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Multi-omics integration accurately predicts cellular
state in unexplored conditions for Escherichia coli
Minseung Kim1,2, Navneet Rai2,*, Violeta Zorraquino2,* & Ilias Tagkopoulos1,2

A significant obstacle in training predictive cell models is the lack of integrated data

sources. We develop semi-supervised normalization pipelines and perform experimental

characterization (growth, transcriptional, proteome) to create Ecomics, a consistent,

quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data

information. We then use this resource to train a multi-scale model that integrates four omics

layers to predict genome-wide concentrations and growth dynamics. The genetic and

environmental ontology reconstructed from the omics data is substantially different and

complementary to the genetic and chemical ontologies. The integration of different layers

confers an incremental increase in the prediction performance, as does the information about

the known gene regulatory and protein-protein interactions. The predictive performance of

the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various

baselines. This work provides an integrative framework of omics-driven predictive modelling

that is broadly applicable to guide biological discovery.
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T
raditionally, host-specific data integration has been small
in scale and limited to two layers1–5, mostly because of the
lack of data across multiple layers for the same

experimental conditions6,7. More recently, we have witnessed
omics resources that cover organism-specific gene expression
data, one such effort being the COLOMBOS database that
combines multi-layer, multi-organism data with manually
curated condition information1. As we accumulate more data
within and across layers, such vertical and horizontal integration
becomes more efficient and meaningful. Integration over more
than two layers leads to lower false discovery rates and an
enhanced picture of various cellular mechanisms and adaptive
responses8,9. It is also critical for data-driven modelling,
which until now has relied on custom, more restricted omics
data sets2–5. Despite the fact that repositories of raw data have
existed for more than a decade7, the development of databases
with two or more omics layers is in an early stage6. Recently,
the MOPED database was created to address this issue, with a
multi-omics resource portal that combines 250 publicly available
protein and mRNA abundance profiles of four organisms
(human, mouse, worm and yeast)10. Other efforts such as
KBase are complementary and aspire to provide various
bioinformatics services at all levels ranging from alignment
and assembly of raw sequencing data, phylogenetic analysis,
protein annotation and other modelling tools11. The scientific
community has already acknowledged these efforts as well as the
lack of a database with normalized multi-layered data across
experimental conditions, with sufficient meta-data and quality
control8,9,12,13.

There are many challenges when it comes to multi-omics
compendium construction. First, systematic biases exist due to
technological platforms, laboratories and analysis methods14,15.
Experiments have primarily focused on sampling one layer of
biological organization, hence making it difficult to have multi-
layer data for the same condition. Indeed, for Escherichia coli we
have only 33 samples with the trifecta of transcriptome, proteome
and metabolome, and even in those cases, not simultaneously.
In addition, many data sets are mis-annotated or lack meta-data,
a fact that requires close inspection of the published work and
communication with the authors. Concomitantly, the sheer size
of training data needed to avoid model overfitting and the
dimensionality of the experimental space are equally daunting,
which limited the generalization performance of past modelling
approaches5,16–19. These discrepancies create obstacles for the
application of machine learning and modelling techniques, which
aim to learn from data9,13–15. Subtle normalization issues can also
have a substantial impact to the quality and utility as a training
set of any compendium20. For example, since the total RNA per
cell fluctuates, the standard assumption that total RNA/cell
doesn’t change, and thus expression distributions are identical
across varying conditions is prone to produce false discoveries
in the downstream analysis21. This observation is especially
important for developing a data compendium where experiments
correspond to several conditions (media, abiotic factors, and so
on) which all together affect global factors such as growth rate22

and the total RNA/cell18.
Yet, normalized multi-omics compendia are essential for the

genome-wide models used in a number of fields23. Among the
many mechanistic cell models that simulate biophysical cell
properties, E-Cell24 was one of the first cell models that
simulated cell behaviours of 127 genes based on a series of
differential equations. A notable recent development in this
area was the whole-cell model of Mycoplasma genitalium that
integrates genome-scale biophysical properties of all ranges of
molecules in an organism for specifically simulating a cell division
process25. Similarly, the E. coli ME-model predicts fluxes

and gene expression levels given nutrient availability and
genetic perturbations by formulating it into an optimization
problem of metabolic reactions26. In the realm of data-driven
models, the transcriptional model of Halobacterium salinarum
predicts modular responses in the transcriptome layer given the
expression levels of 72 transcription factors and 9 environmental
cues27. More recently, PROM integrates flux balance analysis
(FBA) and probabilistic inference from large-scale transcriptome
data28, while expression balance analysis (EBA) adds over FBA
the data-driven approach to predict genome-wide transcriptional
levels by constructing a large-scale transcriptome compendium
(2,242 profiles)5.

In this work, we describe two advances in the field of multi-
omics integration and multi-scale modelling. First, we present
Ecomics, a normalized, well-annotated, multi-omics database for
E. coli, developed to provide high-quality data and associated
meta-data for performing predictive analysis and training data-
driven algorithms. This compendium houses 4389 normalized
expression profiles across 649 different conditions. Moreover,
we present the Multi-Omics Model and Analytics (MOMA)
platform, an integrated model that learns from the Ecomics and
other available network data to predict genome-wide expression
and growth, which shows higher performance than several
baselines and two recent metabolic-expression models.

Results
The multi-omics compendium and the integrative modelling.
To build a multi-omics compendium for E. coli, we first
aggregated data from available literature and public databases
(Fig. 1). We then created a normalization pipeline that is based on
semi-supervised approaches to remove systematic biases due to
data collection, platform differences, batch effects, conditions
and analysis methods (Fig. 2)21,22. We identified data with
missing or potentially mis-annotated entries and supplement
meta-data information both through communication with the
respective laboratories and through systematic experimental
characterization in our lab. Currently (February 2016), Ecomics
has 4389 genome-wide profiles over 649 conditions, coming
from 65 E. coli K-12 strains (Supplementary Fig. 1), 286
genetic perturbations (for example, knock-outs), 112 media
(Supplementary Fig. 2) and 52 stresses.

Second, the MOMA platform is an integrated model that learns
from the Ecomics and other available network data to predict
genome-wide expression and growth (Fig. 3 and Supplementary
Fig. 3). Given an input of 612 features that encompass genetic
(strain, genetic perturbation) and environmental (medium, stress)
factors, the proposed model predicts the genome-scale expression
and concentration of genes, proteins and metabolites (5453
molecular species), metabolic fluxes (2,382) and growth rates.
The predictive performance of the model compares favourably
against several baselines and in comparison to two recent
metabolic-expression models.

A highly biased sampling of the experimental space. Figure 4a is
a snapshot of the E. coli K-12 omics universe. The lack of omics
data for any single condition is striking: from the 649 conditions
represented, only 11 conditions have two or more omics layers
(6.19% of the profiles) and only one condition has all three layers
(0.41% of the profiles). The distribution of profiles to conditions
is heavily skewed (Fig. 4b,c and Supplementary Figs 4,5A,6,7).
Profile replicates are generally reproducible and highly variable
depending on the specific strain (CV¼ 0.28±0.09; Supplementary
Fig. 5A), medium (CV¼ 0.26±0.14; Supplementary Fig. 6) and
stress (CV¼ 0.24±0.11; Supplementary Fig. 7).
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Targeted experimentation in Ecomics. The gene ontology (GO)
coverage in Ecomics is unexpectedly low: only 7.2% of molecular
functions, 48.4% of biological processes and 31.4% of KEGG
pathways are represented in the compendium. Although the
challenges associated with gene ontologies are many and
known29, GO term coverage provides a proxy on how diverse the
information within the compendium is. To maximize the GO
coverage of Ecomics, we first investigated which conditions are
likely to disrupt unrepresented biological processes and functions.
We assumed that a GO term is represented in the compendium if
the compendium has profiles where one or more genes which
include that GO term have been perturbed. Based on the resulting
ranked list, we performed transcriptional profiling (RNA-Seq, see
Methods) for the top 16 genetic knockouts (in triplicate; 48
profiles total). We also transcriptionally profiled and included in
Ecomics nine KO experiments that we had identified before as
being highly informative for both GO coverage and model
performance5 (Supplementary Table 1). After the inclusion of
these new transcriptional profiling results, the coverage increases
by a 63.9, 24.3 and 19.8% to molecular function, biological
process and KEGG pathway representation, respectively (Fig. 4f,
Supplementary Fig. 8, Supplementary Data 1, Supplementary
Methods).

Reconstructing an omics-based ontology. We evaluated the
similarity of the various strains, media and stresses, based on their
effect in genome-scale expression (Supplementary Methods).
Interestingly, the omics-derived strain ontology does not follow
the sequence-based reconstruction, with a cophentic correlation
of 0.21 (Fig. 4d; Supplementary Fig. 9). This result challenges the
prevailing notion that distance in the genomic space translates
into cellular state similarity30 and argues that small genetic
changes can lead to large differences in the genome-wide
molecular state. Similarly, the ontology reconstruction for
omics-based medium and stress provide a data-driven
perspective that directly correlates with how the organism
perceives and responds to environmental changes (Fig. 4e;
Supplementary Figs 10C,11).

Investigation of the genes and processes that led to the stress
ontology reconstruction provides the genetic basis of their
commonalities (Fig. 4e). We analysed the differential expression
in pairs of stresses clustered together with using all other stresses
as controls (Supplementary Data 2). In the case of isoleucine-
limitation and octanoic acid, previous work has shown the
notable difference in amino acid isotoper enrichments after
octanoic acid exposure in E. coli31, and has also suggested
carboxylic acids may negatively impact the function and/or
integrity of the cell membrane. Interestingly, the top unique genes
in this stress pair include many genes involved in the outer
membrane including: ompX, slyB, acrA and tolC32, while the link
between bacterial membrane synthesis and amino acid starvation
has been previously established33. In the case of nanoparticle
and butanol stress, cpxR shows the highest statistical significance
and is known to be one of the two most differentially
regulated genes during n-butanol stress in E. coli34 as well
being involved in bacteria-nanoparticle interactions. In the cluster
of hypoxia and Indole-3-acetic acid stress, the genes hybF, aceK,
metN, talB are involved in anaerobic respiration35,36 and
energy/central metabolism where Indole-3-acetic acid is known
to affect their relevant pathways in E. coli37. For cold and
heat shock, the ribosome is similarly responsive in both stresses38

and this, together with temperature sensitive responses
is what drives the high similarity in these two stresses. The top
differentially expressed genes that are common in this pair
are rplK, rplL, rplV, rplO, rplC, rplJ, rplM, all of which are
ribosome related32. For ATP and NADH limitation, both
ATP and NADH are energy molecules with levels directly
influenced by external energy sources. The top differentially
expressed genes in that pair, include dppB, a component
of the DppABCDF dipeptide transport system39 and gadE
which is regulated through a cAMP receptor40, have been
shown to be altered by glucose. In the case of osmotic and
acidic stresses the link is unclear, as their most informative
differentially expressed genes, the dehydrogenase glpB and
the cell division protein ftsQ are implicated in other
processes, although our results are in agreement with previous
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reports observing their altered expression under these stress
conditions41.

Factors that affect expression variability in E. coli. Expression
variability is strain, media and stress dependent (Supplementary
Figs 5B,10A-B,12, Supplementary Methods) beyond biases
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resulting from experimental settings or sample size (Pearson
Correlation Coefficient (PCC) is between 0.01 and 0.03 in both
cases, for laboratory and sample size bias). To identify key genetic
markers that affect expression variance, we performed LASSO
regression on the genotypic map of 154 features and expression
variability for the 25 strains, which led to the identification of
6 genetic features. This approach was applied to media,
identifying 11 nutrient features. A detailed analysis of these
results that includes the genes identified and the mechanisms
involved in variability of strains, media and stresses is available in
Supplementary Methods.

MOMA—an integrative model for predicting molecular state.
We developed the MOMA framework that is based on a recurrent
neural network (RNN)42 with regularization of sigmoid functions
for the transcriptome layer, LASSO regression and ensemble
learning43 for the proteome and metabolome layers, and weighted
summation for their integration (Fig. 5a; Supplementary
Figs 4,13–15; Supplementary Methods). MOMA was designed
to be trained based on the multi-omics and interaction data that
are in the Ecomics compendium and predict multi-omics
expression for novel conditions (given as an input vector of the
strain, medium, stress and genetic perturbation; see Methods).

Because the predictive ability relies on the data used to train the
model, each attribute in the new condition to predict should exist
in at least one entry of the training set (in this case, Ecomics).
Since there are 65 strains, 112 media, 52 stresses and 286 genetic
perturbations in Ecomics, the theoretical space it can cover is
given by their product, or about 285 million conditions.

In our previous work, we used regression on transcription
factors to predict gene expression (EBA model described
in ref. 5). While this work is still applicable here, it is limited in
its ability to parameterize the environmental inputs and does not
account for feedback loops that are ubiquitous in gene regulatory
networks. To address these issues, the RNN architecture was used
with an input feature vector corresponding to the genetic and
environmental background and gene expression as the output.
The network architecture and optimal parameters were selected
through cross-validation techniques from the training data
(Supplementary Fig. 16). For the proteome and metabolome
layer, we evaluated several techniques on their ability to integrate
and learn from the training data (more in the Methods section
and Supplementary Methods). In every single layer, MOMA
significantly outperformed the baseline predictions (based on
random, mean and wild-type profiles) for expression and
molecular concentration, even when only the information of that
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the training set (bottom). In all performance evaluation, three baselines are used: the random baseline represents prediction from mean expression level of

randomly selected profiles in the training set; the mean baseline is the prediction from mean expression level of all profiles in the training set; the wild-type

baseline is the prediction by mean expression levels of wild-type profiles in the training set. In all cases, leave-one-condition-out (LOCO) cross-validation

was used. The error bar indicates standard error of the mean. Wilcoxon rank sum test was used for all statistical tests.
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given layer was used for prediction (Fig. 5b-g). Furthermore, the
performance of the model is substantially higher (PCC of 0.58
versus 0.19 with baselines 0.28 and 0.05, respectively) when
comparing the training set of the Ecomics normalization
(based on an absolute scale) to that of COLOMBOS (based on
fold-change) on otherwise identical raw data sets (Supplementary
Fig. 17).

For the transcriptome layer, the prediction of the expression of
the 176 transcription factors (TFs) is significantly better when
compared to the prediction of the expression of all 4096 genes
(PCC: 0.76±0.07 versus 0.54±0.15, Fig. 5b). The robustness of
prediction varies across combinations of strain, media and
stresses with the observed variation being in agreement with
the variability analysis, as described in the previous section
(Fig. 5b and Supplementary Fig. 18). For example, our predictions
are more accurate in defined medium among 19 media
(PCC¼ 0.84±0.3 versus 0.51±0.14; Supplementary Fig. 18B).
We found that the model performance is uniform across the
different pathways (Supplementary Fig. 19). Furthermore, 56%
(48.8%) of GO biological processes, 62.8% (10.3%) of GO
molecular functions, 97.5% (87.5%) of GO cellular process and
58.6% (41.3%) of KEGG pathways have a PCC higher than the
mean of 0.54 (number in parentheses is percentage of cases that
also have a statistically significant higher PCC than the wild-type
baseline; Supplementary Data 3). In addition, the model
performance was significantly enhanced by the amount of data
in the compendium. A tenfold increase in data size adds a 15%
increase in performance (measured by PCC) in the general case
(Supplementary Table 2).

The expression level for each of the 1001 proteins was
predicted through an ensemble method that integrates informa-
tion from four sources (Supplementary Methods, Supplementary
Fig. 14): the transcriptional regulatory network (TRN), the
protein-protein interaction (PPI) network, the co-expressed
protein network (CPN) and other pathway information. We
evaluated each of these methods individually, as well as their
integration through an Ensemble method where the protein
expression level is the mean of the predicted expression level from
each of the four prediction modules. The evaluation was
performed in an Ecomics-derived data set of 18 profiles
(5 conditions) with expression levels in both the transcriptional
(4096 transcripts) and proteome layers (1001 proteins). As shown
in Fig. 5c, the integration of four methods shows higher coverage
and higher performance when compared with the four individual
methods. In terms of protein coverage, the integration can predict
all 1001 proteins, comparable only to the PPI method (1000
proteins), while the other three individual methods can predict a
substantially lower number of proteins (250 for TRN, 547 for
KEGG, 847 for CPN). However, the prediction performance of
the PPI method (PCC: 0.48±0.26 for PPI) is lower than using
their integration (PCC: 0.55±0.26). The integration method also
outperforms the other two individual methods (PCC: 0.41±0.23
for TRN; 0.47±0.23 for KEGG) and is close to that of the CPN
method (PCC: 0.52±0.24), although the latter has a 15.4% less
coverage. To directly compare sets of proteins that are covered in
all methods, we focused their performance in the top 50 most
variable proteins that are common among the five sets. Our
results show that the integration (ensemble method) outperforms
all other combinations with a PCC of 0.77±0.27, which is
substantially better than all others (CPN, PCC¼ 0.69±0.27;
PPI, PCC¼ 0.60±0.36; KEGG, PCC¼ 0.66±0.30, TRN,
PCC¼ 0.37±0.49). Interestingly, predicting first the target gene
expression from the mRNA expression levels of the correspond-
ing genes does not perform well, achieving a PCC of 0.34±0.18
in the general case and PCC of 0.18±0.51 for the 50 most
variable proteins (Supplementary Fig. 20).

Previous studies report that genome-wide expression levels
between transcripts and proteins in cell populations of E. coli
show some but not strong correlation44–46. More specifically,
an R2 of 0.47 between average mRNA and protein concentration
was reported in ref. 45. This has suggested that the mRNA
expression level of a gene is not the best proxy for estimating the
concentration of the corresponding protein. Our results show that
the concentration of a protein can be highly predicted
(0.79±0.21, R2 of log-scaled concentration for 1001 proteins)
when we collectively use expression levels of the genes that are
functionally related to the protein where four different network
sources are used to find functional relationships of genes. This
result argues that integrating genome-wide interaction and
expression data is beneficial for predicting protein levels.

For predicting the metabolome layer, we first investigated
which layer (transcriptome, proteome) can provide the necessary
information to build a better predictor (Supplementary Methods
and Supplementary Fig. 21). For this, we used 33 profiles of 126
metabolites, 53 proteins and 75 genes that constitute the core
metabolism, in order to predict the concentration of each
metabolite. We found that using (measured) protein expression
levels leads to better results (PCC 0.65±0.21) than by using gene
expression levels (PCC 0.47±0.26) as shown in Fig. 5d. For
predicting concentrations of metabolites in non-core metabolism,
we resort to the inference of enzyme concentration from mRNA
expression levels due to the paucity of profiles with both
metabolome (including metabolites in non-core metabolism)
and proteome information (only 6 profiles). Predictions on the
metabolome layer are more accurate in non-core than in core
metabolism (Po10� 13 and Po10� 3 for non-core and core
metabolome, respectively; Fig. 5d). This is an expected result,
given the variability analysis in Ecomics, as concentration
variance in core metabolism is high. Variance analysis indicates
that the prediction of metabolite concentrations in non-core
pathways is robust, with a variance of 0.02±0.01, comparable to
that of core metabolism (0.06±0.01), which suggests that the
non-core metabolic set can be highly predictable even without the
presence of protein expression data (Supplementary Fig. 21B).
FBA with multi-layered omics data to constraint reactions results
in better performance (PCC 0.72±0.24) than using plain FBA
(PCC 0.65±0.39, Po10� 8, Fig. 5e, Supplementary Methods) or
when one of the layers is absent (PCC 0.67±0.21 for proteome
only and PCC 0.70±0.20 for transcriptome only).

Ultimately, the integrative model had the highest performance
overall in predicting growth rate (Fig. 5f and Supplementary
Figs 22 and 23; PCC¼ 0.65±0.01 in leave-one-condition-out
cross-validation over 101 conditions with wild-type information
present in the training set; 0.76 for novel wild-type cases).
Interestingly, although the information added by the inclusion of
any given module was not immediately obvious (Fig. 5g), the
optimal results were obtained when all modules were present.

Most informative molecules of expression and growth. To
understand what molecules were significantly involved in the
prediction of cellular dynamics, we investigated the features
selected (that is, features having non-zero weights) from LASSO
constrained regression for each layer of transcriptome, proteome
and metabolome. For the transcriptome layer, LASSO selected
733 genes to predict growth rate. Among them, 15 genes were
from the cellular machinery of ribosome and RNA polymerase
(48 genes total, Po0.001). Gene Set Enrichment Analysis of all
733 genes shows its enrichments in essential gene ontologies
including ATP (Po5.1� 10� 39), cell wall (Po7� 10� 31) and
DNA-replication (Po3.7� 10� 5). Interestingly, most of the top
genes with the highest absolute weight are not directly involved in
growth-related processes, but they directly interact with cellular
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machinery at the protein level. For example, the third most
informative gene, mreB has known PPIs with all 48 genes of RNA
polymerase and ribosome (Supplementary Methods, for complete
list of selected genes, see Supplementary Data 4). Four of the top
10 genes are uncharacterized and can be potential targets for
further investigation. In addition, knockout of seven out of the
nine most informative genes (Keio collection in LB; yffO omitted
as not in the library) had moderate to severe negative growth rate
effects (Supplementary Table 3). Note however that the predic-
tion performance drops strikingly if we only pick the top ten
genes as features, with the PCC decreasing to 0.08 from 0.65,
which suggests that the integration of information from multiple
processes is needed to predict growth given the high diversity of
the possible conditions. For the proteome layer, MOMA selects
14 out of 1001 proteins, enriched in cellular processes directly
related to cellular growth including translation (Po6.3� 10� 4),
ribosome (Po7.4� 10� 4) and tRNA binding (Po1.7� 10� 5).
For the metabolome layer, MOMA identified nine metabolites
with non-zero weight, noticeably mainly from amino acids
(Table 1). The list of all selected molecules with their absolute
weights in three omics layers are in Supplementary Data 4.

Experimental validation of MOMA and model comparison. We
used the 16 novel genome-wide transcriptional profiles that we
performed for Ecomics expansion (see Methods) to evaluate the
prediction performance of MOMA. These profiles correspond to
conditions that are the least represented in Ecomics, so the per-
formance estimate is expected to be conservative. We used three
initialization points for each gene: its average expression over all
MG1655, M9/LB profiles (baseline 1, non-specific), its average
expression over all BW25113, M9/Glucose profiles (baseline 2,
specific) and its average expression over the three BW25113,
M9/Glucose replicate profiles that were measured in the same
batch with the 16 knockouts (baseline 3, same-batch). In all cases,
the prediction was significantly better (27, 41 and 25% from
baselines 1, 2 and 3, respectively; Fig. 6a). The PCC of MOMA’s
prediction in baseline 3 was between 0.58 and 0.85 for the 16
knockouts. Prediction outliers, such as the large discrepancy
between the high genome-wide prediction performance of the
kefB knockout and the expression of the ydbH gene in the same
sample, can serve as targets for further investigation (Fig. 6b).

We then compared the prediction performance of MOMA to
that of the leading E. coli prediction methods, ME-Model26 and
EBA5. As each method predicts a different set of genes, we compare
the expression levels of the gene set predictable by all three
methods. Regardless of the initialization used, MOMA significantly
outperformed the other two methods (38–280% for ME-Model and
47–311% for EBA) with the performance difference increasing with
the information context of the baseline (Fig. 6c).

Discussion
There are three elements necessary to realize the potential of
predictive biology: data, models and methods to improve both.
Here we presented Ecomics, a coherent multi-omics database for
E. coli that can be used for training traditional and advanced
machine learning methods. There are a number of lessons learned
from this work. First, quality control of high-throughput data is
both necessary and challenging, due to the lack of reporting
standards and the complexity of any given experimental
setting. The extent to which next-generation machine learning
techniques47 can help us solve biological questions depends
heavily on the protocols and the standards in place for efficient
meta-data reporting and quality control. Even in this case, the
creation of a unifying, normalized multi-omics compendium is
far from a simple data aggregation, as several integration steps
based on biological knowledge are needed. As our analysis
showed, current data unevenly explore the experimental space
and are difficult to integrate due to the paucity of cross-layer
information for the same conditions. Investment in these fronts is
required, if we aspire to approach the exploration of the biological
experimental space in a structured manner18 to guide new omics
profiling. Future extension of Ecomics includes multiple data
types such as ChIP-Seq and connection to other E. coli resources
such as EcoCyc32 and RegulonDB48. We envision a structured
data ecosystem that will provide the data and meta-data necessary
for advanced predictive analytics.

The omics integration allows us to reconstruct an ontology of
the environmental (stress, medium) and genetic (strains, gene
perturbations) features based on their effect on genome-wide
molecular expression, which itself is a proxy for several processes
and behaviours. Although a network-based GO has been explored
before49, the construction of the Ecomics compendium allowed
us to reconstruct ontologies related to environmental settings and

Table 1 | The top 10 informative features to predict growth rate for each of the three layers.

Rank Gene Function Protein Function Metabolite Category

1 wcaF (0.26) Predicted acyl transferase TufB (0.12) Elongation factor Tu Cytosine (0.12) Nucleobase
2 yffO (0.17) CPZ-55 prophage; predicted

protein
Syd (0.04) SecY-interacting protein L-glutamine (0.11) Amino acids

3 mreB (0.09) Dynamic cytoskeletal protein
MreB

AnsA (0.04) Asparaginase I L-alanine (0.07) Amino acids

4 yfiP (0.09) Conserved protein ParC (0.04) Dimer of topoisomerase IV
subunit A

L-threonine (0.07) Amino acids

5 tyrP (0.08) Tyrosine:Hþ symporter TyrP PyrH (0.01) UMP kinase Nicotinamide (0.04) Vitamin
6 ycbT (0.08) Predicted fimbrial-like adhesin

protein
TrxB (0.01) Thioredoxin reductase L-valine (0.04) Amino acids

7 gfcC (0.08) Conserved protein GloB (0.01) Glyoxalase II Azelaic acid (0.04) Fatty acids and
conjugates

8 solA (0.08) N-methyltryptophan oxidase SerS (0.009) Seryl-tRNA synthetase D-glycerol-1-phosphate
(0.02)

Glycerolipid
metabolism

9 fecA (0.08) Ferric citrate outer membrane
porin FecA

RpsL (0.009) 30S ribosomal subunit protein
S12

L-ornithine (0.008) Non-proteinogen
amino acid

10 ynfB (0.07) Predicted protein PotD (0.004) Putrescine/spermidine ABC
transporter

� �

LASSO constrained regression was used to select informative features for predicting growth rate. The number in parentheses represents absolute weight and is an indicator of the significance of that
molecule.
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strains. We argue that this is a more informative approach for
understanding complex environments than relying on chemical
composition or genetic similarity alone. Further work towards
this direction can include a multi-trait analysis that will lead to an
organism-specific environmental map, which will be useful for
understanding bacterial physiology and its evolution.

This work is the first that trains an integrative model in a
comprehensive set of all available omics and interaction data
across multiple layers; hence, the results are representative of
what multi-omics models like MOMA can achieve in a large
spectrum of conditions. It is worth noting that in all comparisons,
the integration of multiple information always over-performed
the individual predictors. This observation also holds in the case
of non-core metabolome prediction and genome-wide flux
prediction from FBA coupled with the multi-omics data set.
The prediction performance, both in cross-validation across the
E. coli omics universe and in new RNA-Seq and growth
experiments that we conducted, is at levels that support the use
of this technology for forward predictions in novel environments.
At the same time, analyses of the molecules are the most
informative for growth prediction, reveal that a different group of
biomarkers emerges for each layer. As expected, amino acids are
the dominant group for metabolomics, while transporters and
growth-related proteins comprise the informative set. In
transcriptomics, there are a number of unknown conserved
genes, among membrane and transport related genes, which need
further investigation.

Given the size and types of data used to build, train and
evaluate the predictive model, this study provides a comprehen-
sive view of the possibilities and challenges in data-driven,
genome-scale modelling. Integration of additional data sources,
such as genome-scale data sets with structural information, have
the potential to provide orthogonal information and further
increase the prediction performance. Additionally, the targeted
experimental refinement is conditio sine qua non for the optimal
exploration of the experimental space for any particular
organism. This can be extended further to include other
models, data types and collection of organisms or bacteria
consortia, hence providing a further step towards the structured
experimentation, exploration and discovery in the era of
‘Big data’-driven predictive biology.

Methods
Data integration overview. A total of 4389 genome-wide profiles over 649
conditions were collected from 26 databases and literature curation (291 sources).
These omics profiles cover the transcriptome (3579 profiles of 4096 transcripts),
proteome (71 profiles of 1001 proteins), metabolome (696 profiles of 356
metabolites) and fluxome (43 profiles of 120 fluxes). We created a detailed
meta-data ontology (Supplementary Data 5) that includes 612 features related to
genetic information (154 features), experimental settings (52 features), medium
chemical composition (120 features) and genetic perturbations (286 features). Raw
data of the transcriptome and proteome were processed using different methods
depending on the platforms used (that is, RNA-Seq, one-channel array, two-
channel array for transcriptome, Mass-Spectrometry for proteome). We only used
processed data for the metabolome and fluxome. Once data were processed to
quantify concentrations of molecules, we applied the same normalization principles
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Figure 6 | Model validation for 16 novel knockouts in transcriptome prediction and performance comparison with other methods. (a) PCC between

predicted and measured expressed levels of 4096 genes for 16 knockout conditions. Three expression value sets were used to initialize the recurrent neural

network (RNN). Non-specific initialization corresponds to the case where the RNN was initialized with the values of the most frequent condition in Ecomics,

MG1655 cells in M9/LB media (Po10� 10). Specific source initialization corresponds to the mean expression profile of BW25113 cells in M9/Glucose in

the compendium, which is the same media and strain that was used in the knockouts (Po10� 7). Same-batch initialization corresponds to the mean

expression genome-wide profiles of BW25113 cells in M9/Glucose that was measured in the same batch with the 16 knockouts (Po10� 3). (b) Scatter plot

between predicted and measured expression levels for the kefB knockout condition. (c) Method comparison of prediction performance. We compared

the prediction performance of transcriptome response to 16 KOs with ME-Model26 (Po10� 6 for non-specific, Po10� 13 for specific, Po10� 16 for

same-batch), and EBA5 (Po10� 7 for non-specific, Po10� 14 for specific, Po10� 16 for same-batch). The error bar indicates standard error over the mean.

***(0.001oPo0.01), ****(0.0001oPo0.001). Wilcoxon rank sum test was used for all statistical tests.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13090 ARTICLE

NATURE COMMUNICATIONS | 7:13090 | DOI: 10.1038/ncomms13090 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


based on semi-supervised approaches to three layers of transcriptome, proteome
and metabolome as follows: Noise content was removed from the observed
expression level by a Gaussian mixture model. Platform-biases were corrected by
applying platform-specific Z-score normalization. Absolute-level quantification
was performed by loess regression between known absolute-level expression levels
and relative expression levels. For processed fluxome data from multiple sources,
we normalized reaction rates by the glucose uptake rate. Additional growth
dynamics (plate-readers; 1996 profiles) were experimentally measured and anno-
tated through automated procedures. An overview of the normalization procedure
is depicted in Fig. 2.

Transcriptional layer. Raw-data pre-processing. Each of the three major platforms
(one channel, dual channel and RNA-Seq) was processed by specialized methods or
in a separate pipeline. For one-channel array, image data were first read into
R using the affy package. Then RMA50 is applied for a set of replicates for
background correction, normalization, probe-set summarization. For dual-channel
array, image data were read into R using the limma package. Background
correction was performed using normexp (with an offset of 5) as it is shown to
outperform other methods51. Red and green channels were separated and quantile-
normalized for each set of replicates.

The publicly available RNA-Seq data were downloaded from Sequence Read
Archive, first converted to fastq using fastq-dump and then processed to follow the
process (that is, Trimmomatic, TopHat/bowtie2, htseq-count) below. The low
qualities of raw reads were trimmed using Trimmomatic (v0.30)52 with default
settings. Trimmed reads were aligned on the most recent reference genome of
E. coli K-12 MG1655 (GenBank: U00096.3) by using TopHat (v2.0.10) coupled
with bowtie (v1.0.0)53. The resulting SAM file is then processed to have gene-level
read counts using htseq-count54. From the 2346 raw profiles, we finally have 2329
profiles after discarding unreadable raw files (for example, custom-designed arrays
without array design specification).

Noise removal. Noise in gene expression was estimated from three distinct
sources, phantom genes32, negative-control probes designed by array
manufacturers and non-K12 strain genes. Means and variances of both the signal
and the noise were estimated using the Expectation Maximization (EM) algorithm
implemented in R mclust, with the intensity below mean intensity of the three
noise sources considered as noise during initialization. Gene expression was then
updated throughout the Ecomics compendium.

Platform-bias correction. To correct systematic biases due to different
technology platforms55, we applied platform-specific z-score transformation56.
Most platforms are designed to measure relative expression levels, complicating the
direct integration of profiles across different studies. For this reason, we first
performed quantile-normalization (using R package preprocessCore) for each
platform and then we transformed the expressed genes on the same scale for each
profile, by using loess fit between expression levels of before and after quantile-
normalization. Then finally, we applied a z-score transformation for each platform
data set (Supplementary Figs 24A,B).

Absolute-level quantification. Due to fluctuations in the total RNA/cell16, it is
assumed that uniform expression distributions across different conditions can lead
to inaccurate downstream analysis21. To avoid this issue, we converted the relative
expression measurements to absolute RNA copies per cell, by applying loess
regression between the measured expression level and the absolute expression level
for each profile. In cases where we have relative (that is, Ecomics profiles after
platform-bias correction) and absolute expression levels44 for some genes (the
‘shared genes’), we trained a loess regression model, which was applied to the rest of
the genes, and the process was repeated for all profiles21. Focusing only on
housekeeping genes as a reference produced inferior results compared to this
method. We compared normalized expression levels between genes with short half-
life (0.573±0.004) and genes with long half-life (0.572±0.003). The results
(Supplementary Fig. 24C) show that the mean difference is not statistically
significant (P¼ 0.41).

Dealing with missing expression levels. In Ecomics, genes that had more than
70% of their expression values missing were removed from the compendium.
Similarly, we removed profiles where more than 70% of gene values were missing.
Through this process, 502 genes and 2 profiles were excluded from Ecomics. For
the rest of the profiles/genes, we imputed their values by applying for each gene a
method that is based on the k-nearest neighbours (k is 3 here) algorithm
(R package impute).

The final Ecomics transcriptional layer that resulted after following this
methodology had 4096 genes over 3579 profiles (February 2016).

Protein layer. A total of 71 proteome profiles were downloaded from
ProteomeXChange and PRIDE databases57,58, as well as other published sources
(Supplementary Data 6). We also experimentally profiled six samples in the
transcriptome and proteome layers since the overlap between these layers is low
(Supplementary Methods). Similar to the transcriptomics layer, we filtered out
profiles for non-K12 strains and evolved strains. Mass spectrometry raw files were
first processed by MaxQuant59 with default settings, with the E. coli K-12 protein
sequences downloaded from UniProt60 (Tax ID: 83333) to map peptides to protein
sequences. Absolute intensities (iBAQ) were then produced61. For processed
profiles that contain relative protein concentrations, we transformed them to

absolute protein copy number per cell, by matching relative concentrations with
APEX absolute protein numbers from ref. 45 and then performed loess regression.
The missing values were imputed, as described above. Special attention was given
to the processing of the profiles reported in ref. 62, a high-quality data set of 59
proteins in 34 profiles, which was imputed separately, filtering out 4 of these
proteins across the profiles. In all other cases, this step filtered out 539 proteins,
which led to a final size for the proteomics layer of 71 profiles (69 profiles with
exponential phase) with 1001 proteins.

Metabolic layer. A total of 696 processed profiles were obtained from literature
curation (Supplementary Data 6). For quantifying absolute metabolite numbers per
cell for each metabolite, profiles having molar concentration were normalized as in
ref. 63, yielding emi

j ¼ 106 �mi
j=
Pn

j¼1 mi
j where emi

j is the number of molecules for
metabolite j in profile i, mi

j is concentration, 106 is the normalizing constant,
assuming that concentration of 1 nM in an E. coli cell corresponds to 1 molecule in
the cell64. For metabolites with both measured concentrations and absolute
molecule numbers, we fitted a loess curve and then used it to convert all
metabolites in the corresponding profile63. The missing values were imputed,
as described above. To ensure consistent naming of the metabolites, we used
PubChem65, ChemSpider66, KEGG67, EcoCyc32, HMDB68 to resolve naming
issues. As it was the case in the proteome layer, we processed separately62,
which resulted in 138 metabolites excluded, finally producing 33 profiles of 126
metabolites. In all other cases, 71 metabolites were excluded, resulting in a
metabolic layer of 696 profiles for 356 metabolites.

Fluxomics layer. We collected publicly available fluxome data from the literature.
A total of 43 profiles of 120 fluxes were compiled (Supplementary Data 6). As all
profiles were in experimental conditions with glucose as the main carbon source,
all reaction rates were normalized based on glucose uptake rate for each profile
(f i

j ¼ 100 � f i
j =f i

glu) where f i
j is the absolute flux of reaction j for profile i and f i

glu
denotes the measured glucose uptake rate for profile i. As different synonyms of a
reaction were present across different studies, reactions were cross-referenced in
KEGG67 and BiGG69 databases.

Phenomics layer. Growth experiments. We were able to collect growth rate
meta-data for 767 profiles (17.6% of all profiles, growth rates ranging from
0.01 h� 1to 2.14 h� 1). However, we noticed that growth rates were inconsistent
even for the same conditions due to differences in instruments, measurement
protocols, among others. For this reason, we re-created the experimental
conditions for 50.3% (48% for exponential phase, 58% for stationary) of all profiles
in the compendium and systematically measured growth rates with plate-readers,
after they were rectified for offset minimization. For the phenomics layer, the
growth curves that were experimentally measured (Biotek Synergy HT, 96-well
plates in triplicates) used an automated script and consistent thresholds to identify
the growth characteristics. An automated MATLAB script was used to calculate the
lag phase, maximum growth rate and maximum cell density. The lag phase is
defined as the time until 5% of the maximum growth rate is reached. Growth rates
were determined by calculating the differential between 10 and 90% of cell density
using a virtual sliding window with the width of 1 h and sliding every 15 min. This
led to experimental growth dynamics measurements for another 1992 profiles
(out of 3579; 55.6% of all profiles) with transcriptional information, corresponding
to 179 conditions (out of 596; 30% of all conditions). Similarly, we measured the
growth dynamics for another 57 (33 conditions) and 577 profiles (49 conditions)
that covers 80.2, 82.9% of profiles with proteomics, metabolomics and fluxomics
information, respectively. All measured growth data are available in Supplementary
Data 7.

Inference of un-annotated growth phase. A classifier was trained to identify
exponential and stationary phase, based on genome-wide gene expression
(no profiles were in lag phase, as cells do not grow). SVM classification through an
RBF kernel was found to have the highest performance. Features were selected by
standard wrapper techniques with features (genes) being first ranked by their
mutual information to the growth phase and then selected sequentially by
cross-validation performance. To assess the prediction performance of our method,
we used all profiles with high-quality information on phase, yielding a data set of
458 profiles with an equal fraction of stationary phase and exponential phase
(out of 3579 profiles total, only 229 were in the stationary phase). We then
performed a tenfold cross-validation, producing a Receiver Operating
Characteristic and Precision-Recall curve (Supplementary Fig. 25). By using this
technique, we labelled 1493 profiles (101 conditions) that were missing growth
phase metadata.

Model. Input and output. We built a genome-scale MOMA platform that aims to
predict an output vector y containing the expression levels of mRNAs (4096),
proteins (1001), metabolites (356), metabolic fluxes (2382) and growth dynamics,
for a given experimental condition. The experimental condition is represented as
an input vector x with 612 features that contain information about the genetic
(strain, genetic perturbation) and environmental (medium, stress) background
(Supplementary Methods). For initializing the model during training, the averaged
expression profile of MG1655, in M9/LB was used.
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Modularized architecture. MOMA is designed to be modular, in order to allow
for a better representation of biological organization, an easier manipulation of
individual modules and to avoid dimensionality issues. The final model is
modularized into multiple layers of input, transcriptome, proteome, metabolome,
fluxome and phenome. For each module, we evaluated various statistical
techniques in their ability to capture biological structure and make accurate
predictions.

Model training data. Our analysis focused on profiles for samples in the
exponential phase, as the amount of data is sufficient for a rigorous assessment of
the model. The data resources of Ecomics compendium and all the network
resources (Supplementary Table 4 for Sigma factor network) used for model
training are summarized in Fig. 1.

Transcriptome layer. For the transcriptional layer, an RNN42 with sigmoid
activation functions that takes the 612 features as inputs and predicts the
expression of 4096 genes from 612 features was trained using l1 regularization and
stochastic gradient descent (Supplementary Methods). In RNN, each connection ci,j

between a node i and a node j has a weight wi,j associated with it (Supplementary
Fig. 13). We represent the weights for connections between input nodes x (612
nodes) and output nodes y (4,096 nodes) as wx and the weights for connection
among output nodes y as wy, so that the set W¼ {wx,wy} includes all weights of the
RNN. Given input x and weights W, the output vector y is iteratively computed by:

yðiÞ ¼ h wxxþwyyði� 1Þ
� �

for 1 r i r n, where y(i) is the state of output vector y at iteration time i and n
is the memory depth. During the training phase, W is adjusted by minimizing the
residual sum of squares between observed y and predicted y for all training data
based on stochastic gradient descent. All the hyper-parameters are empirically
optimized. The optimal memory depth was 2 and the cycles having length less than
3 account for 75% of all cycles in the TRN in E. coli (Supplementary Fig. 26).

Proteome layer. The protein expression values of 1001 proteins were predicted
using LASSO constraint regression through a consensus of the transcriptional
regulatory, PPI, co-expression network and other pathway information (for more
information, Supplementary Methods). More specifically, for Transcriptional
Regulatory Network (TRN), it was built based on the RegulonDB database. The
protein level of a target gene in a novel condition is predicted by LASSO regression
of the expression levels of genes that are connected through a regulatory link to the
target gene. For Protein-Protein Interaction (PPI) Network, it was constructed
from the five distinctive sources that were described in Supplementary Methods.
Similarly, the protein level of a target gene in a novel condition is predicted by
LASSO regression of the expression levels of genes whose respective proteins are
connected through a Protein-Protein interaction to the target protein. For Co-
expression Protein Network (CPN), it (70,710 interactions of 3,163 proteins) was
built from the core proteome dataset (Supplementary Methods), which represents
20 expression profiles of 1,001 proteins, which are not used for proteome
prediction. For two proteins to be considered co-expressed, their pairwise
correlation should be larger than 0.7. Any given protein level in a novel condition is
predicted by LASSO regression of the protein expression levels of co-expressed
proteins with respect to the target protein. For pathway clustering, we cluster genes
that are implicated in the same pathways, as represented in the KEGG database.
The protein level of a target gene in a novel condition is predicted by LASSO
regression of the expression levels of genes that are implicated in the same
pathways as the target gene.

Metabolome layer. The concentrations of 356 metabolites are predicted from
4096 genes in the transcriptome layer (for non-core metabolism) and 1001 proteins
in the proteome layer (for core metabolism) using regression with l1 regularization.
For metabolites having known enzyme-substrate relations, we predict its
concentrations from the expression levels of the related enzymes. For those with no
such information, we fit from all the genes by using LASSO, which allows variable
selection (Supplementary Methods).

Fluxome layer. FBA was used to predict 2382 fluxes, while protein/transcript
and extra-cellular information from three layers of transcriptome, proteome and
input was used to inform bounds. More specifically, lower bounds of reactions
changed by:

li ¼ 0 if meanðgiÞ � t
li ¼ � 1000 otherwise

�
where li is expression levels of enzymes in reaction i. t is empirically determined

by finding optimal parameter with maximum predictive performance within the
predefined range (for more information, Supplementary Methods). Bounds for all
exchange reactions are listed in Supplementary Data 8.

Phenome layer. Final growth rate prediction was calculated by the weighted sum
of predicted growth rates from each individual layer, with the weight proportional
to the performance of the respective layer during cross-validation and each layer
predicts growth rate from concentration of molecules in the layer as well as
extra-cellular information based on LASSO constrained regression (for more
information, Supplementary Methods and Supplementary Fig. 27).

Model performance and experimental validation of predictions. We evaluated
the performance of the model by performing a leave-one-condition-out
cross-validation for each layer (more information in Supplementary Methods and

Supplementary Fig. 28 for transcriptome layer). Additionally, we performed
transcriptional profiling for 16 single-gene knockout strains selected based on GO
coverage optimization (Supplementary Methods). During model training we
evaluated three distinct RNN initialization methods: using the mean expression
profile in Ecomics of MG1655 with M9/LB media (the condition with the most
profiles in Ecomics), the mean expression profile in Ecomics of BW25113 with
M9/Glucose (the condition that follows the experimental setup), and the mean
expression profile in the new experimental batch of BW25113 with M9/Glucose.
To evaluate the effect of the gene knockout on expression, we set the expression of
that gene to zero in the RNN, and set the other input parameters according to the
experimental conditions (genetic features of the BW25113 strain and M9/Glucose
as the medium).

Comparison across genome-wide prediction models. We compared the
genome-wide performance of the MOMA model with two other recently published
models, the ME-Model26,70 and EBA5. For simulating the gene knockout
conditions (16 KO genes) in the ME-Model, we followed the instructions provided
in the supplementary material of refs 26,70. For executing the EBA algorithm to
predict expression in a gene knockout condition5, we set the following parameters:
flag_topo¼ 1 (which uses RegulonDB and inferred interactions), flag_mod¼ 1
(M9) and genetic_pert is set to have -1 for the corresponding KO gene. The
ME-Model and EBA methods can predict the expression of 730 (approximately)
and 4189 genes, respectively, so the comparison among the three methods
(ME-Model, EBA and MOMA) is on the union of the three sets (730 genes,
approximately). For each method, the distance between the predicted expression
and the mean replicate expression is calculated and the PCC is used for the
comparison across all genes.

Data availability. The Ecomics compendium and the predictive model is available
at http://prokaryomics.com as an online resource. The RNA-Seq data produced
from the lab is available at the National Center for Biotechnology Information
Gene Expression Omnibus (NCBI-GEO) under the accession GSE73673. The
rest of the data that support the findings of this study are available from the
corresponding author.
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