Understanding Phone dials

The phone keypad

The keypad is organized over four rows and three columns.
Each row and each column is assigned a "frequency" (we will see later what this means).

A number is then defined by its row and column.
For example, the number 6 is defined by $(770,1477)$

Dialing a number

The phone generates a digit as a sound
A "sound" is a wave, usually a sine function.
The phone generates a digit as the sum of the sine waves whose frequencies are defined by its row position and column position.

Reminder on sine functions

$$
y(t)=\sin (t)
$$

The sine function is periodic (i.e. it repeats itself), with a period $\mathrm{T}=2 \pi$

Reminder on sine functions

The sine function can be modulated to change its period.

To assign a period T to a sine function,
$y(t)=\sin \left(\frac{2 \pi}{T} t\right)$
Example (on the right): $\mathrm{T}=1.5$

$$
y(t)=\sin \left(\frac{2 \pi}{1.5} t\right)
$$

Reminder on sine functions

When the x axis represents time, the period T is the duration of the function before it starts repeating itself.

The inverse of the period is the frequency of the signal, f :

$$
f=\frac{1}{T}
$$

It defines the number of time the function repeats itself over 1 second.

The frequency is expressed in Hertz $(\mathbf{H z})$
The function can then be written in 2 ways:

$$
y=\sin \left(\frac{2 \pi}{T} t\right)=\sin (2 \pi f t)
$$

Dialing a number

The phone generates a digit as the sum of the sine waves whose frequencies are defined by its row position and column position.

For example, for the digit 6:
$y(t)=\sin (2 \pi 770 t)+\sin (2 \pi 1477 t)$

Dialing a number: discrete signal

the digit 6 :

$$
y(t)=\sin (2 \pi 770 t)+\sin (2 \pi 1477 t)
$$

The digit 6

Dialing a number: discrete signal

the digit 6 :

$$
y(t)=\sin (2 \pi 770 t)+\sin (2 \pi 1477 t)
$$

The phone transmits the sound signal "digitally": this means that it does not transmit the continuous signal, but a discrete signal in time, i.e. at only specific times. Those times are spaced uniformly, with a spacing Δ

The digit 6

Continuous signal

The digit 6

Discretization

The digit 6

Actual signal!

Dialing a number: discrete signal

$y(k \Delta)=\sin (2 \pi 770 k \Delta)+\sin (2 \pi 1477 k \Delta)$

How to choose Δ ?
Δ is the time interval between two sampled points. It can be characterized by its inverse, Fs,
$F s=\frac{1}{\Delta}$
Fs is the sampling rate: it defines how many points are sampled per second.
Proper discretization requires that the sampling rate is at least twice the highest possible frequency in the signal.

For a phone keypad, the highest frequency is 1477.
This means that $F s>2 \times 1477$

The phone industry has chosen the standard: Fs = 8192

Mimicking dialing a digit on Matlab

Generating the sound for the digit 6 on a phone keypad with Matlab:

```
% Defining the sampling rate:
Fs = 8192;
% Computing the corresponding Delta in time:
Delta = 1/ Fs;
% Defining the time for the signal: 0.2 seconds total, sampled by Delta:
time= 0: Delta : 0.2
% Generating the two signals corresponding to the row and column of 6:
y1 = sin (2 * pi * 770 * time);
y2 = sin (2 * pi * 1477 * time);
% Combining the two signals to generate the digit 6:
y = y1 + y2;
% Plot this signal:
plot(time, y, '-r', 'LineWidth', 1.5)
% We can even play the sound:
sound(y)
```


Reverse Engineering:
 Find a digit from its sound

Given a time signal (over N points), can we find the corresponding digit that was dialed?

Reverse Engineering:
 Find a digit from its sound

Given a time signal (over N points), can we find the corresponding digit that was dialed?

We know more than the time signal!:

- As this is a signal generated by a phone,
- Fs = 8192 and
- $\Delta=\frac{1}{F s}=\frac{1}{8192}$
- The signal is a combination of two sines with different frequencies

Reverse Engineering:
 Find a digit from its sound

What we want: A tool that:

Reverse Engineering:
Find a digit from its sound

What we want: A tool that:

Reverse Engineering:
Find a digit from its sound

What we want: A tool that:

Reverse Engineering:

Find a digit from its sound

What we want: A tool that:

Basics of Fourier transform

Any periodic function $f(t)$, with period T can be written as a sum of sine and cosine function:

$$
f(t)=a_{0}+\sum_{k} a_{k} \cos \left(\frac{2 \pi}{T} k t\right)+b_{k} \sin \left(\frac{2 \pi}{T} k t\right)
$$

Defining the fundamental frequency $f_{0}=\frac{1}{T}$

$$
f(t)=a_{0}+\sum_{k} a_{k} \cos \left(2 \pi k f_{0} t\right)+b_{k} \sin \left(2 \pi k f_{0} t\right)
$$

$$
\text { Sum of cosines and sines with frequencies } f_{0}, \quad 2 f_{0}, \quad 3 f_{0}, \ldots,
$$

Basics of Fourier transform

$$
f(t)=a_{0}+\sum_{k} a_{k} \cos \left(2 \pi k f_{0} t\right)+b_{k} \sin \left(2 \pi k f_{0} t\right)
$$

The coefficients a_{k} and b_{k} can be computed:

$$
\begin{aligned}
& a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) \cos \left(2 \pi k f_{0} t\right) d t \\
& b_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) \sin \left(2 \pi k f_{0} t\right) d t
\end{aligned}
$$

Basics of Fourier transform

$$
f(t)=a_{0}+\sum_{k} a_{k} \cos \left(2 \pi k f_{0} t\right)+b_{k} \sin \left(2 \pi k f_{0} t\right)
$$

The coefficients a_{k} and b_{k} can be computed:

$$
\begin{array}{ll}
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) \cos \left(2 \pi k f_{0} t\right) d t & \begin{array}{l}
\text { This is exactly what the Fourier } \\
\text { transform computes! }
\end{array} \\
b_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) \sin \left(2 \pi k f_{0} t\right) d t & \begin{array}{l}
\text { It finds how much the different } \\
\text { frequencies } k f_{0} \text { intervene in the } \\
\text { signal! }
\end{array}
\end{array}
$$

Reverse Engineering:

Find a digit from its sound

Reverse Engineering:
 Find a digit from its sound

1) The "period" T of the signal is defined as its total length:

$$
T=N \Delta=\frac{N}{F s}
$$

Reverse Engineering:
 Find a digit from its sound

1) The "period" T of the signal is defined as its total length:

$$
T=N \Delta=\frac{N}{F s}
$$

2) The "fundamental frequency" f_{0} is the inverse of the "period":

$$
f_{0}=\frac{1}{T}=\frac{F_{s}}{N}
$$

Reverse Engineering:
 Find a digit from its sound

1) The "period" T of the signal is defined as its total length:

$$
T=N \Delta=\frac{N}{F s}
$$

2) The "fundamental frequency" f_{0} is the inverse of the "period":

$$
f_{0}=\frac{1}{T}=\frac{F_{s}}{N}
$$

3) Compute the coefficients a_{k} and b_{k} for frequency $\left(k f_{o}\right)$ using Fourier transform.

If there are N values in the time signal, the Fourier transform will compute N values.

Reverse Engineering:

Find a digit from its sound

Matlab script to analyse a signal y

```
\% Defining the phone company sampling rate:
Fs = 8192;
Delta \(=1 /\) Fs;
\% Length of time signal \(\mathrm{y}(\mathrm{t})\) and corresponding "period" T :
nval = length \((\mathrm{y})\);
T = Delta*nval;
\% Define the fundamental frequency identified by Fourier: \(f \_0=1 / T\)
\(\mathrm{f} 0=1 / \mathrm{T}\);
\% The Fourier is computed over a range of frequencies ( \(0, f \_0,2 * f \_0 \ldots\) )
\% over nval values; define this list:
freq \(=0\) : f0 : Fs-1;
\% Compute Fourier transform; get abs to combine \(\mathrm{a}_{-} \mathrm{k}\) and \(\mathrm{b} \_\mathrm{k}\)
\(\mathrm{f}=\operatorname{abs}(\mathrm{fft}(\mathrm{y})\);
\% Plot
plot(freq, f, '-r', 'LineWidth', 1.5);
\% Limit to frequency range of phone dials
xlim([ 500 1500]);
```


Additional code to find peaks automatically

```
%
% Find peak position
%
[peak_amp peak_loc]=findpeaks(f,'Minpeakheight',200);
%
% peak_loc is in point; convert to frequency
%
freq=f(peak_loc);
%
% Only keep values in DTMF range
%
peak_freq=freq(freq < 1700);
peak_height = peak_amp(freq < 1700);
%
hold on
str=num2str(int32(peak_freq));
text(peak_freq(1),peak_height(1),str(1));
text(peak_freq(2),peak_height(2),str(2));
```

