Supervised Learning: Linear Regression

Predicting

We get back to the scenario where we would like to predict the value of one variable using another (or a set of other) variables.

Examples:

* Predicting the value of stocks based on its current market
* Predicting the weather next fall based on previous years

Previously, we have seen that we can use k-Nearest Neighbor to do such predictions... but not always! k -NN will work best when the variable we want to predict is within the range of the training set...It means that kNN most likely will not work well for prediction outside that range, such as the prediction mentioned above.

Prediction vs Estimation

When we use a set of measurements, $\left(x_{i, 1}, \ldots, x_{i, p}\right)$ to predict a value for the response variable, we denote the predicted value by:

$$
\hat{y}_{i}=\hat{f}\left(x_{i, 1}, \ldots, x_{i, p}\right)
$$

For some problems, we do not care about the specific expression of \hat{f}, we just want to make our predictions \hat{y} 's as close to the observed values y 's as possible. These are called prediction problems. Example: kND
For some problems, what's important is obtaining \hat{f}, the estimate of f. These are called inference problems.

Linear Regression

Example: let us consider the dataset that gives the number of death observed in a population of smokers

Linear Regression

Example: let us consider the dataset that gives the number of death observed in a population of smokers

We assume that these data can be represented with a linear model

Which line is good:
Maybe this one (blue)

Linear Regression

Example: let us consider the dataset that gives the number of death observed in a population of smokers

We assume that these data can be represented with a linear model

Which line is good:
Maybe this one (blue)
Or this one (red)

Linear Regression

Example: let us consider the dataset that gives the number of death observed in a population of smokers

We assume that these data can be represented with a linear model

Which line is good:
Maybe this one (blue)
Or this one (red)
Or this one (green)

The normal distribution

In everyday life many variables such as height, weight, shoe size and exam marks all tend to be normally distributed, that is, they all tend to look like:

It is bell-shaped and symmetrical about the mean
The mean, median and mode are equal

The normal distribution

$$
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{(x-m)^{2}}{\sigma^{2}}}
$$

Linear Regression

Let us suppose that:

- The data points are independent of each other
$>$ Each data point has a measurement error that is random, distributed as a Normal distribution around the "true" value $Y\left(x_{i}\right)$:

$$
f\left(y_{i} ; Y\right)=\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]
$$

The likelihood function is:

$$
\begin{aligned}
& L(Y)=f\left(y_{1}, \ldots, y_{N} ; Y\right) \approx f\left(y_{i} ; Y\right) \ldots f\left(y_{N} ; Y\right) \\
& L(Y)=\prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
\end{aligned}
$$

Linear Regression

Let us suppose that:

- The data points are independent of each other
$>$ Each data point has a measurement error that is random, distributed as a Normal distribution around the "true" value $Y\left(x_{i}\right)$:

The probability of the data points, given the model Y is then:

$$
P(\text { data/ Model }) \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
$$

Bayes' theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

where \boldsymbol{A} and \boldsymbol{B} are events and $P(B) \neq 0$.

* $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$ is a conditional probability: it is the probability of event \boldsymbol{A} occurring given that \boldsymbol{B} is true. It is also called the posterior probability of \boldsymbol{A} given \boldsymbol{B}.
* $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$ is also a conditional probability: the probability of event \boldsymbol{B} occurring given that \boldsymbol{A} is true.
* $\boldsymbol{P}(\boldsymbol{A})$ and $\boldsymbol{P}(\boldsymbol{B})$ are the probabilities of observing A and B respectively without any given conditions; they are known as the marginal probability or prior probability.
* \boldsymbol{A} and \boldsymbol{B} must be different events.

Bayes' theorem

User new evidence to update beliefs

Bayes’ Theorem

Hypothesis (model) on your friend's new baby:

H1: brown hair baby boy

H2: blond hair baby girl

H3: cute baby cat

Bayes' Theorem

Hypothesis (model) on your friend's new baby:

H1: brown hair baby boy

H2: blond hair baby girl

Evidence

H3: cute baby cat

Bayes' Theorem

Hypothesis (model) on your friend's new baby:

H1: brown hair baby boy

H 2 : blond hair baby girl

Evidence

H3: cute baby cat

Bayes' Theorem

Example: suppose a drug test is 99% sensitive and 99% specific.
$($ Namely, $P(+\mid$ User $)=0.99$ and $P(+\mid$ Non user $)=0.01)$
Suppose that 0.5% of people are users of the drug. If a random individual tests positive, what is the probability she is a user?

Bayes’ Theorem

Example: suppose a drug test is 99% sensitive and 99% specific.
$($ Namely, $P(+\mid$ User $)=0.99$ and $P(+\mid$ Non user $)=0.01)$
Suppose that 0.5% of people are users of the drug. If a random individual tests positive, what is the probability she is a user?

$$
P(\text { User } \mid+)=\frac{P(+\mid \text { User }) P(\text { User })}{P(+)}=\frac{P(+\mid \text { User }) P(\text { User })}{P(+\mid \text { User }) P(\text { User })+P(+\mid \text { NonUser }) P(\text { NonUser })}
$$

$$
P(U s e r \mid+)=33.2 \%
$$

Linear Regression

The probability of the data points, given the model Y is then:

$$
P(\text { data/ Model }) \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
$$

Linear Regression

The probability of the data points, given the model Y is then:

$$
P(\text { data/ Model }) \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
$$

Application of Bayes 's theorem:
$P($ Model/ Data $) \propto P($ Data/ Model $) P($ Model $)$

Linear Regression

The probability of the data points, given the model Y is then:

$$
P(\text { data/ Model }) \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
$$

Application of Bayes 's theorem:

$$
P(\text { Model/ Data }) \propto P(\text { Data/ Model }) P(\text { Model })
$$

With no information on the models, we can assume that the prior probability P (Model) is constant.

Linear Regression

The probability of the data points, given the model Y is then:

$$
P(\text { data/ Model }) \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
$$

Application of Bayes 's theorem:

$$
P(\text { Model/ Data }) \propto P(\text { Data/ Model }) P(\text { Model })
$$

With no information on the models, we can assume that the prior probability P (Model) is constant.

Finding the model that maximizes $\mathrm{P}(\mathrm{Model} /$ Data $)$ is then equivalent to finding the model that maximizes $\mathrm{P}($ Data/Model).

Linear Regression

The probability of the data points, given the model Y is then:

$$
P(\text { data } / \text { Model }) \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
$$

Application of Bayes 's theorem:

$$
P(\text { Model/ Data }) \propto P(\text { Data/ Modelel) } P(\text { Model })
$$

With no information on the models, we can assume that the prior probability P (Model) is constant.

Finding the model that maximizes $\mathrm{P}(\mathrm{Model} /$ Data $)$ is then equivalent to finding the model that maximizes $\mathrm{P}($ Data/Model $)$.

This is equivalent to maximizing its logarithm, or minimizing the negative of its logarithm, namely:

$$
\chi_{2}=\sum_{i=1}^{N} \frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}
$$

Linear Regression

Fitting to a straight line:

$$
Y(x)=a x+b
$$

Then:

$$
\chi_{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-a x_{i}-b}{\sigma_{i}}\right)^{2}
$$

The parameters a and b are obtained from the two equations:

$$
\begin{aligned}
& \frac{\delta \chi_{2}}{\delta a}=-2 \sum_{i=1}^{N} \frac{x_{i}\left(y_{i}-a x_{i}-b\right)}{\sigma_{i}^{2}}=0 \\
& \frac{\delta \chi_{2}}{\delta b}=-2 \sum_{i=1}^{N} \frac{y_{i}-a x_{i}-b}{\sigma_{i}^{2}}=0
\end{aligned}
$$

Linear Regression

Let us define:

$$
S=\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \quad S_{x}=\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} \quad S_{y}=\sum_{i=1}^{N} \frac{y_{i}}{\sigma_{i}^{2}} \quad S_{x x}=\sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \quad S_{x y}=\sum_{i=1}^{N} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}
$$

Then:

$$
\begin{aligned}
a S_{x x}+b S_{x} & =S_{x y} \\
a S_{x}+b S & =S_{y}
\end{aligned}
$$

From which we find a and b :

$$
\begin{aligned}
& a=\frac{S_{x y} S-S_{x} S_{y}}{S_{x x} S-S_{x}^{2}} \\
& b=\frac{S_{x x} S_{y}-S_{x} S_{x y}}{S_{x x} S-S_{x}^{2}}
\end{aligned}
$$

Linear Regression

We are not done!

Uncertainty on the values of a and b :

$$
\begin{aligned}
\sigma_{a}^{2} & =\frac{S}{S_{x x} S-S_{x}^{2}} \\
\sigma_{b}^{2} & =\frac{S_{x}}{S_{x x} S-S_{x}^{2}}
\end{aligned}
$$

Evaluate goodness of fit:

- Compute residual error on each data point: $Y\left(x_{i}\right)-y_{i}$
* Compute correlation coefficient R^{2}

Linear Regression

Linear Regression

More general linear model:

$$
Y(x)=a_{1} X_{1}(x)+a_{2} X_{2}(x)+\ldots+a_{M} X_{M}(x)
$$

Then:

$$
\chi_{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-a_{1} X_{1}(x)-a_{2} X_{2}(x)-\ldots-a_{M} X_{M}(x)}{\sigma_{i}}\right)^{2}
$$

The parameters a and b are obtained from the two equations:

$$
\frac{\delta \chi_{2}}{\delta a_{k}}=-2 \sum_{i=1}^{N} \frac{X_{k}\left(x_{i}\right)\left(y_{i}-a_{1} X_{1}(x)-a_{2} X_{2}(x)-\ldots-a_{M} X_{M}(x)\right)}{\sigma_{i}^{2}}=0
$$

Model fitting

Let us work out a simple example. Let us consider we have N students, S_{l}, \ldots, S_{N} and let us "evaluate" a variable x_{i} for each student such that:
$x_{i}=1$ if student S_{i} owns a Ferrari, and $x_{i}=0$ otherwise.
We want an estimator of the probability p that a student owns a Ferrari.
The probability of observing x_{i} for student S_{i} is given by:

$$
f\left(x_{i}, p\right)=p^{x_{i}(1-p)^{1-x_{i}}}
$$

The likelihood of observing the values x_{i} for all N students is:

$$
L(p)=f\left(x_{1}, x_{2}, \ldots, x_{N} ; p\right) \approx f\left(x_{1}, p\right) f\left(x_{2}, p\right) \ldots f\left(x_{N}, p\right)
$$

Model Fitting

$$
L(p)=p^{\sum x_{i}}(1-p)^{N-\sum x_{i}}
$$

The maximum likelihood estimator of p is the value p_{m} that maximizes $\mathrm{L}(\mathrm{p})$:

$$
p_{m}=\operatorname{argmax} L(p)
$$

This is equivalent to maximizing the logarithm of $\mathrm{L}(\mathrm{p})$ (log-likelihood):

$$
\log (L(p))=\log (p) \sum_{i=1}^{N} x_{i}+\log (1-p)\left(N-\sum_{i=1}^{N} x_{i}\right)
$$

Model Fitting

$$
\begin{aligned}
& \frac{\delta \log (L(p))}{\delta p}=\frac{1}{p} \sum_{i=1}^{N} x_{i}-\frac{1}{1-p}\left(N-\sum_{i=1}^{N} x_{i}\right)=0 \\
& \downarrow \\
& r_{n}=\frac{1}{N} \sum_{x} \leftarrow= \\
& \text { maximum likelihood estimator }
\end{aligned}
$$

