davis, Davis, California 95616, United States

*S Supporting Information

ABSTRACT: In computer-aided biological design, the trifecta of characterized
part libraries, accurate models and optimal design parameters is crucial for
producing reliable designs. As the number of parts and model complexity increase,
however, it becomes exponentially more difficult for any optimization method to
search the solution space, hence creating a trade-off that hampers efficient design.
To address this issue, we present a hierarchical computer-aided design architecture
that uses a two-step approach for biological design. First, a simple model of low
computational complexity is used to predict circuit behavior and assess candidate
circuit branches through branch-and-bound methods. Then, a complex, nonlinear
circuit model is used for a fine-grained search of the reduced solution space, thus
achieving more accurate results. Evaluation with a benchmark of 11 circuits and a
library of 102 experimental designs with known characterization parameters
demonstrates a speed-up of 3 orders of magnitude when compared to other design
methods that provide optimality guarantees.

KEYWORDS: biodesign automation, CAD, computer-aided design, module library, part selection, hierarchical model,
data-driven model

The design of biological circuits is a complex, tedious and
uncertain process. Over the past decade, research in the

area of synthetic biology tries to adopt the engineering
principles of standardization, abstraction, model-driven design
and automation for a faster, more compatible and reliable
outcome. As such, computer-aided design (CAD) is of
paramount importance in this exponentially growing field,
and it will be essential for synthetic biology to materialize its
transformative potential. Over the years there has been
considerable progress in the field, although limitations such
as scalability, optimality and biological accuracy still need to be
addressed.1−3

The design of functional components that are part of a larger,
interconnected ensemble requires the following fundamental
principles to be in place: first, characterized fundamental blocks
that can be assembled together into a functional entity should
be available; second, the development of predictive models that
are accurate enough to capture the dynamic behavior of the
designed component; third, access to optimization tools that
can support design decisions given user-defined constraints and
objective functions, by utilizing the former (fundamental blocks
and model predictions) as its inputs. However, there is an
inherent trade-off between the second and the third principle.
On one hand, capturing fully and accurately the behavior of
designed components requires complex models, for example,
models that are based on systems of nonlinear differential
equations. At the same time, complex models can easily lead to
intractable and nonconvex optimization problems. As a result,
various CAD tools4−6 only support circuit simulation without

optimization, and even in cases where optimization is
supported, it is based on simplistic models, local information
and heuristic methods.7−11 Some of these tools are able to
handle modules, two or more parts that are grouped together,
which is an important extension as it can significantly lower the
construction time.8,12,13 Still, it remains an open question how
the module characterization parameters can be extracted from
the full circuit design and the experimental results available in
the literature.
This paper introduces a hierarchical two-step approach that

balances the model complexity trade-off. Our approach is
illustrated in Figure 1. A circuit topology and the desired
input−output relationship serve as the input. In the first step,
we use a logic-based model to limit the search space to design
topologies that can express the desired logic function. Within
that reduced search space, we apply a branch-and-bound
method to find the set of candidates that minimizes the number
of parts and modules. Then, in the second step, a nonlinear
model is used to capture the behavior of each candidate circuit
and identify the final solution. We used the SBROME
framework8 to implement and measure the performance of
this method. To provide the fundamental blocks necessary, we
also built a part and module library (PAMLib) that incorporates
the set of parts and modules used in ref 12 with characterization

Special Issue: IWBDA 2014

Received: October 16, 2014

Research Article

pubs.acs.org/synthbio

© XXXX American Chemical Society A DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

pubs.acs.org/synthbio
http://dx.doi.org/10.1021/sb500339k

parameters that were extracted from experimentally validated
circuits. In the following sections, we present the hierarchical
method that we employed and benchmarked against 11 circuits
of different sizes (Table S1, Supporting Information).

■ RESULTS AND DISCUSSION
The general problem that we solve here can be formulated as a
multiobjective optimization problem: find the optimal part/
module set, given a part library, a circuit topology and an
input−output characteristic relationship. A solution can be
thought as optimal when it uses the lowest number of blocks
(i.e., parts and/or modules) and it has the smallest deviation
(measured as the sum of squared errors) from the desired
input/output characteristic points. Since these objectives are
independent, our approach here only finds Pareto optimal
solutions. As described in the Methods section, the core of this
approach is a two-step workflow with different granularity levels

of the model complexity. In the first step, a logical model that
can be derived from the circuit structure (i.e., the interaction of
parts) is used. This allows us to apply a branch-and-bound
algorithm that branches on the circuit structure while checking
on whether other constraints are satisfied. We also implement
two extensions that increase the computational performance, a
look-ahead technique to exclude subsolutions based on future
compatibility issues and a branching technique that can handle
complex circuit topologies. In the second step, a nonlinear
model is used to capture the circuit behavior with more details.
In addition, parameter values are estimated from the high-
dimensional data to increase the accuracy of the approach (see
Methods). To evalute our framework, we built a benchmark of
11 circuits of various complexity and dynamic behavior.
First, we evaluated how well the number of parts and

modules is minimized by using a simple model. The goal here is
to minimize the time to construct the circuit from available
parts and modules rather than engineering new genetic parts as
it was the case in previous work.14 Therefore, in addition to the
minimization of the number of parts and modules needed, we
also favor constructs that are in a single plasmid since we may
use it directly (i.e., transformation directly into the host cell
without amplification and ligation). For that purpose, we define
the cost of a part or a module fragment to be one. For a module
that is in a single plasmid, the cost is set to 1 − ε. Here we set ε
= 0.01 so that a solution with that the number of parts and
modules still is the dominant factor in cost computation. The
solution cost, which is the total cost of parts and modules used
in this solution, and the running time for each circuit are
showed in Table 1. We also compare to the most parsimonious
and fastest method reported until now that employs dynamic
programming.12 We observe a speed-up in running-time
between 9 to 4000 in all cases that yield the same solution.
In addition, the heuristic approach leads to significantly larger
circuits in 9 of the 11 cases, while in the remaining two cases
the feed-forward and the 2-input NOT-AND circuitsthe
heuristic approach and the simple logical model resulted in the
same solution.
Next, we evaluated the performance of the two-step method

in the term of how well the final solution approximates the
desired circuit dynamics. To predict the behavior of candidates
that are determined from the first step, we use a nonlinear
model that is based on thermodynamics modeling of the
various components, as described in the Methods section and
inspired by previous work.15,16 Table 2 depicts the four binding
categories that our model captures and includes both positive
and negative regulation for one or two binding sites. Parameter
estimation is performed for each module by fitting the
corresponding model to the experimental data. As such, a
single part that participates in two distinct modules can have
characterization parameters that differ, since these have been
extracted from different circuits and hence in different contexts.
When a new circuit is simulated, the part parameter values are
those associated with the circuit/module that the part was
extracted and characterized. For the 11 circuits in the
benchmark we have extracted a total of 160 parameter values
(Table S2, Supporting Information). Table 3 provides a
summary of the parameter types and their dynamic range.
The simulated output and the desired output of the optimal
solution for each circuit is shown in Figure 2. Remarkably, the
method is able to generate circuits that approximate adequately
the desired dynamic behavior, despite the fact that the
parameters for their underlying building blocks (parts,

Figure 1. An illustration of the hierarchical model switching. A circuit
topology and the desired input−output relationship serve as the input.
In the first step, a logical model (represented through a network of
logic gates) is used to limit the search space to design topologies that
can express the desired logic function. In the second step, a nonlinear
model is used to capture the behavior of each candidate circuit and
identify the final solution. A part and module library (PAMLib)
provides the fundamental blocks necessary for each step. This library
incorporates the set of parts and modules (for the first step) with
characterization parameters (for the second step). A proposed circuit
design and its predicted behavior are provided at the output.

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/sb500339k

modules) were inferred from circuits with different input/
output specifications. The Pearson correlation coefficient

(PCC) for the 11 designs vary from 0.94 to 0.99 with a
mean PCC of 0.97. The 2-NOT-AND circuit exhibits the

Table 1. A Comparison on the Part and Module Selection between the New Approach (BB) and Other Ones (HS, DP)a

proposed circuit cost running time (seconds)

design input topology size (gate) HS BB HS DP BB

2-cascade 2 2 − ε 1 − ε 1.0 × 10−2 1.8 × 10−1 2.0 × 10−2

3-cascade 3 3 − ε 2 1.0 × 10−2 2.1 × 10−1 2.0 × 10−2

4-cascade 4 3 3 − ε 1.2 × 10−2 2.5 × 10−1 4.0 × 10−2

band-detector 3 6 5 1.5 × 10−2 3.4 × 10−1 8.0 × 10−2

feed-forward 3 4 − 2ε 4 − 2ε 2.6 × 10−2 6.3 × 10−1 7.0 × 10−2

2-not-and 2 2 2 3.1 × 10−2 6.4 × 10−1 4.0 × 10−2

3-input-and 2 3 3 − 3ε 6.9 × 10−1 2.3 1.2 × 10−1

3-not-and 3 4 − ε 4 − 2ε 6.7 × 10−1 3.6 × 101 1.5 × 10−1

2-to-1-mux 4 7 5 − 3ε 1.7 1.1 × 102 1.6 × 10−1

D1 4 7 6 − 4ε 1.1 1.2 × 103 9.8 × 10−1

D2 5 8 6 − 4ε 2.8 2.0 × 103 4.5 × 10−1

aBB, branch and bound; HS, a heuristic search approach; DP, a dynamic programming based approach12 that enumerates all subsolutions of each
node.

Table 2. Models for the Protein Production Rate with Different Promoter Types

aThe number of operator binding sites (OBS) where the transcription factor (TF) can bind.

Table 3. Parameter Extracted and Deposited in the Part and Module Library (PAMLib)

category parameter description unit quantity dynamic range

Protein production F Protein production rate without transcription factor binding μM min−1 36 105

f1 Interaction coefficient between a transcription factor and RNAP n/a 14 25
K1 Dissociation constant μM 26 106

K2 Dissociation constant μM 8 105

ω Interaction coefficient between two repressors n/a 8 104

Ligand n Hill coefficient n/a 11 4
Kd Dissociation constant μM 11 104

Protein λ Degradation rate min−1 41 103

K Dissociation constant μM 5 106

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/sb500339k

highest deviation (PCC of 0.94). We further investigated that
the source of this discrepancy is not the existence of a better
solution (we confirmed that the method selected the optimal
solution by exhaustively testing all possible solutions), but the
limited number of parts and modules in PAMLib that does not
contain parts that could lead to a more favorable combination.
In addition, sensitivity analysis argues for the robustness of the
results, as the final solution remains unchanged in all cases
when a 5% perturbation is added to the parameter set (Figure
S1, Supporting Information).
There are several directions that can lead to further

improvements. First, an extension to this work would be the
integration of the constraint checking into the branch-and-
bound step to prune branches as soon as these constraints are
violated. Second, the cost function can be reformulated to take
into account additional features such as operon optimization,
technique-specific assembly constraints17 (e.g., different cost-
functions for Gibson assembly or Golden-Gate). Third, the
methodology can be extended to use a linear model,18,19

instead of a logic-based one as a first step. This will facilitate the
incorporation of genetic elements that have a common

background but harbor variations that can alter their dynamic
behavior, such as promoter libraries that have been generated
either through rational design or random mutagenesis of the
promoter region.20 As such, the branch-and-bound scheme that
was presented here can be applied for the variant selection
problem by grouping subsolutions that have similar behaviors
into classes and thus reducing the solution space that the
algorithm has to explore. In addition, the method can be
extended to handle general circuit topologies that encompass
multiple outputs and cyclic graphs. In terms of usability, this
implementation was focused more on optimized computation
to demonstrate the difference in performance and less so on an
intuitive presentation and standard packaging of the resulting
software and library. As such, the module library can be
repackaged in a standardized way to facilitate its reuse and
expansion through active standards, such as the Synthetic
Biology Open Language (SBOL).21,22

Ultimately, a genome-scale simulator23−25 can be used to
predict the dynamic circuit behavior within a specific host strain
and environmental conditions.26 The triplet of circuit, host
strain and environmental conditions can be used to generate a

Figure 2. Predicted behavior and desired behavior of each circuit in the benchmark. Each data point represents the normalized output value (the
simulated one by the y-axis and the desired one by the x-axis) of an input value combination.

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/sb500339k

model of transcription, translation, signal transduction and
metabolism. Although the incorporation of a genome-scale
model to a design pipeline seems straightforward, there are a
number of points to be considered. First, genome-scale and
circuit models use a very different approach to modeling, with
the former relying in a small set of parameters that usually map
statistical associations and not biophysical phenomena. In
contrast, circuit models try to capture, in detail, the biophysical
dynamics and use the appropriate kinetic constants (e.g.,
dissociation constants, protein degradation rates) and modeling
framework to do so.27 Merging these two worlds under a
unifying framework that increases the model’s predictive ability
is quite challenging. As both fields move forward, data
availability and coordinated efforts in both disciplines will be
instrumental to close this gap.28

■ METHODS

Definitions. Circuit Graph. We follow8 in the definition of
circuit graph. This graph represents all biological processes
(transcription, translation and binding) of a circuit. More
specifically, a directed graph represents a circuit, with every
node and edge represent the molecular species (ligand, mRNA,
protein and their complex) and regulatory relationship
(activation, repression), respectively. When only the type of a
node (e.g., ligand or protein), but not its name (e.g., IPTG or
tetR), is defined, then the graph is called an abstract circuit
graph. In this paper, we limit the circuit graph as only a directed
acyclic graph with single output node.
Logical Model. A logical model of a circuit graph is a set of

logical relationships; each of them is generated from the
regulatory relationship at each node by the following simple
rules: (i) the binding of an activator to a promoter generates a
YES (i.e., amplification) relationship, (ii) the binding of a
repressor to a promoter generates a NOT relationship, (iii) the
regulation of a hybrid promoter or the binding of two
molecular species generate an AND relationship, (iv) the
regulation of a tandem promoter generates an OR relationship.
Circuit Graph Matching. A matching between two circuit

graphs G1 and G2 is a bijection φ between their vertex set such
that (i) for each node u in G1, u and the corresponding node
φ(u) in G2 must have the same type, (ii) for each node u in G1,

if the name of both two nodes u and φ(u) is defined then these
names must be identical, (iii) (u,v) is an edge in G1 if and only
if (φ(u),φ(v)) is an edge in G2, and (iv) if (u,v) is an edge in G1
then the type of both two edges (u,v) and (φ(u),φ(v)) must be
the same.

Fan-in Node. For a circuit graph, a transitive input subgraph
of a node is a subgraph that contains that node and all nodes
connected to that node by directed paths (e.g., Figure 3a). A
transitive fan-in subgraph of a node is a connected subgraph of
the transitive input subgraph of that node that also contains
that node itself. Notice that there is only one transitive input
subgraph of a node but there is one or many transitive fan-in
subgraphs of that node. A fan-in node of a transitive fan-in
subgraph is a node outside that subgraph that can connect to
another node inside that subgraph by one edge (e.g., Figure 3b).

Part and Module. A part is an elementary genetic element
such as a promoter or a gene. A module is a composite part that
consists of two parts or more that have been assembled
experimentally (e.g., Figure 3d). The biological function of a
part or a module is represented by a circuit graph
representation above through the transformation as in ref 8.
In a circuit graph, a matching between a part (or a module) and
a node is a matching (defined above) between the circuit graph
representation of that part (or module) and a transitive fan-in
subgraph of this node. A fan-in node of this matching is simply
a fan-in node of the transitive fan-in subgraph.

Abstract Subsolution and Subsolution. An abstract
subsolution of a node is a partition that divides the transitive
input subgraph of that node into nonoverlapping subgraphs
(e.g., Figure 3c). A subsolution of a node is a triplet of (a) an
abstract subsolution of that node where the corresponding set
of nonoverlapping subgraphs is , (b) a set P of parts and
modules, and (c) a one-to-one mapping σ: →P such that (i)
for each subgraph G ∈ , there exists a matching between G
and the circuit graph representation of the part (or module)
σ(G) and (ii) the absence of cross-talk and connection
compatibility constraints (i.e., the output molecules of a
subcircuit match the input molecules of all connected
downstream subcircuits) are satisfied.
For an acyclic circuit graph, the subsolution definition above

leads to a recursive relationship: a subsolution of a node is also

Figure 3. Illustration of definitions on a circuit graph. (a) A transitive input subgraph of node K (marked by the dash line). (b) A transitive fan-in
subgraph of node K with corresponding fan-in nodes E and F. (c) An abstract subsolution of node K with 3 subgraphs. (d) A set of one part and two
modules and their circuit graph representation, the abstract subsolution in (c) together with this set and the mapping (subgraph I→module 1;
subgraph II→module 2; subgraph III→part 1) can form a subsolution of node K.

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/sb500339k

a pair of (a) a part (or a module) together with a matching
between this part (or module) and that node, (b) a
combination of subsolutions where each of them is of a fan-
in node of that matching.
Solution and Cost. The cost of a subsolution is the total cost

of all parts and modules used in this subsolution. A solution is
simply a subsolution at the output node.
Part and Module Selection Problem. Given an abstract

circuit graph and a library of parts and modules, find a solution
that has the minimum cost.
A Two-Step Design Workflow. In the first step (Figure

1), all circuit graphs that can express the logic of the input
circuit topology are generated and encoded into one, minimal,
all-encompassing graph using the method from refs 12, 29.
Then a branch-and-bound based algorithm (Algorithm 1) is
applied to solve the part and module selection problem
(defined above) for this graph. This algorithm is implemented
through two steps. In the first step (section Bound Estimation

on Solution Cost), the constraints of cross-talk absence and
connection compatibility are relaxed to estimate the bound of
the cost of all possible solutions. In the second step (section
Search for a List of Solutions), with the bound that we have
determined, we only need to search for solution for each cost
value within that bound in ascending order until a list of k
solutions (candidate circuits) are found. In addition, two
extensions (sections Extension 1 and Extension 2) are also
applied to improve the computational performance. In the
second step (Figure 1), we rank each candidate circuit by the
deviation from its behavior to the given desired one. The
behavior of each candidate circuit is predicted by using a
nonlinear thermodynamics model15,16 with parameter values
that are estimated from the experimental characterization data
(section Rank Solutions by Their Predicted Behavior). The
technical details of each step are presented in the following
sections.

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/sb500339k

Bound Estimation on Solution Cost. To estimate a lower
bound, we relax the constraints of cross-talk absence and
connection compatibility. With this relaxation, the information
about the node name in the circuit graph representation
becomes irrelevant since we do not have to check cross-talk or
compatibility. Therefore, to make the computation more
efficient, we group all parts and modules based on their circuit
graph topology and their cost. Algorithm 2 summarizes this
preprocessing step.
Because of the recursive relationship on the subsolution

above, the bound on the subsolution cost of each node can be
estimated as in algorithm 1 (step 1). We store both the bound
information after bound estimation of each node and all
subsolutions with their costs pertaining to that node, so we can
efficiently search for a solution in the second step. For that
purpose, for each node v, we can use a hash table v[] that
hashes each abstract subsolution by its cost (i.e., v[][cost]
contains all abstract subsolutions of node v, each of them has
the same cost). However, this approach makes the computation
inefficient since we have to enumerate all such abstract
subsolutions. Therefore, we propose a further step to group
all abstract subsolutions of a node by the matching between
that node with a part/module and the cost distribution of
subsolutions at fan-in nodes of this matching. More specifically,

v[][cost] contains all triplets σ ⃗s(, ,)i where i is an
isomorphic class of parts and modules, σ encodes the matching
between v and the representing circuit graph α

i
of this class

while s ⃗ encodes the cost distribution of subsolutions of fan-in
nodes of this matching. By that way, v[] is updated iteratively
by traversing all nodes of the input circuit graph by the
topological order (i.e., if there is an edge from u to v then u will
be traversed before v). At each node v, the procedure Match
will find all possible pairs σ(,)i . Then, for each such pair, all
cost distributions s ⃗ of subsolutions of fan-in nodes of the
matching σ are explored to form a new triplet that will be
inserted into v[] by hashing the total cost.
Search for a List of Solutions. Recall that a solution is a

subsolution of the output node, thus the bound on its cost is
determined from the first step. Therefore, we only need to
search for solutions for each cost value within that bound in
ascending order until a list of k solutions (i.e., candidates) is
found as in algorithm 1 (step 2). Notice that the searching in
this step is for a complete solution, so the constraints of cross-
talk absence and the connection compatibility have been taken
into account.
By utilizing the information stored in v[][cost] from the

first step, this searching operation can be done recursively from
the output node; i.e., we can retrieve all possible matchings
between a part or a module and that node from and then try
for each matching by repeating the search of the subsolution at
each fan-in node of this matching. To make the memory usage
efficient, we choose depth-first search and concomitantly we
eliminate the need for recursion. Since many intermediate
searches are repeated, we propose to store their results locally
to be reused later on. The auxiliary function Search (Supporting
Information) summarizes this procedure.
Extension 1 (Interaction Look-Ahead). As an extension to

the previous algorithm, an interaction look-ahead scheme was
implemented in conjunction to the branch-and-bound based
method to prune subsolution branches. In this case, when the
part/module classification is performed, as in Algorithm 2, we
also take into account all possible interactions of the input/

output molecular species of this part/module (i.e., the
molecular species of the input/output node in the circuit
graph representation of this part/module) with other molecular
species (i.e., the type of those species and the corresponding
interaction type). By the input/output interaction information
on a part/module and of a node in the abstract circuit graph, we
are able to predict if the matching between this node and that
part/module will lead to a violation of the connection
compatibility constraint or not. If so, we prune all solutions
that have resulted from this matching.

Extension 2 (Branching Extension). A branching node is a
node that connects to two or more nodes. For example, node F
is a branching node of the circuit graph in Figure 3a. In this
example, if a final solution (of node Q) that contains a
subsolution of node O, a subsolution of node P and a maching
between a part/module with node Q then one of these two
subsolutions will cover the transitive input subgraph of the
branching node F (i.e., subgraph of nodes A, B, C, F) and the
other subsolution will not. Here “a subsolution covers a
transitive input subgraph” means each node of this transitive
input subgraph is included in one of subgraphs that are
generated by the partition of the subsolution. Therefore, to be
able to handle a circuit graph that contains branching nodes, we
have to extend the subsolution definition above by taking into
account if a subsolution covers the transitive input subgraph of
a particular branching node or not. In this work, this extension
is implemented by adding a vector of flags (each flag for one
branching node) into each subsolution to mark if it covers the
transitive input subgraph of that branching node or not.

Rank Solutions by Their Predicted Behavior. To choose the
optimal design among candidates in the second step (Figure 1),
we define another cost function f for each candidate C

∑= −
∈

f C s i d i() (() ())
i I

C
2

where I is a set of inputs, sC(i) and d(i) are the simulated output
value of C for input i and the desired output value for input i
respectively. The final design C* is the one that has the
minimum cost f(C*). We use a thermodynamics model15,16 to
determine the simulated output values of each circuit. More
specifically, the transcription and the translation processes are
modeled by the following equation

λ= Γ −
t

d[protein]
d

[protein]protein

where [protein], λprotein, Γ are the protein concentration,
protein degradation rate and the protein production rate,
respectively. The protein production rate is modeled for four
types of binding that includes both positive and negative
regulation with one or two binding site. Table 2 provides the
mathematical formulation for each of these cases. For the
protein−protein binding, the protein complex concentration is
modeled at equilibrium

=
−

K
[protein][protein]

[protein protein]
1 2

1 2

where [protein1], [protein2] and [protein1 − protein2] are the
concentration of proteins and the protein complex, respectively,
while K is the dissociation constant. In the case of ligand−
protein binding, we use the Hill equation as follows:

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

G

http://dx.doi.org/10.1021/sb500339k

− =
+K

[ligand protein]
[ligand]

[ligand]
[protein]

n

n n
d

where [ligand−protein], [ligand], [protein] are the concen-
tration of the ligand−protein complex, the ligand, and the
protein, respectively. The parameters n and Kd correspond to
the Hill coefficient and the dissociation constant, respectively.
To estimate the parameter values, we fitted the model and

the experimental characterization data of each circuit in the
PAMLib. The nonlinear optimization solver30 was used to find
the locally optimal solution for that fitting problem. In total, we
estimated 160 parameter values (Table S2, Supporting
Information) to simulate the behavior of candidate designs
for all 11 circuits in our benchmark set.
All related data are available as a resource at http://

tagkopouloslab.ucdavis.edu/software.html.

■ ASSOCIATED CONTENT
*S Supporting Information
This material is available free of charge via the Internet at
http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: itagkopoulos@ucdavis.edu.
Author Contributions
L.H. wrote the code and performed the experiments. I.T.
conceived the project and supervised all development and
analysis. L.H. and I.T. analyzed the data and wrote the paper.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We would like to acknowledge support from the NSF CAREER
Grant #1254205 to IT.

■ REFERENCES
(1) Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A., and
Weiss, R. (2014) Realizing the potential of synthetic biology. Nat. Rev.
Mol. Cell Biol. 15, 289−294.
(2) Brophy, J. A., and Voigt, C. A. (2014) Principles of genetic circuit
design. Nat. Methods 11, 508−520.
(3) Slusarczyk, A. L., Lin, A., and Weiss, R. (2012) Foundations for
the design and implementation of synthetic genetic circuits. Nat. Rev.
Genet. 13, 406−420.
(4) Chandran, D., Bergmann, F. T., and Sauro, H. M. (2009)
TinkerCell: modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.
(5) Hill, A. D., Tomshine, J. R., Weeding, E. M., Sotiropoulos, V., and
Kaznessis, Y. N. (2008) SynBioSS: the synthetic biology modeling
suite. Bioinformatics 24, 2551−2553.
(6) Marchisio, M. A., and Stelling, J. (2008) Computational design of
synthetic gene circuits with composable parts. Bioinformatics 24,
1903−1910.
(7) Huynh, L., Kececioglu, J., Köppe, M., and Tagkopoulos, I. (2012)
Automatic design of synthetic gene circuits through mixed integer
non-linear programming. PLoS One 7, e35529.
(8) Huynh, L., Tsoukalas, A., Köppe, M., and Tagkopoulos, I. (2013)
SBROME: A scalable optimization and module matching framework
for automated biosystems design. ACS Synth. Biol. 2, 263−273.
(9) Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J.,
Bhatia, S., Davidsohn, N., Haddock, T., Loyall, J., Schantz, R., Vasilev,
V., and Yaman, F. (2012) An end-to-end workflow for engineering of
biological networks from high-level specifications. ACS Synth. Biol. 1,
317−331.

(10) Rodrigo, G., and Jaramillo, A. (2012) AutoBioCAD: full
biodesign automation of genetic circuits. ACS Synth. Biol. 2, 230−236.
(11) Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C.,
and Nguyen, N.-P. D. (2009) iBioSim: a tool for the analysis and
design of genetic circuits. Bioinformatics 25, 2848−2849.
(12) Huynh, L., and Tagkopoulos, I. (2014) Optimal part and
module selection for synthetic gene circuit design automation. ACS
Synth. Biol. 3, 556−564.
(13) Roehner, N., and Myers, C. J. (2014) Directed acyclic graph-
based technology mapping of genetic circuit models. ACS Synth. Biol.
3, 543−555.
(14) Marchisio, M. A., and Stelling, J. (2011) Automatic design of
digital synthetic gene circuits. PLoS Comput. Biol. 7, e1001083.
(15) Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T.,
Kondev, J., and Phillips, R. (2005) Transcriptional regulation by the
numbers: models. Curr. Opin. Genet. Dev. 15, 116−124.
(16) Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T.,
Kondev, J., Kuhlman, T., and Phillips, R. (2005) Transcriptional
regulation by the numbers: applications. Curr. Opin. Genet. Dev. 15,
125−135.
(17) Appleton, E., Tao, J., Haddock, T., and Densmore, D. (2014)
Interactive assembly algorithms for molecular cloning. Nat. Methods
11, 657−662.
(18) Davidsohn, N., Beal, J., Kiani, S., Adler, A., Yaman, F., Li, Y., Xie,
Z., and Weiss, R. (2015) Accurate predictions of genetic circuit
behavior from part characterization and modular composition. ACS
Synth. Biol., DOI: 10.1021/sb500263b.
(19) Rothschild, D., Dekel, E., Hausser, J., Bren, A., Aidelberg, G.,
Szekely, P., and Alon, U. (2014) Linear superposition and prediction
of bacterial promoter activity dynamics in complex conditions. PLoS
Comput. Biol. 10, e1003602.
(20) Ellis, T., Wang, X., and Collins, J. J. (2009) Diversity-based,
model-guided construction of synthetic gene networks with predicted
functions. Nat. Biotechnol. 27, 465−471.
(21) Galdzicki, M., et al. (2014)et al. The Synthetic Biology Open
Language (SBOL) provides a community standard for communicating
designs in synthetic biology. Nat. Biotechnol. 32, 545−550.
(22) Roehner, N., Oberortner, E., Pocock, M., Beal, J., Clancy, K.,
Madsen, C., Misirli, G., Wipat, A., Sauro, H., and Myers, C. J. (2015)
Proposed data model for the next version of the Synthetic Biology
Open Language. ACS Synth. Biol. 4, 57−71.
(23) Carrera, J., Estrela, R., Luo, J., Rai, N., Tsoukalas, A., and
Tagkopoulos, I. (2014) An integrative, multi-scale, genome-wide
model reveals the phenotypic landscape of Escherichia coli. Mol. Syst.
Biol. 10, 735.
(24) Liu, J. K., O’Brien, E. J., Lerman, J. A., Zengler, K., Palsson, B.
O., and Feist, A. M. (2014) Reconstruction and modeling protein
translocation and compartmentalization in Escherichia coli at the
genome-scale. BMC Syst. Biol. 8, 110.
(25) Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V.,
Jacobs, J. M., Bolival, B., Jr, Assad-Garcia, N., Glass, J. I., and Covert,
M. W. (2012) A whole-cell computational model predicts phenotype
from genotype. Cell 150, 389−401.
(26) Kim, M., Zorraquino, V., and Tagkopoulos, I. (2015) Microbial
Forensics: Predicting Phenotypic Characteristics and Environmental
Conditions from Large-Scale Gene Expression Profiles. PLoS Comput.
Biol., DOI: 10.1371/journal.pcbi.1004127.
(27) Kirk, P., Thorne, T., and Stumpf, M. P. (2013) Model selection
in systems and synthetic biology. Curr. Opin. Biotechnol. 24, 767−774.
(28) Way, J. C., Collins, J. J., Keasling, J. D., and Silver, P. A. (2014)
Integrating biological redesign: where synthetic biology came from and
where it needs to go. Cell 157, 151−161.
(29) Lehman, E., Watanabe, Y., Grodstein, J., and Harkness, H.
(1997) Logic decomposition during technology mapping. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 16, 813−834.
(30) Johnson, S. G. The NLopt nonlinear-optimization package,
http://ab-initio.mit.edu/nlopt, accessed Feb. 15, 2015.

ACS Synthetic Biology Research Article

DOI: 10.1021/sb500339k
ACS Synth. Biol. XXXX, XXX, XXX−XXX

H

http://tagkopouloslab.ucdavis.edu/software.html
http://tagkopouloslab.ucdavis.edu/software.html
http://pubs.acs.org
mailto:itagkopoulos@ucdavis.edu
http://dx.doi.org/10.1021/sb500263b
http://dx.doi.org/10.1371/journal.pcbi.1004127
http://ab-initio.mit.edu/nlopt
http://dx.doi.org/10.1021/sb500339k

