

Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

D	iai	tal	D	at	a
-	יפי	con	-	~	

Binary and hexadecimal representations

Different types of numbers: natural numbers, integers, real numbers

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Number representation	
We are used to counting in base 10:	
100 10 1 103 102 101 109 thousands hundreds tens units	
Example: 1 7 3 2 ← digits 1000 100 10 1	
1x1000+7x100+3x10+2x1 = 1732	

Number re	presentation					
Base 10	Base 2	-				
0	0					
1	1					
2	10					
3	11					
4	100					
5	101					
6	110	-				
253	11111101					
254	11111110					
255	11111111	-				

Conversion	
From base 2 to base 10:	
1 1 1 0 1 0 1 0 1 0 0	
1024 512 256 128 64 32 16 8 4 2 1	
1x1024 + 1x512 + 1x256 + 0x128 + 1x64 + 0x32 + 1x16 + 0x8 + 1x4 + 0x2 + 0x1 = 1876	
From base 10 to base 2:	
1877 %2 = 938 Remainder 1	
938 %2 = 469 Remainder 0	
469 %2 = 234 Remainder 1	
234 %2 = 117 Remainder 0	
117 %2 = 58 Remainder 1	
58 %2 = 29 Remainder 0	
29 %2 = 14 Remainder 1	
14 %2 = 7 Remainder 0	
7 %2 = 3 Remainder 1	
3 %2 = 1 Remainder 1	
1 %2 = 0 Remainder 1	
1877 (base10) = 11101010101 (base 2)	

Facts about Binary Numbers	
Each "digit" of a binary number (each 0 or 1) is called a bit	
1 byte = 8 bits	
-1 KB = 1 kilobyte = 2 ¹⁰ bytes = 1024 bytes (=1 thousand bytes)	
$-1 \text{ MB} = 1 \text{ Megabyte} = 2^{20} \text{ bytes} = 1,048,580 \text{ bytes} (\approx 1 \text{ million bytes})$	
-1 GB = 1 Gigabyte = 230 bytes = 1,073,741,824 bytes (=1 billion bytes)	
-1 TB = 1 Tetabyte = 2 ⁴⁰ bytes = 1,099,511,627,776 bytes (= 1 trillion bytes)	
-A byte can represent numbers up to 255: 11111111 (base 2) = 255 (base 10)	
-The largest number represented by a binary number of size N is 2N - 1	

	Hexadecimal numbers
Everything we again in other	have learned in base 10 should be studied bases !!
Example: multip	lication table in base 16:
	I I
	2 3 6 7 12 10 101 <th101< th=""> <</th101<>
	0 6 12 12 14 24 24 26 26 42 42 44 54 54 54 7 7 6 55 15 16 14 1 16 16 40 54
	a b 1
	C 6 34 43 56 44 64 66 76 84 76 56 74 84 D D A4 72 A4 46 46 90 46 75 84 94 56 54
	E S S JS 44 S4 42 72 S6 54 46 56 56 T P R D SC B4 67 70 95 84 50 55 56

Base 10 Base 2 Base 16 0 0000 0 1 0001 1 2 0010 2 3 0011 3 4 0100 4 5 0101 5 6 0110 6 7 0111 7 8 1000 8 9 1001 9
1 0001 1 2 0010 2 3 0011 3 4 0100 4 5 0101 5 6 0110 6 7 0111 7 8 1000 8
2 0010 2 3 0011 3 4 0100 4 5 0101 5 6 0110 6 7 0111 7 8 1000 8
3 0011 3 4 0100 4 5 0101 5 6 0110 6 7 0111 7 8 1000 8
4 0100 4 5 0101 5 6 0110 6 7 0111 7 8 1000 8
5 0101 5 6 0110 6 7 0111 7 8 1000 8
6 0110 6 7 0111 7 8 1000 8
7 0111 7 8 1000 8
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

	Conversion: From base 2 to base 16, and back
From base 16 to base 2	<u>k</u>
	Example: 4FD
	Step 1: split:
	4 F D
	Step 2: convert each "digit", using table:
	0100 1111 1101 Step 3: Remove leading 0, if needed
	100 1111 1101
	Step 4: regroup:
	10011111101
	4FD (base 16) = 10011111101 (base 2)

Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

The differen	t set of numbers		
Natural numbers	$1, 2, 3, 4 \dots,$		
Z Integers	$\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots$		
	$\frac{a}{b}$ where a and b are integers and b is not zero		
	The limit of a convergent sequence of rational numbers		
	a + ib where a and b are real numbers and i is the square root of -1		

Representing Integers
Signed integers
s Num
S:sign bit: 0 means positive, 1 means negative
Num: • If s = 0, direct representation of the number in binary form • If s = 1, two's complement of the number
Sizes
≻Char: 1 bit ≻Short: 16 bits (2 bytes)
≻int: 32 bits (4 bytes)

Representing Integers: two's complement

The two's complement of an N-bit number is defined as its complement with respect to 2N

The sum of a number and its two's complement is 2^N.

For instance, for the three-bit number 010, the two's complement is 110, because $010+110=1000 \ (= 2^3=8).$

The two's complement is calculated by inverting the bits and adding one.

	Eight-bit signed	
Bits +	Unsigned value -	Two's complement value
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
0111 1110	126	126
0111 1111	127	127
1000 0000	128	-128
1000 0001	129	-127
1000 0010	130	-126
1111 1110	254	-2
1111 1111	255	-1

IEEE Floating Point Representation IEEE Standard 754 * Setablished in 1985 as uniform standard for floating point arithmetic gefore that, many idiosyncratic formats * Supported by all major CPUs Diven pytemical Concerns * Nice standards for rounding, overflow, underflow * Hard to make go fast • Numerical analysits predominated over hardware types in defining standard

IEEE Floating Point Representation
Numerical Form
(-1)s M 2E
\succ Sign bit <i>s</i> determines whether number is negative or positive
Significand M normally a fractional value in range [1.0,2.0).
Exponent E weights value by power of two
Encoding
s exp frac
≻MSB is sign bit
≻exp field encodes E
≻frac field encodes M

IEEE Floating Point Representation
s exp frac
Encoding
➤MSB is sign bit ➤exp field encodes E
>frac field encodes M
Sizes
Single precision: 8 exp bits, 23 frac bits (32 bits total)
>Double precision: 11 exp bits, 52 frac bits (64 bits total)
 Extended precision: 15 exp bits, 63 frac bits Only found in Intel-compatible machines Stored in 80 bits (1 bit wasted)
Stored in 80 bits (1 bit Wasted)

IEEE Floating Point Representation	
Special value:	
exp = 1111	
> exp = 1111, frac = 0000 • Represents value ∞ (infinity) • Operation that overflows	
 Both positive and negative E.g., 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞ 	
>exp = 1111, frac ≠ 0000 • Not-a-Number (NaN)	
Represents case when no numeric value can be determined	
 E.g., sqrt(−1), ∞ − ∞ 	

Computers encounter noise!

The Ariane 5 tragedy: On June 1996, the first Ariane 5 was launched... and exploded after 37 seconds

The failure of the Ariane 501 was caused by the complete loss of guidance and altitude information 37 seconds after start....due to a numerical error.

https://www.wired.com/2005/11/historys-worst-software-bugs/

Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

ASCII American Standard Code for Information Interchange
So far, we have seen how computers can handle numbers.
What about letters / characters?
The ASCII code was designed for that: it assigns a number to each character:
A-Z: 65-90 a-z: 97-122 0-9: 48-57

UNICODE

ASCII only contains 127 characters (though an extended version exists with 257 characters).

This is by far not enough as it is too restrictive to the English language.

UNICODE was developed to alleviate this problem: the latest version, UNICODE 14.0 (September 2021) contains more than 140,000 characters, covering most existing languages.

For more information, see:

http://www.unicode.org/versions/Unicode14.0.0/

Digital Data

Binary and hexadecimal representations

Different types of numbers: natural numbers, integers, real numbers

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Digital Sound

Sound is produced by the vibration of a media like air or water. Audio refers to the sound within the range of human hearing.

Naturally, a sound signal is analog, i.e. continuous in both time and amplitude.

To store and process sound information in a computer or to transmit it through a computer network, we must first convert the analog signal to digital form using an analog-to-digital converter (ADC); the conversion involves two steps:

(1) sampling, and (2) quantization.

Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

