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Introduction

Maximizing crop yield in commercial agricul-
ture is highly desirable for several reasons. First, 
the world’s growing population is generating 
an increased demand for agricultural products 
(Godfray et  al. 2010). Expanding the land area 
devoted to agriculture is often not feasible or not 
desirable, so increasing the yield generated from 
existing farmland may be the only viable way to 
meet this demand. Second, agriculture is critical 
to the global economy. Despite this significance, 
the profit margins in commercial agriculture are 
often very small. Increasing crop yield can gen-
erate increased revenue for farmers, facilitating 
the continued economic viability of agriculture.

However, yield maximization is not the only 
consideration that is relevant to a commercial 
farmer. Another important consideration for 
farmers is the cost of various agricultural in-
puts, including pesticides. Inputs may increase 
yield, but they are costly, and these costs must 
be  considered by a farmer who wishes to max-
imize profits. Furthermore, indiscriminate pes-
ticide use has other detrimental effects that 
are more difficult to quantify. First, excessive 
pesticide use may accelerate the evolution of 
pesticide resistance (Mallet 1989), which reduces 
our capacity to control pests and necessitates the 
development of more potent pesticides with un-
known environmental impact (Roush 1987). Sec-
ond, pesticide applications can adversely affect 
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nontarget species. When pesticide applications 
depress populations of beneficial species, such 
as pest predators, these applications can contrib-
ute to secondary pest outbreaks and therefore 
augment future crop damage and pesticide costs 
(Gross and Rosenheim 2011). Finally, there is 
abundant evidence that pesticides are detrimen-
tal to both human health and ecosystem health 
(Rosner and Markowitz 2013), creating a strong 
incentive to avoid using these chemicals unless 
they are absolutely necessary.

In this study, we focus specifically on the im-
mediate costs of pesticide applications (i.e., the 
amount of money that it costs a farmer to apply 
a pesticide), and examine the tradeoff between 
these immediate costs and the costs incurred 
from yield loss due to pest damage. While the less 
immediate costs of pesticide use (e.g., secondary 
pest outbreaks, human health) are important, 
we have excluded them from our analysis for 
two reasons. First, these costs are more difficult 
to quantify objectively than are the immedi-
ate costs. Second, costs such as the evolution of 
pesticide resistance and environmental damage 
from pesticides are not as immediately relevant 
to farmers, many of whom may be focused on 
short-term profit maximization, and we seek to 
provide management recommendations relevant 
to farmers’ actual decision-making.

Currently, farmers lack the computational 
tools needed to identify management strategies 
that optimally navigate the tradeoff between 
minimizing yield loss due to pest damage and 
minimizing the cost of pesticide applications. 
Without access to data-driven pest management 
recommendations, farmers often rely on intu-
ition and personal experience to guide their crop 
management decisions, and this may lead to 
suboptimal decision-making that reduces yield, 
increases pesticide costs, and exacerbates the 
deleterious effects of pesticides on human health 
and the environment. These problems are espe-
cially severe when pesticides are inexpensive rel-
ative to the value of the crop, as this incentivizes 
growers to apply them prophylactically.

In some cases, farmers may base their pest 
management decisions on “economic injury lev-
els”—pest densities at which a profit-maximizing 
farmer is supposed to apply a pesticide. These 
levels are typically derived from experimental 
studies. However, experimental studies are often 

unable to resolve small effects of pests on yield, 
even though these small yield declines can be of 
substantial economic significance to commer-
cial farmers (Rosenheim et al. 2011). In addition, 
growers are often provided with a single eco-
nomic threshold for the entire growing season, 
which neglects the possibility that a crop’s sus-
ceptibility to pest damage may vary throughout 
the growing season.

Here, we identified the optimal pest manage-
ment strategies for the pest Lygus hesperus in 
commercial cotton fields. The plant bug L. hespe-
rus is one of the most damaging pests of cotton, 
and a frequent target of insecticide applications 
(Rosenheim et al. 2006, Godfrey et al. 2013). We 
determined at which pest densities and at which 
times in the growing season profit-maximizing 
farmers should apply pesticides to treat L. hespe-
rus, and we quantified how close current farm-
er behavior is to this optimal policy. To explore 
these questions, we took an “ecoinformatics” ap-
proach in which we analyzed historical records 
of commercial cotton production from 566 fields 
in California’s San Joaquin Valley. By aggregat-
ing historical records from hundreds of fields 
and various growers, we compiled a robust data 
set with the power to quantify how pest densities 
and different pest management strategies affect 
yield. Ecoinformatics analyses generally involve 
harnessing the power of large, preexisting, ob-
servational data sets to address important ques-
tions in environmental biology, especially ones 
that may be difficult to study experimentally  
(Rosenheim et al. 2011).

First, we quantified the yield loss associated 
with particular pest densities at different times 
in the growing season. We then used a finite time 
horizon Markov decision process (Bauerle and 
Rieder 2011) to identify the optimal pest manage-
ment strategy for each pest density at each time 
point. Finally, we assessed how closely aligned 
the observed grower pest management policies 
are to the optimal policy.

Materials and methods

Data set
The data set was constructed by collecting 

existing crop records from commercial cotton 
fields in California’s San Joaquin Valley. The 
data were shared by both growers and pest 
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control advisors, professional consultants hired 
to monitor field conditions and recommend 
crop management strategies. The data set con-
tains records of 1498 unique field-year instances 
from 566 unique fields, ranging from 1997 to 
2008. The following variables were used in our 
analyses:

1.	Cotton yield. Measured once for each field-
year instance, cotton lint yield was measured 
in bales/acre and recorded for 1240 of the 
1498 total records.

2.	Cotton species. The database consisted of re-
cords of two different cotton species: Gossypium 
barbadense L. (“Pima cotton”) and Gossypium 
hirsutum L. (“Acala/upland cotton”).

3.	Lygus hesperus densities. Pest control advisors 
measured L. hesperus densities approximately 
weekly, primarily during June and July. The 
pest control advisors’ sampling procedure 
consisted of 50 swings of a sweep net across 
the top of the plant canopy (for the remain-
der of the manuscript, we use the term 
“sweep” to refer to this standard, 50-swing 
sample). As not all pest control advisors 
sampled on the same days or at exactly the 

same intervals for all fields, we transformed 
successive samples into mean L.  hesperus 
density estimates (insects/50-swing sweep 
sample) by calculating the area under the 
linear curve of L.  hesperus density vs. time 
and dividing by the number of days in the 
sampling interval.

4.	Pest management practices. Every time that 
a pesticide was applied to a field, the date, 
chemical, and target pest was recorded.

Markov decision process model
Model structure.—To identify optimal crop 

management strategies, and to quantify the dif-
ferences in farmer profit under alternate strate-
gies, we modeled farmer decision-making as a 
discrete time Markov decision process (MDP) 
with a finite time horizon (Fig. 1). MDPs provide 
a framework for modeling a system that can be in 
different states at each discrete point in time. The 
transitions between states over time are partially 
under the control of a decision maker, who can 
choose different actions at each time point, but 
are also partially stochastic. Transitions are mod-
eled probabilistically, and the transition proba-
bilities between states depend upon the current 

Fig. 1. Network of MDP states and actions. In each state (high, medium, or low pest density), a farmer can 
choose to apply or not apply a pesticide targeting L.  hesperus. Solid lines indicate actions, and dashed lines 
indicate transitions.
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state and the action taken. MDPs also involve 
rewards or costs, which are incurred when a par-
ticular action is taken or a particular transition 
occurs. The MDP framework allows us to deter-
mine the action in each state at each time that is 
expected to maximize the sum of rewards over a 
specified time horizon (Puterman 2005, Bauerle 
and Rieder 2011).

For our specific MDP application, modeling 
farmer decision-making about pest management, 
we divided the growing season into T = 8 week-
long intervals spanning 5 June through 30 July. 
While cotton is typically planted in March or 
April and harvested in October, consistent 
measurements of the main cotton pest, L. hesperus, 
are only taken during June and July; consequently, 
we limited our model to this period of the growing 
season. We used eight intervals to balance (1) the 
desire to provide management recommendations 
with fine temporal resolution (as the optimal pest 
management strategy may differ throughout the 
growing season), and (2) the inability to reliably 
estimate a large number of parameters.

States.—At each time point, we classified each 
field as being in one of three states s ∈  S: low, me-
dium, or high pest density. The exact thresholds 
for the states were selected so that, aggregated 
over all eight time points, there was an approxi-
mately equal number of observations from each 
state. The specific boundaries that led to this bal-
ance, all in units of insects/sweep, were (0, 0.66) 
for the low state, (0.66, 1.73) for the medium state, 
and greater than 1.73 for the high state.

Actions.—In our model, we considered two dif-
ferent actions a ∈ A: either applying a pesticide 
or not applying a pesticide that a farmer can take. 
For each field at each time point, we determined 
if a pesticide application for L. hesperus had oc-
curred by seeing if an application was recorded 
for which L. hesperus was listed as one of the tar-
get pests.

Transition probabilities.—Transition probabil-
ities from state s to state s′ are denoted as Qa,t 
(s, s′); they depend on the action a, time t, origin 
state s, and destination state s′. Transition prob-
abilities were modeled using a Bayesian ordered 
logistic regression, so that we could quantify and 
account for uncertainty in our estimates of these 
quantities. Ordered logistic regression was se-
lected because the response variable of interest, 
the identity of the destination state, is a categor-

ical variable with an ordered structure (low, me-
dium, or high) (Agresti 2010). For every unique 
combination of origin state, time, and action, we 
examined the records in the data set which de-
scribed fields in that state at that time where that 
action was taken. We then fit an ordered logistic 
regression with destination state (low, medium, 
or high) as the ordered categorical response vari-
able. As there are three possible categories, the 
ordered logistic regression involves two inter-
cept terms, both of which were given uninforma-
tive N(0, 100) priors. No predictor variables were 
included in the model, as the purpose of this re-
gression was only to quantify uncertainty in the 
estimated transition probabilities, not to draw 
inferences about what affects these probabilities 
across fields in the same state where a given ac-
tion is taken at a given time.

Costs.—The final component of the MDP mod-
el involves costs, ca,t (s′), which depend on the 
action taken, the time, and the destination state. 
To calculate these costs, we considered both the 
cost of pesticide application and the cost due to 
yield loss from L. hesperus damage. First, there 
is a cost associated with a pesticide application; 
this cost encompasses both the cost to purchase 
the product and the fuel and labor costs of ap-
plying the product. Using estimates provided 
by cooperating growers and crop consultants, 
we estimated the cost of a pesticide application 
targeting L. hesperus to be $20 per acre. Estimat-
ing this cost exactly is challenging for several 
reasons. First, growers use a variety of different 
pesticide products to suppress L. hesperus, and 
the prices of these different products vary sub-
stantially. Second, different growers may not pay 
the same price for the same product, as growers 
often negotiate discounts with chemical sup-
pliers. Finally, some pesticide applications for 
L.  hesperus may occur concurrently with other 
applications to a field; in this case, the additional 
cost of adding on the treatment for L. hesperus 
may be significantly lower than that of a dedi-
cated application solely for L. hesperus. Despite 
these challenges, we feel that our estimate of $20 
per acre represents a typical cost of a pesticide 
application targeting L. hesperus.

The second component of the cost term in-
volves the cost associated with yield loss due to 
damage from L. hesperus. We used a hierarchical 
Bayesian linear mixed model (Gelman and Hill 
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2009) to estimate the change in yield associated 
with being in the medium or high pest density 
state, compared to being in the low pest densi-
ty state, at each of the eight-time intervals. Our 
model included cotton yield as the response vari-
able, a random effect for field to control for field-
specific differences in yield potential, a random 
effect for year to control for annual fluctuations 
in yield, a fixed effect identifying the cotton spe-
cies to control for variable yield potential be-
tween the two species, and fixed effect indicator 
variables indicating which state each field was 
in at each time interval. Uninformative N(0, 100) 
priors were used for all fixed effects, and unin-
formative InvGamma(0.001, 0.001) priors were 
used for all variance components. We considered 
the low state to be a baseline level of insect pres-
sure, and calculated the costs of being in the me-
dium or high state, relative to the low state. As 
a statistical model can only identifiably estimate 
two indicator variables for a categorical predictor 
variable with three levels, we selected one state as 
a baseline and only considered yield differences 
between the other states and that baseline state.

We quantified how yield differences between 
the high and low state, and yield differences be-
tween the medium and low state, changed over 
the growing season using a Bayesian linear regres-
sion of the estimated yield differences vs. time. 
As the intervals are equally spaced, we labeled 
the time intervals as t = 1, …, 8 and regressed the 
yield differences against these numeric values. 
We performed a separate regression of yield dif-
ference vs. time for the yield differences between 
the high and low state and the yield differences 
between the medium and low state. We used un-
informative N(0, 100) priors for the intercept and 
slope, and an uninformative InvGamma(0.001, 
0.001) prior for the variance. To account for 
uncertainty in the estimates of yield differences, 
we repeated the regressions of yield difference 
vs. time, 10 000 times, each time using estimated 
yield differences sampled from the posterior of 
the mixed model in which these differences were 
estimated. We obtained 10 000 posterior samples 
from each individual linear regression, and then 
analyzed all 10 000 × 10 000 posterior samples in 
order to perform inference about the slope of the 
regression.

After calculating, for each of the eight time in-
tervals, the difference in yield between fields in 

the medium state and the low state, and the dif-
ference in yield between fields in the high state 
and the low state, we converted these differences 
in yield to differences in farmer revenue, in dol-
lars, using the most recent estimates of the value 
of cotton per pound published by the UC-Davis 
Department of Agricultural and Resource Eco-
nomics: $0.90 per pound for Acala cotton (Hut-
macher 2012a), and $1.30 per pound for Pima 
cotton (Hutmacher 2012b). As the difference in 
value of the two cotton species is substantial, 
we considered Acala and Pima cotton separately 
when converting the high vs. low and medium 
vs. low yield differences into revenue.

The total cost for a particular transition at time 
t to state s′ at t + 1, denoted as ca,t (s′), was the 
sum of the $20 cost of pesticide application, if an 
application occurred, and the cost of the yield 
loss due to L. hesperus damage if a transition led 
to either the medium or high state at the next 
time point. Costs for transitions to the low state 
only involved the cost of a pesticide application, 
if it occurred. If we expected yield to be lost in 
the medium or high states, compared to the low 
state, the cost was considered to be a negative 
value.

All statistical models were fit using Markov 
Chain Monte Carlo, implemented in the Stan 
probabilistic programming language for Bayes-
ian inference, and accessed through the RStan 
package in the R language for statistical com-
puting (Stan Development Team, 2013). For each 
model, we performed two independent Markov 
chain simulations of length 10 000, and discarded 
the first 5000 samples of each as burn-in. We ver-
ified that our MCMC simulations had converged 
by ensuring that R̂, a measure of expected poste-
rior scale reduction if sampling were to be con-
tinued indefinitely, was near one (Gelman and 
Hill 2009). All code for our MDP analyses was 
written in the R programming language, without 
the use of any MDP-related packages.

Solving for optimal policies.—The MDP model-
ing framework allows us to identify the optimal 
policy that a farmer should follow in order to 
maximize profits over the course of the growing 
season. For each state at each time, we deter-
mined whether or not a profit-maximizing farm-
er should apply pesticides to suppress L. hespe-
rus. The optimal policy, a function of state and 
time, is given by Eq. 1:



March 2016 v Volume 7(3) v Article e012636 v www.esajournals.org

MEISNER ET AL.

And the “value” of each state at each time is giv-
en by Eq. 2:

To solve for the optimal policy, one needs esti-
mates of the transition probabilities, costs, and 
the terminal value, i.e., V8 (s) s ∈  S. Using these 
estimates, we can work backwards using stochas-
tic dynamic programming to solve for the opti-
mal policy in each state at each time (Puterman 
2005). Due to the different values of the two cot-
ton species, we obtained the optimal policy sepa-
rately for both Acala and Pima cotton.

Parameter estimation under uncertainty.—As 
both the transition probabilities and yield de-
clines due to L. hesperus are quantities that we 
had to estimate from the data, there is uncertain-
ty associated with these estimates. To propagate 
this uncertainty, we obtained, for each time-
state combination, 10 000 posterior “samples” of 
∑

s�∈S Qa,t(s,s�)
�

ca,t(s
�)+Vt+1(s

�)
�

 for both possible 
actions, and selected the action with highest pos-
terior mean as the optimal action. The samples 
were obtained by considering uncertainty in all 
three components of the value function: the costs, 
transition probabilities, and the value function at 
the next time step. We obtained 10 000 posterior 
samples of each of these three components. Spe-
cifically, we obtained 10 000 posterior samples of 
the costs by sampling from the posterior of the 
mixed model in which we estimated the yield de-
cline associated with being in the high or medi-
um state, compared to the low state, at each time 
interval. We obtained 10 000 posterior samples of 
the transition probabilities by sampling from the 
posterior of the ordered logistic regression with 
which we estimated the transition probabilities 
corresponding to that time-state-action combi-
nation. Our parameterization included the cost 
of yield loss in the destination state s′ during 
the next time interval in the ca,t (s′) term. This 
means that the cost of yield loss due to L.  hes-
perus at t = 8 is included in the cost term that is 
considered when selecting the optimal action at 

t = 7; therefore, we set V8(s)=0 s∈S and worked 
backwards using dynamic programming to de-
termine the optimal policy for each state at each 
time. We stored 10 000 posterior samples of the 
value of each state at each time, and used these 
stored samples when accounting for uncertainty 
in, Vt+1(s

�) the value at the next time step, which 
is a component of 

∑

s�∈S Qa,t(s,s�)
�

ca,t(s
�)+Vt+1(s

�)
�

 
Our reasons for accounting for uncertainty in 
the model parameters, instead of using point 
estimates, are twofold. First, it is misleading to 
consider the costs and transition probabilities as 
known, as we used statistical models to estimate 
these parameters from the data. The values of 
these parameters can substantially affect the rec-
ommended policy. Unless every posterior distri-
bution is normally distributed, which is unlikely, 
using maximum likelihood estimates to obtain 
point estimates of the value function may lead to 
a different optimal policy than the one obtained 
using our approach of accounting for uncertain-
ty in all of the model parameters to obtain pos-
terior samples of the value function. To provide 
growers with useful recommendations, we need 
to quantify the statistical uncertainty about the 
values to quantify our confidence in the optimal 
policy.

Second, propagating uncertainty in all the 
model parameters provided us a more in-depth 
quantification of the value differences between 
the two actions than we would have otherwise 
obtained. If we had instead used point estimates 
for the costs and transition probabilities, we 
would have only obtained point estimates for 
the value of each action at each time and state, 
and, therefore, only a point estimate of the dif-
ference in value between the two actions. With 
our Bayesian method, we obtained posterior 
distributions of the difference in value between 
the two actions. These distributions facilitate the 
exploration of a comprehensive set of questions 
about the differences between the two actions, 
such as which action leads to the lowest variance 
in value, which minimizes extreme losses, and 
which leads to the highest median value.

Optimality criteria.—Different optimality crite-
ria can be considered when choosing the optimal 
action. To determine the profit-maximizing strat-
egy, we selected the action that maximized the 
posterior mean of the value function (Eq. 1). In 
addition, we determined the lowest risk strategy 

�t (s)=argmax
a

{

∑

s�∈S

Qa,t(s,s�)
[

ca,t(s
�)+Vt+1(s

�)
]

}

t∈[1,7]

Vt (s)=
∑

s�∈S

Q�t(s),t
(s,s�)

[

c�t(s),t
(s�)+Vt+1(s

�)
]

t∈[1,8]
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by exploring the likelihood, under each possible 
action, of net revenue (income from crop yield 
minus pesticide costs) falling below the mini-
mum revenue required for a profitable harvest. 
We determined the minimum revenue required 
for a farmer to break even using the most recent 
estimates of total cotton production costs pub-
lished by the UC-Davis Department of Agricul-
tural and Resource Economics: $1800 per  acre 
for both Acala and Pima cotton (Hutmacher 
2012a,b). When selecting the optimal action for 
each state at each time, we selected the action 
that minimized the likelihood of revenue falling 
below this threshold. Again, separate policies 
were identified for both Acala and Pima cotton 
due to the substantial difference in value of the 
species. This criterion can be mathematically for-
mulated as follows, where rcrit is the critical rev-
enue threshold:

Sensitivity analyses
We performed three different sensitivity anal-

yses to quantify the robustness of our results.
Missing data.—First, we randomly divided the 

data set into three subsets with approximately 
the same number of observations. One at a time, 
we removed one-third of the data set, repeated 
the MDP-solving procedure (using the posterior 
mean to determine optimal policy), and calculat-
ed the proportion of time-state combinations in 
which the optimal policy was the same as when 
we used the full data set.

Noise.—Second, we added stochastic noise to 
all of the variables in the model (the pest den-
sities at each time interval, and yield), repeated 
the MDP-solving procedure (again using the 
posterior mean to select the optimal policy), and 
calculated the proportion of time-state combina-
tions where the optimal policy was the same as 
that when we used the real data to fit the model. 
To each variable, we added normally distribut-
ed random noise with mean zero, and standard 
deviation of 0.1, 0.5, 1, and 2 times the sample 
standard deviation of the original values for that 
variable.

Mislabeling.—Finally, we assessed our model’s 
robustness to errors in the records of actions (ap-
plying or not applying pesticides) at each time 
point. We randomly selected a certain percent-
age of observed actions in each time interval, and 
switched the recorded action (i.e., we labeled ap-
plications as no applications, and no applications 
as applications). We repeated this for various 
percentages, refit the model, and calculated the 
proportion of time-state combinations in which 
the optimal policy was the same as the one select-
ed using the original data.

Results

Effects of L. hesperus on yield
We used a Bayesian linear mixed model to 

estimate the change in yield associated with 
being in the high and medium pest density 
states vs. being in the low state, for all eight 
time intervals (Fig.  2). There was a trend for 
the difference in yield between fields in the 
high vs. low state to increase throughout the 
growing season; a similar trend was noticed 
for the difference in yield between fields in 
the medium and low state. We quantified this 
trend with a Bayesian linear regression of the 
yield differences between the high and low 

𝜋
t
(s)=argmin

a

{

P

(

∑

s
�
∈S

Q
a,t(s,s�)[C

a,t(s
�
)

+V
t+1(s

�
)]< rcrit

)}

t∈[1,7]

Fig.  2. Means and 95% highest posterior density 
intervals for the difference in yield between fields in 
the high vs. low, and medium vs. low, pest density 
states during 8-week-long intervals.
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state, and between the medium and low state, 
vs. time. The slope when regressing the yield 
difference between the high and low state vs. 
time had a posterior mean of 30.3  kg/(hect-
are  ×  week), with a 95% HPDI of (11.2  kg/
(hectare  ×  week), 55.7  kg/(hectare  ×  week)); the 
slope when regressing the yield difference be-
tween the medium and low state vs. time had 
a posterior mean of 19.0  kg/(hectare  ×  week) 
with a 95% HPDI of (5.6  kg/(hectare  ×  week), 
32.9 kg/(hectare × week)). These entirely positive 
95% HPDIs suggest that cotton is more sus-
ceptible to yield loss from L. hesperus herbivory 
early in the growing season. Interestingly, the 
posterior means for the yield differences be-
tween high and low and between medium and 
low states were positive for the 24 July–30 July 
time interval (the final time interval in our 
analysis), and the 95% HPDI for the difference 
in yield between the high and low state was 
entirely positive.

Optimal policies
Highest mean.—When the optimal policy is de-

termined by selecting the action resulting in the 
highest posterior mean of the value function, the 
optimal policies for Pima and Acala cotton are 
presented in Tables  1 and 2, respectively. For 
Pima cotton, the optimal policy only called for a 
pesticide application to target L. hesperus in the 
medium and high states during week 1, and the 

high state during week 2. The optimal policy for 
Acala cotton only called for pesticide application 
in the medium and high states during week 1. 
Tables 3 and 4 display the difference in posterior 
mean of the value function between the optimal 
and suboptimal action, for Pima and Acala cot-
ton, respectively. These values can be interpret-
ed as the expected increase in profit when the 
optimal policy is followed compared to when 
the suboptimal policy (i.e., applying a pesticide 
when not recommended or not applying a pesti-
cide when recommended) is followed (assuming 
the optimal policy is followed at all subsequent 
time steps).

Lowest risk.—When the optimal policy is deter-
mined by selecting the action resulting in the low-
est likelihood of yield falling below the threshold 
required for a profitable harvest, the optimal 
policy for Pima and Acala cotton is presented in 
Table 5. Coincidentally, when the optimal policy 
is defined in this way, the optimal policy is the 
same for both species of cotton. In contrast to the 
mean-maximizing policy, the risk-minimizing 
policy never calls for pesticide applications.

Sensitivity analyses
The optimal policy when using two-thirds of 

the data was the same as the policy when using 
the entire data set for 87% of state-time com-
binations, indicating that our results are robust 
to data removal. Adding noise to the variables 

Table 1. The optimal L. hesperus management policy in Pima cotton, for each state at each time. The optimal 
policy is defined by the management decision, either apply (A) or not apply (NA) pesticides, with the lowest 
posterior mean of expected long-term costs.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low NA NA NA NA NA NA NA
Medium A NA NA NA NA NA NA
High A A NA NA NA NA NA

Table 2. The optimal L. hesperus management policy in Acala cotton, for each state at each time. The optimal 
policy is defined by the management decision, either apply (A) or not apply (NA) pesticides, with the lowest 
posterior mean of expected long-term costs.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low NA NA NA NA NA NA NA
Medium A NA NA NA NA NA NA
High A NA NA NA NA NA NA



March 2016 v Volume 7(3) v Article e012639 v www.esajournals.org

MEISNER ET AL.

with the same standard deviation as the original 
data resulted in the same optimal policy in 
more than 80% of time-state combinations 
(Fig.  3A), suggesting that our model is robust 
to moderate measurement error in the under-
lying data. Even when 25% of the actions were 
mislabeled, the optimal policy remained un-
changed in more than 80% of state-action com-
binations, suggesting that our model is robust 
to errors in the records of pest management 
practices (Fig.  3B).

Current practices
For every state at each time interval, we ex-

amined the instances in our data set that were 
in that state that time, and calculated the pro-
portion of those instances in which the optimal 
policy was followed (Tables  6 and 7). While 
growers generally followed the optimal policy 
during the final weeks of the season, only 2% 
and 6% of Pima instances followed the optimal 
policy during week 1 in the medium and high 
states, respectively. Only 8% and 18% of Acala 

instances followed the optimal policy during 
week 1 in the medium and high states, respec-
tively. In other words, most farmers we observed 
did not apply pesticides targeting L.  hesperus 
in this period, despite evidence that L.  hesperus 
during this period is associated with decreased 
yield. On average, farmers followed the optimal 
policy 92% of the time when a pesticide ap-
plication was not recommended, but only 10% 
of the time when an application was 
recommended.

Aggregated across both species and all states 
and times, there were an average of 0.52 pesti-
cide applications per field when an application 
was not recommended, compared to 0.36 fail-
ures to apply pesticides when an application was 
recommended. So, on average, after considering 
the fact that applications were only infrequently 
recommended, the cotton farmers we observed 
applied pesticides when not recommended more 
frequently than they failed to apply pesticides 
when applications were recommended. About 
46% of the observations in our data set involved 

Table 3. The mean difference (dollars/acre) of the posterior means of the value function evaluated at the opti-
mal policy and the suboptimal policy for each state and time, for Pima cotton.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low $14.50 $17.51 $20.81 $19.79 $4.04 $54.70 $35.50
Medium $45.59 $2.79 $18.75 $18.55 $22.46 $17.95 $45.61
High $33.81 $2.64 $20.06 $12.96 $23.89 $19.99 $42.99

Table 4. The mean difference (dollars/acre) of the posterior means of the value function evaluated at the opti-
mal policy and the suboptimal policy for each state and time, for Acala cotton.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low $16.18 $18.15 $20.36 $20.18 $3.26 $44.23 $30.52
Medium $25.43 $8.45 $19.53 $19.58 $21.73 $18.49 $37.86
High $18.04 $4.43 $20.11 $15.36 $22.69 $19.99 $35.75

Table 5. The optimal L. hesperus management policy, for each state at each time, when the optimal policy is 
defined by the management decision, either apply (A) or not apply (NA) pesticides, that minimizes the likeli-
hood of an unprofitable harvest. This policy was, coincidentally, the same for both Acala and Pima cotton.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low NA NA NA NA NA NA NA
Medium NA NA NA NA NA NA NA
High NA NA NA NA NA NA NA
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at least one pesticide application that was not 
recommended.

Discussion

Using a large observational data set from 
commercial cotton fields, we used a Markov 
decision process to model the pest management 
decisions made by farmers throughout eight 
key weeks of the growing season. Using this 
model, we were able to determine, for each 
pest density at each time interval, whether or 
not a farmer should apply pesticides to treat 
L.  hesperus in order to maximize his/her 

expected profits over the course of the growing 
season.

Our observation that L. hesperus was only asso-
ciated with decreased yield during the early part 
of the growing season, and was in fact associated 
with increased yield during the last week of July, 
highlights the limitations of adopting a pest man-
agement strategy that involves pest suppression 
when pests exceed a certain threshold. Our results 
suggest that using a single threshold for L. hespe-
rus management throughout the season is undesir-
able, as the sensitivity of cotton yield to L. hesperus 
pressure decreased steadily throughout the grow-
ing season. Based on our results, cotton growers 

Fig. 3. The proportion of time-state instances in which the optimal policy remained unchanged, compared to 
using the original data, when all the variables used in the model fitting were perturbed with the addition of 
stochastic variation that was normally distributed with mean set to 0 and standard deviation set to various 
multiples of the sample standard deviation for each variable (a); the proportion of time-state instances in which 
the optimal policy remained unchanged when various proportions of the actions were mislabeled (b).

Table 6. The proportion of Pima cotton instances in the database that followed the optimal policy (defined by 
maximizing the posterior mean), for each state at each time.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low 0.98 0.97 0.98 1.00 0.94 1.00 0.85
Medium 0.02 0.86 0.95 0.91 0.98 0.94 0.94
High 0.06 0.21 0.67 0.83 0.81 0.79 0.80

Table 7. The proportion of Acala cotton instances in the database that followed the optimal policy (defined by 
maximizing the posterior mean), for each state at each time.

5–11 Jun 12–18 Jun 19–25 Jun 26 Jun–2 Jul 3–9 Jul 10–16 Jul 17–23 Jul

Low 0.97 0.98 0.95 0.97 0.99 0.99 1.00
Medium 0.08 0.89 0.89 0.96 0.98 0.97 0.97
High 0.18 0.67 0.74 0.83 0.88 0.90 0.87
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should focus their efforts toward detection and 
suppression of L. hesperus on the earlier part of the 
growing season (the first 2 weeks of June, in par-
ticular). Furthermore, they should avoid pesticide 
applications later in the growing season, where 
the yield loss due to L. hesperus herbivory (which 
in some cases was actually a yield increase) does 
not justify the costs of these applications.

One limitation of the Markov decision pro-
cess model we implemented is that it involved 
discretizing pest density, which is a continuous 
variable, into a finite state space with three states. 
Doing so implicitly assumes that the value func-
tion is a constant value across all pest densities 
comprising a single state. This is unlikely to be 
exactly the case, especially for the high state, 
which had an infinite upper boundary. Despite 
this limitation, it was necessary to discretize the 
state space into discrete states in order to imple-
ment this model. With more data, it would be 
possible to accurately estimate yield effects asso-
ciated with more, finer resolution states.

A second limitation of our approach stems 
from the fact that our work with observational 
data restricts our analysis to the existing varia-
tion in the data. As our data set did not contain 
any observations of extremely high L.  hesperus 
densities, our recommendation of not applying 
pesticides during most weeks, even when in the 
high pest density state, may not actually be opti-
mal in a field with a severe L. hersperus outbreak 
at densities beyond the range of densities that we 
analyzed. Extremely high L.  hesperus densities 
can inflict crop damage so severe that a harvest 
is abandoned altogether, so it is likely that pes-
ticide applications actually are economically op-
timal during these severe infestations. However, 
without data under such conditions, our analysis 
was unable to consider this possibility.

Interestingly, we found that the policy that min-
imizes the likelihood of yield falling below the 
level required for farmers to be financially profit-
able never involved the application of pesticides. 
Commercial farmers, particularly when operat-
ing under narrow profit margins, may tend to be 
financially risk averse; some growers may find 
it more desirable to minimize the risk of losing 
money rather than to maximize expected profits. 
We are not sure why pesticide applications were 
associated with increased risk for unprofitable 
harvests. However, one possible explanation is 

that pesticide applications may increase the risk 
of secondary pest outbreaks, possibly due to 
their detrimental effects on nontarget, beneficial 
species (Gross and Rosenheim 2011).

As noted in the results section, during the 24 
July–30 July time interval fields in the high and 
medium pest density states were associated with 
higher yield than were fields in the low pest den-
sity state. While we do not have data to specif-
ically test this hypothesis, we hypothesize that 
the increased yield observed in fields with high-
er L.  hesperus densities in late July results from  
L.  hesperus preferentially attacking young flower 
buds, which, this late in the season, may be too 
late to mature before harvest. Herbivory on these 
young flower buds may result in the cotton plant 
devoting more resources to the more mature, exist-
ing flower buds, which do contribute to yield. So, 
by removing young flower buds that will not con-
tribute to yield and focusing the plant’s resources 
on harvestable fruits, higher L. hesperus densities 
in late July may contribute to increased yield.

Our finding that high and medium L. hesperus 
densities are associated with the largest yield 
decline at the beginning of June, as well as our 
related finding that the optimal policy only in-
volves suppression of L.  hesperus at the begin-
ning of June, are both consistent with previous 
research suggesting that cotton is more suscep-
tible to L. hesperus damage early in the growing 
season. Simulation models (Gutierrez et al. 1975, 
Mangel et al. 1985), experimental studies (Falcon 
et al. 1971), and a previous analysis of this data 
set (that was focused only on estimating yield 
loss) (Rosenheim and Meisner 2013) have all pro-
vided evidence for increased cotton sensitivity to 
L. hesperus herbivory early in the growing season.

Our current study extends on this existing body 
of work in several ways. First, we have quantified 
how much yield loss can be expected from differ-
ent pest densities at different times of the grow-
ing season. Second, we have quantified the trend 
for cotton sensitivity to L.  hesperus herbivory to 
decrease over the growing season. Third, we have 
quantified how pesticide applications affect the 
likelihood of pest suppression at different times 
of the growing season. Fourth, we have integrat-
ed information on crop yield loss due to herbivo-
ry, the economic cost of that yield loss, pesticide 
efficacy, and the cost of pesticide applications in 
order to construct a holistic model of farmer pest 



March 2016 v Volume 7(3) v Article e0126312 v www.esajournals.org

MEISNER ET AL.

management decision-making. This MDP mod-
el allowed us to determine what pest manage-
ment decision a profit-maximizing farmer should 
make, based on the time in the growing season 
and the density of L. hesperus in a field, and it al-
lowed us to quantify exactly how much increase 
in profit a farmer should expect when following 
the optimal, compared to the suboptimal, policy.

This study serves as an example of how data-
driven decision-making in agriculture can confer 
significant advantages. Only 5% of farmers were 
following the optimal policy when in the medi-
um pest state during week one, so, in some sit-
uations, current grower behavior appears to be 
suboptimal. Following the optimal policy has the 
potential to enhance commercial cotton produc-
tion in several ways. First, by more actively sup-
pressing L. hesperus in early June, farmers could 
help reduce yield loss associated with L. hesperus 
at this time. This could increase yield and farm-
er profits, both of which are desirable in order 
to sustain the economic vitality of agriculture 
and generate sufficient resources for a growing 
population. Second, by eliminating unnecessary 
pesticide applications in July, farmers could save 
money and help avoid the adverse effects of pes-
ticides on the environment and human health.

There are several reasons why our ecoinfor-
matics approach, which involved collecting large 
amounts of historical data from commercial 
farms, is a valuable approach for helping derive 
insights into optimal pest management policy. 
First, collecting data sets of this nature can be an 
affordable and efficient way to obtain data sets 
much larger than those that could be obtained 
experimentally. Replicating an experiment at the 
scale of a commercial plot hundreds of times re-
quires resources rarely, if ever, available to agri-
cultural researchers. Yield losses of just 1 or 2% 
can be economically significant to farmers, and 
it is very difficult to resolve yield effects of this 
magnitude without a large amount of data. Sec-
ond, as our data set consists of data collected from 
commercial farms, it captured the true spatial and 
temporal scale of commercial agriculture. Exper-
imental studies often rely on small plots, which 
may not be of sufficient size to provide a realis-
tic picture of commercial cotton fields, which can 
be hundreds of acres in size. In particular, small 
plots may fail to capture the spatial dynamics of 
highly mobile pests. Third, collecting data from 

actual farms allowed us to quantify how closely, 
and at which times of the growing season, current 
farmer decision-making matches the optimal de-
cisions; this information could be useful in guid-
ing outreach and extension efforts that will have 
the most beneficial impact of cotton production.

While our ecoinformatics approach has several 
advantages, there are limitations to this approach. 
First, as our data set consists of observational 
data, inferences about causal relationships are not 
possible without making strong and untestable 
assumptions. When a trend is observed in a con-
trolled experiment, one can be confident that the 
treatment manipulated by the researcher caused 
the observed change in response variable; how-
ever, in an observational data set, it is impossible 
to prove that some external factor did not affect 
both the treatment assignment and the response 
variable, thus spuriously suggesting a treatment 
effect. Second, our approach limits us to analyzing 
the range of variation already present in the data 
set. For example, we are not able to estimate the 
yield loss due to extremely high pest densities, as 
none of the farmers from whom we gathered data 
allowed the pest densities to reach these levels. 
However, in an experimental study, the researcher 
can decide which levels of a treatment he or she 
wishes to investigate.

Thus, ecoinformatics will not replace or dimin-
ish the value of experimental research; rather, it 
will serve as a complementary approach for gen-
erating data-driven crop management recom-
mendations and promising hypotheses for future 
experimental investigation.
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