Clustering Unsupervised Learning
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Hierarchical Clustering

To cluster a set of data D={P,, P,, ...,Py}, hierarchical clustering proceeds

through a series of partitions that runs from a single cluster containing all
data points, to N clusters, each containing 1 data points.

Two forms of hierarchical clustering:

Agglomerative
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a, b

Divisive



Hierarchical Clustering

Methods differ in their definition of inter-cluster distance (or similarity)



Hierarchical Clustering

1) Single linkage clustering Cluster A
Distance between closest pairs of points:
Cluster B
2) Complete linkage clustering
Cluster A

Distance between farthest pairs of points:

Cluster B



Hierarchical Clustering

3) Average linkage clustering Cluster A

Mean distance of all mixed pairs of points:

X 2dp P .
d(A, B) = ¥
A''B Clu

4) Average group linkage clustering

ster B

Cluster A

. Cluster T

Cluster B

Mean distance of all pairs of points:
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> K-means clustering

>  How many clusters?



K-means clustering

The k-means algorithm partitions the data into k mutually
exclusive clusters

Feature 2

Feature 1

(http://www.weizmann.ac.il/midrasha/courses/)



K-means clustering

Algorithm description
= Choose the number of clusters, K
« Randomly choose initial positions of K centroids
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K-means clustering

Algorithm description
= Choose the number of clusters, K
« Randomly choose initial positions of K centroids

« Assign each of the points to the “nearest centroid” (depends on
distance measure)
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K-means clustering

Algorithm description
« Choose the number of clusters - K
« Randomly choose initial positions of K centroids

>a Assign each of the points to the “nearest centroid” (depends on
distance measure)

= Re-compute centroid positions

« If solution converges - Stop!
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K-means clustering

Algorithm description
« Choose the number of clusters - K
= Randomly choose initial positions of K centroids

>u Assign each of the points to the “nearest centroid” (depends on
distance measure)

« Re-compute centroid positions

« If solution converges > Stop!
A

(http://www.weizmann.ac.il/midrasha/courses/)
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>  K-means clustering

> How many clusters?



Cluster Validation

Clustering is hard: it is an unsupervised learning technique. Once a
Clustering has been obtained, it is important to assess its validity!

The questions to answer:
>Did we choose the right number of clusters?
>Are the clusters compact?

>Are the clusters well separated?

To answer these questions, we need a quantitative measure
of the cluster sizes:

>|ntra-cluster size
>|nter-cluster distances



Cluster Validation

Internal Cohesion ——
Within Cluster

External Separation
Between Clusters




Inter cluster size

Computing 6(A, B): Cluster A
Several options:

> Single linkage

> Complete linkage
> Average linkage
> Average group linkage Cluster B




Intra cluster size

Several options:
For a cluster S, with N members and center C:

+ Complete diameter:

A(S) = max (d(x,y))

(x,y)ES” o © O .
© o
+ Average diameter: e ©
1
A(S) = d(x,y)
NV D), 2
X#Y

+ Centroid diameter:

A(S) = %Ed(x,C)

e



Clustering Quality

For a clustering with K clusters:

1) Dunn’s index
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-> Large values of D correspond to good clusters

2) Davies-Bouldin’s index
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DB =lmax e i
K i¢j\ 5(SiaSj) /

-> Low values of DB correspond to good clusters



Cluster Quality: Silhouette index

Define a quality index for each point in the original dataset:

>For the 1th object di, calculate 1ts average distance to all other

objects 1n its cluster. Call this value a(di). -

O
>For the 1th object and any cluster not containing the object, ~
calculate the object’s average distance to all the objects 1n the b'(f,lf)-""'l

given cluster. 7 "7 = om
Find the minimum such value with respect to all clusters; o @ o ©
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call this value b(d1). e °
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O
>For the 1th object, the silhouette coetficient 1s ©

b(di) — a(di)

NS = et
max(a(di), b(di))



Cluster Quality: Silhouette index

a=avg




Cluster Quality: Silhouette Index

Note that:
-1 <s(di) £ 1

>s(1) = 1, 11s likely to be well classified
>s(1) = -1, 11s likely to be incorrectly classified

>s(1) = 0, indifferent



Cluster Quality: Silhouette Index

Cluster silhouette index:
N

S(X,) = % 2:, s(i)

(GGlobal silhouette index:

1 K
GS = — S(X.
KZ} (X))

Large values of GS correspond to good clusters



Comparing two clustering

Given a set of n elements S = {ay,a,, ...,a,} and two partitions of § to compare, X = {X;, ..., X ..}, a partition of S into » subsets, and , ¥ = {Y,, ..., ¥}

a partition of §' into s subsets, define the following:

+ a, the number of pairs of elements in that are in the same subset in and in the same subset in §
+ b, the number of pairs of elements in that are in different subsets in and in different subsets in §
+ ¢, the number of pairs of elements in that are in the same subset in and in different subsets in §

+ d, the number of pairs of elements in that are in different subsets in and in the same subset in §

The Rand index, R, 1s:

a+b e a+b
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Comparmg two clustering

Should be
| less similar |
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Comparmg two clustering

Should be
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Comparmg two clustering

Should be
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Pairs in same cluster is A and B: :
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Comparmg two clustering

Pairs in same cluster is A and B:

(2,3) 4,5) (1,6) (1,7) (1,8) (1,9)
(6,7) (6,8) (6,9) (7,8) (7,9) (8,9)

Pairs in different clusters in A:
(1,2) (1,3) (1,4) (1,5) (2,4) (2,5)
(2,6) (2,7) (2,8) (2,9) (3,4) (3,5)
(3,6) (3,7) (3,8) (3,9) (4,6) (4,7)
(4,8) (4,9) (5,6) (5,7) (5,8) (5,9)

=

Should be
less similar
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Comp armg WO

n=9

Pairs in same cluster is A and B:
(23)(455(1.6)(1.7) 1 8)(19)
(6,7) (6,8) (6,9) (7,8) (7,9) (8,9)

Pairs in different clusters in A and B:

(1,2)(1,3)(1,4) (1,5) (2,4) (2,5)
(2,6).(27)(2.8)(2,9)(34)(35)
(3,6) (3,7) (3,8) (3,9) (4,6) (4,7)
(4,8) (4,9) (5,6) (5,7) (5,8) (5,9)

clustering

Should be
less similar
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Comparmg two clustering

I oss similar
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Pairs in same cluster is A and B: :
(2,3)(45)(1,6)(1,7) (1,8)(1,9) g =5 °
(6,7) (6,8) (6,9) (7,8) (7,9) (8,9) :

Pairs in different clusters in A and B:

(1,2) (1,3) (1,4) (1,5) (2,4)(2,5) :
26)27)28) 29 B4 GBS 920
(3,6) (3,7) (3,8) (3,9) (4,6) (4,7) :
(4,8) (4,9) (5,6) (5,7) (5,8) (5,9)
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Comparmg two clustering
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Pairs in same cluster is A and B:
(23545 CLO)EE 721 Cl8) A0 erg =5
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irs in different clusters in A and B:
(1,2) (1,3) (1,4) (1,5) (2,4) (2,5)
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(3,6) (3,7) (3,8) (3,9) (4,6) (4,7)
(4,8) (4,9) (5,6) (5,7) (5,8) (5,9)
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Comparing two clustering
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n=9

Pairs in same cluster is A and B:

(1,2) (1,3) (4,5) (4,6) (7,8) (7,9) a=/
P Y
20> . andl
R=2 - =— =10.69 R=2 = = 0.19
i :  Pairs in different clusters in A and B: 9 X8

(1,4) (1,5) (1,6) (1,7) (1,8) (1,9) (2,4)

(2,5) (2,6) 2,7) (2,8) (2,9) (34)(35) b=0
(3,6) (3,7) (3,8) (3,9) (4,7) (4,8) (4,9)

(5,7) (5,8) (5,9) (6,7) (5,8) (6,9)



