Supervised Learning: k-Nearest Neighbors
Let’s imagine a scenario where we would like to predict the value of one variable using another (or a set of other) variables.

Examples:
- Predicting the effect of a medication based on symptoms experienced by the patient (temperature, pain, some blood results, ...)
- Predicting which movies a Netflix user will rate highly based on their previous movie ratings, demographic data, etc.
The Advertising data set consists of the sales of a particular product in 200 different markets, and advertising budgets for the product in each of those markets for three different media: TV, radio, and newspaper. Everything is given in units of $1000.

<table>
<thead>
<tr>
<th></th>
<th>TV</th>
<th>Radio</th>
<th>Newspaper</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230.1</td>
<td>37.8</td>
<td>69.2</td>
<td>22.1</td>
</tr>
<tr>
<td>2</td>
<td>44.5</td>
<td>39.3</td>
<td>45.1</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>17.2</td>
<td>45.9</td>
<td>69.3</td>
<td>9.3</td>
</tr>
<tr>
<td>4</td>
<td>151.5</td>
<td>41.3</td>
<td>58.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Response vs Predictor Variables

There is an **asymmetry** in many of these problems:

The variable we would like to predict may be more difficult to measure, may be more important than the other(s), or **are probably directly or indirectly influenced** by the other variable(s).

Thus, we'd like to define two categories of variables:

- variables whose values we want to predict
- variables whose values we use to make our prediction
Response vs Predictor Variables

<table>
<thead>
<tr>
<th></th>
<th>TV</th>
<th>Radio</th>
<th>Newspaper</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>230.1</td>
<td>37.8</td>
<td>69.2</td>
<td>22.1</td>
</tr>
<tr>
<td>2nd</td>
<td>44.5</td>
<td>39.3</td>
<td>45.1</td>
<td>10.4</td>
</tr>
<tr>
<td>3rd</td>
<td>17.2</td>
<td>45.9</td>
<td>69.3</td>
<td>9.3</td>
</tr>
<tr>
<td>4th</td>
<td>151.5</td>
<td>41.3</td>
<td>58.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

- **X**: predictors, features, covariates
- **Y**: outcome, response variable, dependent variable

- **n observations**
- **p predictors**
Response vs Predictor Variables

TV	**Radio**	**Newspaper**	**Sales**
230.1 | 37.8 | 69.2 | 22.1
44.5 | 39.3 | 45.1 | 10.4
17.2 | 45.9 | 69.3 | 9.3
151.5 | 41.3 | 58.5 | 18.5

X_1, X_2, \ldots, X_p
- predictors
- features
- covariates

Y_1, Y_2, \ldots, Y_m
- outcome
- response variable
- dependent variable

n observations

p predictors
Statistical Model

We assume that the response variable, Y, relates to the predictors, X, through some unknown function expressed generally as:

$$ Y = f(X) + \epsilon $$

Here, f is the unknown function expressing an underlying rule for relating Y to X, ϵ is the amount (unrelated to X) that Y differs from the rule $f(X)$.

A statistical model is any algorithm that estimates f. We denote the estimated function as \hat{f}.
Prediction vs Estimation

For some problems, what's important is obtaining \hat{f}, the estimate of f. These are called *inference* problems.

When we use a set of measurements, $(x_{i,1}, \ldots, x_{i,p})$ to predict a value for the response variable, we denote the *predicted* value by:

$$\hat{y}_i = \hat{f}(x_{i,1}, \ldots, x_{i,p}).$$

For some problems, we do not care about the specific expression of \hat{f}, we just want to make our predictions \hat{y}’s as close to the observed values y’s as possible. These are called *prediction problems*.
Prediction Model

Build a model to **predict** sales based on TV budget

The response, y, is the sales
The predictor, x, is TV budget
Prediction Model

\[y \]

\[x \]

![Graph showing the relationship between TV advertising and sales](image-url)
How do we predict the sales value (y) for a given TV advertising value (x)?

What is the value of y at this x?
Prediction Model: Average

Simplest idea: table the mean of the existing values: \(\hat{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \)

What is the value of \(y \) at this \(x \)?
Statistical Model

\[X = \text{new patient} \]
\[\hat{y} = \frac{(M + 9 + 12 + 12.2)}{4} \]
\[= 11.05 \]

Similar patients from training

Diagnosis
Prediction Model: Average

Simplest idea: table the mean of the existing values:
\[\hat{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]

Not always the “best” solution!

What is the value of \(y \) at this \(x \)?
Prediction Model: 1-Neighbour

What is the value of y at this x?
Prediction Model: 1-Neighbour

1. Find distance $D(x, x_i)$ to all other points

What is the value of y at this x?
Prediction Model: 1-Neighbour

1. Find distance $D(x, x_i)$ to all other points

2. Find closest x_c

What is the value of y at this x?
Prediction Model: 1-Neighbour

1. Find distance $D(x,x_i)$ to all other points
2. Find closest x_c
3. Define $\hat{y}(x) = y(x_c)$

What is the value of y at this x?
Prediction Model: 1-Neighbour

Repeat for all values of x in the range of “TV”: this builds a model for y!
Prediction Model: k-Nearest Neighbours

What is the value of y at this x?
Prediction Model: k-Nearest Neighbours

1. Find distance $D(x, x_i)$ to all other points
Prediction Model: k-Nearest Neighbours

1. Find distance $D(x, x_i)$ to all other points

2. Find k closest $x_{c1}, x_{c2}, x_{c3}, x_{c4} ...$ (here $k = 4$)

What is the value of y at this x?
Prediction Model: k-Nearest Neighbours

1. Find distance $D(x, x_i)$ to all other points

2. Find k closest x_{c1}, x_{c2}, x_{c3}, x_{c4} ...
 (here $k = 4$)

3. Average y over k-nearest Neighbors

$$\hat{y} = \frac{1}{k} \sum_{j=1}^{k} y(x_{cj})$$
Prediction Model: k-Nearest Neighbours

Repeat for all values of \(x \) in the range of “TV” for different \(k \) values: this builds different models for \(y \)!
The *k-Nearest Neighbor (kNN) model* is an intuitive way to predict a quantitative response variable:

to predict a response for a set of observed predictor values, we use the responses of other observations most similar to it

kNN is a **non-parametric** learning algorithm. When we say a technique is non parametric, it means that it does not make any assumptions on the underlying data distribution.

Note: this strategy can also be applied to classification problems to predict a categorical variable. We will encounter kNN in the lab.
Prediction Model: k-Nearest Neighbours

The k-Nearest Neighbor Algorithm:

Given a dataset \(D = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\} \). For every new \(X \):

1. Find the k-number of observations in \(D \) most similar to \(X \):
 \[
 \{(x^{(n_1)}, y^{(n_1)}), \ldots, (x^{(n_k)}, y^{(n_k)})\}
 \]
 These are called the k-nearest neighbors of \(x \)

2. Average the output of the k-nearest neighbors of \(x \)
 \[
 \hat{y} = \frac{1}{k} \sum_{i=1}^{k} y^{n_i}
 \]
Evaluating a Model

Start with some data \((x, y)\):
Evaluating a Model

Divide data into a training set (red) and a test set (blue):
Evaluating a Model

1. Build a model based on training set (here a 1-Neighbor model):
Evaluating a Model

1. Build a model based on training set (here a 1-Neighbor model)

2. Add test data
Evaluating a Model

1. Build a model based on training set (here a 1-Neighbor model)

2. Add test data

3. Compute residuals for the N test data
 \((\hat{y}(i) - y(i))\)
Evaluating a Model

1. Build a model based on training set (here a 1-Neighbor model)

2. Add test data

3. Compute residuals for the N test data
 \((\hat{y}(i) - y(i))\)

4. Compute the mean square error, also called loss function

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) - y(i))^2
\]
Evaluating a Model

Note: the mean square error is not the only possible loss function! Other possibilities:

- Mean square error
 \[MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) - y(i))^2 \]

- Root mean square error
 \[RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) - y(i))^2} \]

- Maximum absolute error
 \[MAE = \max_{i \in [1,N]} |\hat{y}(i) - y(i)| \]

- Average absolute error
 \[AAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}(i) - y(i)| \]
Comparing models

Compute RMSE for multiple models and plot as a function of k:

\[\text{RMSE} = f(k) \]

\(k=5 \) seems to be the best model
Recall that for a given model, we compute the mean square Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) - y(i))^2}$$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{RMSE=5.95}
\end{figure}
Model Fitness

Recall that for a given model, we compute the mean square error:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) - y(i))^2}$$

However, RMSE depends on the scale of the values y! Here y are expressed in units of “1000 dollars”; if instead we had used dollars, $RMSE=5950$.

![Graph showing sales vs TV budget with RMSE=5.95]
Model Fitness

To normalize the “fitness” score:

Consider the test set with values \((x_t^i, y_t^i)\) for \(i \in [1,N]\)

We consider three models:

- The simplest model where each value are predicted as the average of the test set values:
 \[
 \hat{y}^s(i) = \frac{1}{N} \sum_{i=1}^{N} y_t^i(i)
 \]

- The “best” model where each value is exact
 \[
 \hat{y}^b(i) = y_t^i(i)
 \]

- The current model M that we want to evaluate
 \[
 \hat{y}^M(i)
 \]
Model Fitness

To normalize the “fitness” score:

$$R^2 = 1 - \frac{\sum_{i=1}^{N} (\hat{y}_M(i) - \hat{y}_B(i))^2}{\sum_{i=1}^{N} (\hat{y}_S(i) - \hat{y}_B(i))^2}$$

- If our model is as good as the simple model, based on the average, then $R^2 = 0$
- If our model is perfect then $R^2 = 1$
- R^2 can be negative if the model is worst than the simple model (average). This can happen!
Model Fitness

R-Squared Explanation

- **Residual Sum of Squares**: $\sum(Y_i - Y_{\text{fitted}})^2$
- **Total Sum of Squares**: $\sum(Y_i - Y_{\text{mean}})^2$

$$R_{sq} = 1 - \frac{RSS}{TSS}$$
RMSE or R^2?

- Both RMSE and R^2 quantify how well a model fits a dataset.
- The RMSE tells us how well a regression model can predict the value of the response variable in absolute terms while R^2 tells us how well a model can predict the value of the response variable in percentage terms.
- It is useful to calculate both the RMSE and R^2 for a given model because each metric gives us useful information.