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Predicting
We get back to the scenario where we would like to predict the value of one variable using 

another (or a set of other) variables.


Examples:


❖ Predicting the value of stocks based on its current market


❖ Predicting the weather next fall based on previous years

Previously, we have seen that we can use k-Nearest Neighbor to do such predictions… 

but not always! k-NN will work best when the variable we want to predict

is within the range of the training set…It means that kNN most likely will not work well for prediction 
outside that range, such as the prediction mentioned above.



Prediction vs Estimation
When we use a set of measurements,  to predict a value for the 
response variable, we denote the predicted value by:


		 	 	 	 	 	 	   .


For some problems, we do not care about the specific expression of , we just 
want to make our predictions ’s as close to the observed values ’s as possible. 
These are called prediction problems.


For some problems, what's important is obtaining , the estimate of . These are 
called inference problems. 


(𝑥𝑖,1,  …, 𝑥𝑖,𝑝)

𝑦̂𝑖 = 𝑓̂(𝑥𝑖,1,  …, 𝑥𝑖,𝑝)

𝑓̂
𝑦̂ 𝑦

𝑓̂ 𝑓

Example: kNN

Example: Linear regression



Linear Regression
Example: let us consider the dataset that 
gives the number of death observed in a 
population of smokers
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Linear Regression
Example: let us consider the dataset that 
gives the number of death observed in a 
population of smokers

We assume that these data can be 
represented with a linear model

Which line is good:
Maybe this one (blue)
Or this one (red)
Or this one (green)



The normal distribution

It is bell-shaped and symmetrical about the mean


The mean, median and mode are equal

	 In everyday life many variables such as height, weight, shoe size and exam marks all tend to be normally distributed, that is, 
they all tend to look like:
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The normal distribution
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Linear Regression
Let us suppose that:

➢The data points are independent of each other

➢Each data point has a measurement error that is random, distributed as a

   Normal distribution around the “true” value Y(xi):


The likelihood function is:


L(Y) = exp − 1
2
yi −Y(xi )
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f (yi ;Y) = exp −
1
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L(Y) = f (y1,…, yN;Y) ≈ f (y1;Y)… f (yN;Y)



Linear Regression

€ 

P(data/Model)∝ exp −
1
2
yi −Y(xi )

σi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ i=1

N

∏

Let us suppose that:

➢The data points are independent of each other

➢Each data point has a measurement error that is random, distributed as a

   Normal distribution around the “true” value Y(xi):


The probability of the data points, given the model Y is then:




Bayes’ theorem

P(A |B) = P(B | A)P(A)
P(B)

where  A and  B are events and .

❖  P(A | B) is a conditional probability: it is the probability of event  A occurring 

given that  B is true. It is also called the posterior probability of  A given B.


❖  P(B | A) is also a conditional probability: the probability of event  B occurring 
given that A is true.


❖ P(A) and  P(B) are the probabilities of observing  A and  B respectively without 
any given conditions; they are known as the marginal probability or prior 
probability.


❖ A and B must be different events.

P(B) ≠ 0



Bayes’ theorem

P(Model /Data) = P(Data /Model )P(Model )
P(Data)

User new evidence to update beliefs

Prior 

probability

Posterior 

probability

Likelihood

function

Model evidence 

(Independent of


Model)



Bayes’ Theorem
Hypothesis (model) on your friend’s new baby:

H1: brown hair baby boy

H2: blond hair baby girl

H3: cute baby cat
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Bayes’ Theorem
Example: suppose a drug test is 99% sensitive and 99% specific.

(Namely, P(+|User) = 0.99 and P(+|Non user) = 0.01)


Suppose that 0.5% of people are users of the drug. If a random individual

tests positive, what is the probability she is a user?



Bayes’ Theorem
Example: suppose a drug test is 99% sensitive and 99% specific.

(Namely, P(+|User) = 0.99 and P(+|Non user) = 0.01)


Suppose that 0.5% of people are users of the drug. If a random individual

tests positive, what is the probability she is a user?

P(User |+) = P(+ |User )P(User )
P(+)

=
P(+ |User )P(User )

P(+ |User )P(User )+P(+ / NonUser )P(NonUser )
P(User |+) = 33.2%



Linear Regression
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The probability of the data points, given the model Y is then:




Linear Regression

€ 

P(data/Model)∝ exp −
1
2
yi −Y(xi )

σi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ i=1

N

∏

The probability of the data points, given the model Y is then:


Application of Bayes ‘s theorem:

€ 

P(Model /Data)∝ P(Data/Model)P(Model)



Linear Regression
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The probability of the data points, given the model Y is then:


Application of Bayes ‘s theorem:

€ 

P(Model /Data)∝ P(Data/Model)P(Model)

With no information on the models, we can assume that the prior probability

P(Model) is constant.




Linear Regression
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The probability of the data points, given the model Y is then:


Application of Bayes ‘s theorem:

€ 

P(Model /Data)∝ P(Data/Model)P(Model)

With no information on the models, we can assume that the prior probability

P(Model) is constant.


Finding the model that maximizes P(Model/Data) is then

equivalent to finding the model that maximizes P(Data/Model).




Linear Regression
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The probability of the data points, given the model Y is then:


Application of Bayes ‘s theorem:

€ 

P(Model /Data)∝ P(Data/Model)P(Model)

With no information on the models, we can assume that the prior probability

P(Model) is constant.


Finding the model that maximizes P(Model/Data) is then

equivalent to finding the model that maximizes P(Data/Model).


This is equivalent to maximizing its logarithm, or minimizing the negative of its

logarithm, namely:

χ2 =
N

∑
i=1

1
2 ( yi − Y(xi)

σi )
2



Linear Regression

Then:

The parameters a and b are obtained from the two equations:

δχ2

δa
= − 2
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xi(yi − axi − b)
σ2

i
= 0

δχ2

δb
= − 2
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yi − axi − b
σ2

i
= 0

Fitting to a straight line:

Y(x) = ax + b

χ2 =
N

∑
i=1 ( yi − axi − b

σi )
2



Linear Regression
Let us define:

From which we find a and b:

Then:
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aSxx + bSx = Sxy
aSx + bS = Sy
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Linear Regression
We are not done!


Uncertainty on the values of a and b:
σ2

a =
S

SxxS − S2
x

σ2
b =

Sx

SxxS − S2
x

Evaluate goodness of fit:

❖ Compute residual error on each data point:  Y(xi)-yi


❖ Compute correlation coefficient R2



Linear Regression



Linear Regression

Then:

The parameters a and b are obtained from the two equations:

δχ2

δak
= − 2

N
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Xk(xi)(yi − a1X1(x) − a2X2(x) − … − aMXM(x))
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More general linear model:

Y(x) = a1X1(x) + a2X2(x) + … + aMXM(x)

χ2 =
N

∑
i=1 ( yi − a1X1(x) − a2X2(x) − … − aMXM(x)
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Model fitting
Let us work out a simple example. Let us consider we have N students, S1,…,SN

and let us “evaluate” a variable xi for each student such that:


xi= 1 if student Si owns a Ferrari, and xi= 0  otherwise.


We want an estimator of the probability p that a student owns a Ferrari. 


The probability of observing xi for student Si is given by:


 

The likelihood of observing the values xi for all N students is:

f(xi, p) = pxi(1 − p)1−xi

L(p) = f(x1, x2, …, xN; p) ≈ f(x1, p)f(x2, p)…f(xN, p)



Model Fitting

The maximum likelihood estimator of p is the value pm that maximizes L(p):

This is equivalent to maximizing the logarithm of L(p) (log-likelihood):

L(p) = p ∑ xi(1 − p)N−∑ xi

pm = argmaxL(p)

log(L(p)) = log(p)
N

∑
i=1

xi + log(1 − p)(N −
N

∑
i=1

xi)



Model Fitting

This is the most intuitive value…. And it matches with the 

maximum likelihood estimator

pm =
1
N ∑

i=1

xi

δ log(L(p))
δp

=
1
p

N

∑
i=1

xi −
1

1 − p (N −
N

∑
i=1

xi) = 0


