

Digital Data

Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

Digital Data

```
Nary and hexadecimal representations
```

Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

Number representation
We are used to counting in base 10:

thousands hundreds tens units
Example:

$\begin{array}{lllll}1 & 7 & 3 & 2 & \longleftarrow\end{array}$ | 1000 | 100 | 10 | 1 |
| :--- | :--- | :--- | :--- | $1 \times 1000+7 \times 100+3 \times 10+2 \times 1=1732$

Number representation Computers use a different system: base 2:											
\%											
bits											

Number representation

Base 10	Base 2
0	0
1	1
2	10
3	11
4	100
5	101
6	110
\ldots	\ldots
253	1111101
254	1111110
255	1111111
\ldots	\ldots

```
From base 2 to base 10: 
```



```
024+1\times512+1\times256+0\times128+1\times64+0\times32+1\times16+0\times8+1\times4+0\times2+0\times1}=187
From base 10 to base 2:
    187%2 =938 Remainder 
    469%2=234 Remainder
    469%2=234 Remainder 1
    M, (17%2 = 58 Remainder 
    29%2= 14 Remainder 1
    14%%= 7 Remainder
    l
    *)
1877 (base10) = 11101010101 (base 2)
```

Facts about Binary Numbers

Each "digit" of a binary number (each 0 or 1) is called a bit
-1 byte $=8$ bits
$1 \mathrm{~KB}=1$ kilobyte $=2^{10}$ bytes $=1024$ bytes $(\approx 1$ thousand bytes)
$-1 \mathrm{MB}=1$ Megabyte $=2^{20}$ bytes $=1,048,580$ bytes $(\approx 1$ million bytes)
$-\mathrm{GB}=1$ Gigabyte $=2^{30}$ bytes $=1,073,741,824$ bytes $(\approx 1$ billion bytes $)$
$\mathrm{TB}=1$ Tetabyte $=2^{* 0}$ bytes $=1,099,511,627,776$ bytes $(\approx 1$ trillion bytes $)$
A byte can represent numbers up to 255: 1111111 (base 2) $=255$ (base 10)
-The largest number represented by a binary number of size N is 2 N -

Big Data: Volume

Big Data: Volume
One page
of text one song One movie $\begin{array}{lll}6 \text { miliono } \\ \text { books } \\ \text { bs Storevs } \\ \text { of }\end{array}$

Hexadecimal numbers
Everything we have learned in base 10 should be studied again in other bases !!

Example: multiplication table in base 16

	Conversion: From base 2 to base 16, and back
This is in fact easy!! -from base 2 to base 16:	
	Eample 1011000000
	Step 1: break into groups of 4 (starting from the right): $110 \quad 1100 \quad 0100$
	Step 2: pad with 0 , if needed: 011011000100
	Step 3: convert each group of 4, using table: $6 \text { c } 4$
	Stept 4 regroup:
	6C4 $11011000100($ base 2$)=6 \mathrm{C} 4$ (base 16)

```
    Conversion: From base 2 to base 16, and back
From base 16 to base 2
    Example: 4FD
    Step 1.split
    Stepe2 convert tach "digig", wing tale:
    0100 1111101
    Step: Removel leading, 0,if neded
        100 1111 101
    Step tregroup:
        ,001411101
        4FD (asee 10) =1001m1100 (base2)
```

Digital Data

Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real number
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

Representing Integer

Unsigned integers (natural numbers

\square
Sizes
Char: 1 bit
Unsigned short: 16 bits (2 bytes)
Unsigned int: 32 bits (4 bytes)

Representing Integers

```
Signed integers
    s Num
    S: sign bit: 0 means positive, 1 means negative
    Num:
    Num: If }=0\mathrm{ , direct representation of the number in binary form
    - If s=0, , twocc's complementent of the number
```

 Sizes
 -Char: 1 bit
 -Short: 16 bits (2 bytes)
 >int: 32 bits (4 bytes)
 Representing Integers: two's complement
The two's complement of an N-bit number is defined as its complement with respect to 2^{N}
The sum of a number and its two's complement is 2^{N}.
For instance, for the three-bit number 010 , the two's complement is 110 , because
$010+110=1000(=2 s=8)$.
The two's complement is calculated by inverting the bits and adding one.

IEEE Floating Point Representation

IEEE Standard 754

-Established in 1985 as uniform standard for floating point arithmetic
Before that, many idiosyncratic formats
-Supported by all major CPUs
Driven by Numerical Concerns
-Nice standards for rounding, overflow, underflow

- Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

IEEE Floating Point Representation

Numerical Form

$(-1)^{s} M 2^{E}$
-Sign bit \boldsymbol{s} determines whether number is negative or positive
-Significand \boldsymbol{M} normally a fractional value in range (1.0,2.0).
=Exponent \boldsymbol{E} weights value by power of two

Encoding
 -MSB is sign bit
 - exp field encodes E

| s exp |
| :--- | :--- | :--- |

-frac field encodes M

IEEE Floating Point Representation

s exp frac

Encoding
-MSB is sign bit

- exp field encodes E

Sizes

- Single precision:
(32 bits total)
exp bits, 23 frac bits
- Double precision: 11 exp bits, 52 frac bits
(64 bits total)
- Extended precision: 15 exp bits, 63 frac bits
$:$ Olly found in intel-compatbie machines
Stored in 80 bits (1 bit wasted)

```
IEEE Floating Point Representation
Special value:
\(\exp =111 \ldots 1\)
\(\exp =111 . .1,1, f\) frac \(=000 . . .0\)
- Represents
value \(x(\) (infinit)
- Operation that overflows
- Both positive and negative
- E.g, \(1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty\)
- E.9., 1.0/0.0 = -1.0/-0.0
```



```
Represents case when no numeric value can be
Represents case whe
determined
E.g., satt (-1), \(\infty-\infty\)
```

```
oating Point Operations
```


Conceptual View

```
- First compute exact result
- Possibly overflow if exconent too large
- Possilly overfiow if exponent too large
Rounding Modes (illustrate with \(\$\) rounding)
\(\$ 2.50-51.50\)
```


Unwanted noise

Computers encounter noise!
The Ariane 5 tragedy: On June 1996
The Ariane 5 tragedy: On June 199
the first Ariane 5 was launched...
the first Ariane s was launched.
and exploded after 37 seconds
The failure of the Ariane 501 was caused by the completet loss of guidance and altitude information
37
seconds a after start...due to 37 seconds after start....due to a
https//wwwwired.com/2005/11/historys-worts-software-bugs

Digital Data

Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

ASCII

American Standard Code for Information Interchang
So far, we have seen how computers can handle numbers.
What about letters / characters?
The ASCII code was designed for that: it assigns a number to
each character:

A-Z: 65- 97
a-z: $97-122$
$0-9: 48-57$

UNICODE

ASCII only contains 127 characters (though an extended version exists with 257 characters).

This is by far not enough as it is too restrictive to the English language.
UNICODE was developed to alleviate this problem: the latest version, UNICODE 14.0 (September 2021) contains more than 140,000
characters, covering most existing languages.

For more information, see:

http://www.unicode.org/versions/Unicode14.0.0

Digital Data

Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

Digital Sound

Sound is produced by the vibration of a media like air or water. Audio refers to the sound within he range of human hearing.
nalog, ie. continuous in both time and amplitude.
Th store To store and process sound information in a computer or to transmitit through a computer
network, we must first convert the analog signal to digital form using an analog-to-digital converter network, we must first convert the analog s
(ADC) ; the conversion involves two steps:
(1) sampling, and
2) quantization.

frequency or sampling rate
the sampling is done in time domain, the unit of sampling interval is second and
the unit of sampling rate is Hz , which means cycles per second.

Quantization

Quantization is the process of limiting the value of a sample of a continuous
function to one of a predeetermined number of allowed values.
which can then be represented by a finite number of bits.

Audio Sound
Sampling:
he human ear can hear sound up to $20,000 \mathrm{~Hz}$: a sampling rate od
$40,000 \mathrm{~Hz}$ is therefore sufficient. The standard for digital audio is
$44,100 \mathrm{~Hz}$.
auntization
The current standard for the digital representation of audio sound is to use
16 bits (i.e 65536 levels, half positive and half negative)
-60 seconds
$-44,100$ samples
-16 bits (2 bytes) per sample
-2 channels (stereo)
S=60\times44100\times2\times2 = 10,534,000 bytes }~10\textrm{MB}!
S=60\times44100\times2\times2 = 10,534,000 bytes }~10\textrm{MB}!
1 hour of music would be more than 600 MB

DIGITAL RECORDING

$$
\begin{array}{ll}
\frac{1}{4} \\
0 & 0
\end{array}
$$

DIGITAL RECORDING

```
-Faithul
-can make multiple identical copies
```

-Can be processed
$\frac{1}{7} 0$

Digital Data

Sinary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

Digital Images

Digital Images

Sampling:

mages are broken down into ittle squares: pixels

Ouantization:
Each pixel is characterized either as

- A binary number ($(0$ or 1$)$ to indicate black or white
- A natural number between 0 and 255 , to indicate a gray scale
- A set of three numbers, each between 0 and 255 , to indicate the amount of Red (R), Green (G) and Blue (B)

True Color": a pixel is represented by 24 bits, corresponding to $16,777,216$ possible colors

Digital Images

